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Abstract: In traditional target tracking methods, the angle error and range error are often measured by the empirical value, while 
observation noise is a constant. In this paper, the angle error and range error are analyzed. They are influenced by the signal- 
to-noise ratio (SNR). Therefore, a model related to SNR has been established, in which the SNR information is applied for target 
tracking. Combined with an advanced nonlinear filter method, the extended Kalman filter method based on the SNR model 
(SNR-EKF) and the unscented Kalman filter method based on the SNR model (SNR-UKF) are proposed. There is little difference 
between the SNR-EKF and SNR-UKF methods in position precision, but the SNR-EKF method has advantages in computation 
time and the SNR-UKF method has advantages in velocity precision. Simulation results show that target tracking methods based 
on the SNR model can greatly improve the tracking performance compared with traditional tracking methods. The target tracking 
accuracy and convergence speed of the proposed methods have significant improvements. 
 
Key words: Signal-to-noise ratio (SNR) model; Target tracking; Angle error; Range error; Nonlinear filter 
https://doi.org/10.1631/FITEE.1900679 CLC number: TN953 
 
 
1  Introduction 
 

With the increasing requirements of weapon 
systems for tracking and guiding radar, improving the 
target tracking accuracy has become an important 
research topic (Tang et al., 2017; Daniyan et al., 2018; 
Zhang XY et al., 2019; Zhang Y et al., 2019). The 
current study on target tracking focuses mainly on 
obtaining more measurement information, which is a 
requirement of target tracking. The measurement 
information includes target position, velocity, radial 
velocity (Ehrman and Lanterman, 2008; Musicki and 
Song, 2013; Zhou et al., 2014), target pose (Liu D  
et al., 2019), high-resolution range profile (HRRP) 
(Hong et al., 2004; Ruan and Hong, 2006; Du et al., 

2007), radar cross section (RCS) (Ehrman and Ma-
hapatra, 2009), and target amplitude (Brekke et al., 
2010; Mertens et al., 2016). These measurements 
have been applied to the target measurement equation 
to improve the target tracking performance. The ra-
dial velocity has been introduced to the measurement 
equation of the Kalman filter to improve the target 
tracking accuracy (Ehrman and Lanterman, 2008; 
Musicki and Song, 2013; Zhou et al., 2014). Two 
target tracking methods aided by the pose of the target 
have been proposed to improve the prediction accu-
racy (Liu D et al., 2019). A feature-aided tracking 
method has been proposed, which uses high- 
resolution range (HRR) features and the technique of 
mixture density estimation (Ruan and Hong, 2006). 
The HRR measurement has been used for ground 
moving-target tracking and identification (Hong et al., 
2004). Complex HRRP has been exploited to obtain 
better recognition results (Du et al., 2007). RCS- 
assisted tracking has been used and it is effective 
when targets are closely spaced (Ehrman and Maha-
patra, 2009). RCS information has been exploited to 
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improve radar performance in some situations 
(Mertens et al., 2016). Amplitude information has 
been used to the probabilistic data association filter to 
improve the radar performance (Brekke et al., 2010). 
Brekke et al. (2011) proposed that the probabilistic 
data association filter with amplitude information can 
safely operate in the presence of abundant clutter. 

With the rapid development of radar technology, 
it is possible to obtain the signal-to-noise ratio (SNR) 
information of the target with high precision (Das and 
Rao, 2012; Villano, 2014). Accurate SNR and noise 
variance estimation has been addressed in multiple- 
input multiple-output (MIMO) systems (Das and Rao, 
2012). The estimation of the noise variance and SNR 
of the cross-polarized channels has been discussed in 
synthetic aperture radar (SAR) data (Villano, 2014). 
The SNR information is applied to radar target 
tracking in this study. 

Compared with traditional target tracking 
methods, SNR information is extended to the radar 
target tracking method in this study. The relationships 
among the range error, angle error, and SNR are an-
alyzed. The SNR model is established, and the 
measurement noise matrix in the filter method is 
modified. In traditional target tracking methods, the 
angle error and range error are fixed at constant val-
ues. In contrast, the angle error and range error vary 
with SNR in the proposed methods. Combined with 
advanced nonlinear filter methods, including the ex-
tended Kalman filter (EKF) method (Barczyk et al., 
2015; Rashedi et al., 2018; Xi et al., 2018) and the 
unscented Kalman filter (UKF) method (Liu CY et al., 
2011; Gokce and Kuzuoglu, 2015; Menegaz et al., 
2019), the EKF method based on the SNR model 
(SNR-EKF) and the UKF method based on the SNR 
model (SNR-UKF) are proposed. Simulation results 
show that the proposed methods have higher tracking 
accuracy and higher convergence speed than tradi-
tional target tracking methods. 

 
 

2  Mathematical model 
 
Assume that the target state equation is 

 

| 1 1 1,   k k k k kX F X V                      (1) 
 

where Xk=[xk, ẋk, yk, ẏk, zk, żk]T represents the state 
vector at time k, and (xk, yk, zk) and (ẋk, ẏk, żk) are the 

position and velocity of the target at time k, respec-
tively. Fk|k−1 represents the target state transitional 
matrix:  
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where T refers to the sampling interval. Vk−1 repre-
sents the process noise with state noise intensity 2
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and covariance Q: 
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Suppose that the target’s measurement equation 

is 
 

( ) , k k khZ X W                     (2) 
 
where Zk represents the measurement at time k, h(∙) 
the measurement function, and Wk the measurement 
noise at time k. 

The variance of the measurement noise is given 
as 
 

T[ ] ,k j k kjE W W R  
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If Zk=[ρk, θk, φk]T, then  
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where ρk, θk, and φk represent the range, azimuth, and 
elevation of the target in the polar coordinate system 
at time k, respectively, (xk, yk, zk) represents the posi-
tion of the target in the Cartesian coordinate system at 
time k, 2

k
  represents the variance of the range 

measurement error at time k, 2
k

  represents the var-
iance of the azimuth measurement error at time k, and 

2
k

  represents the variance of the elevation meas-
urement error at time k. In this study, we adopt Zk=[ρk, 
θk, φk] for the convenience of analysis. In traditional 
target tracking methods, 2 , k

 2 , k
 and 2

k
  are em-

pirical constants. 
 
 
3  Target tracking methods based on the SNR 
model  

3.1  SNR analysis 

The expression between the minimum detection 
SNR and the range can be described as (Skolnik, 
1962) 
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t t r
min 3 4
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PG G
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                (3) 

where SNRmin denotes the minimum detection SNR, 
R the target range, Pt the average power of the 
transmitter, Gt the transmit gain of the antenna, Gr the 
receive gain of the antenna, λ the wavelength, σ the 
RCS of the target, B the receiver bandwidth, F the 
receiver noise coefficient, L the radar loss, k1 the 
Boltzmann constant, and T0 the standard room  
temperature. 

Suppose σ=0.1, 1, or 10 m2, Pt=1500 W, 
λ=0.0536 m, Gt=Gr=45, B=5×106 Hz, F=3, L=6. As 
shown in Fig. 1, the SNR decreases with the increase 
of the target range. At the same range, the larger the 
RCS of the target, the larger the SNR of the target. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Angle error analysis 

The angle error caused by the thermal noise of 
the receiver is described as 
 

1
m

BW ,
2SNR 

K
                       (4) 

 
where BW denotes the 3-dB beam width and Km de-
notes the single pulse angle slope. 

As shown in Fig. 2, the angle error varies with 
SNR when Km=1.5 and BW=1°, 2°, or 3°. It can be 
seen that the angle error caused by the thermal noise 
of the receiver depends on the antenna beam width 
and SNR. Under the same antenna beam width, the 
larger the SNR of the target, the smaller the angle 
error caused by the thermal noise of the receiver. 
Under the same SNR condition, the narrower the  
 

Fig. 1  Relationship between SNR and the target range at 
different σ’s 
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antenna beam width, the smaller the angle error 
caused by the thermal noise of the receiver. 

In fact, the angle error of a radar is not only re-
lated to the thermal noise of the receiver, but also 
affected by factors such as angular glint, quantization 
error of angle coding, sampling quantization error, 
amplitude-phase imbalance, and atmospheric refrac-
tion. However, the thermal noise of the receiver is the 
main factor resulting in an angle error. Assume that 
the angle error caused by other factors except the 
thermal noise of the receiver is σ2. 

Because σ1 and σ2 are independent, there exists 
 

2 2 2
1 2= + .                              (5) 

 

3.3  Range error analysis 

The range error caused by the thermal noise of 
the receiver is described as follows: 

 

1
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c
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                       (6) 

 
where Bs is the signal bandwidth and c the propaga-
tion speed of the electromagnetic wave. 

As shown in Fig. 3, the range error varies with 
SNR when B=3, 6, or 9 MHz. It can be seen that the 
range error caused by the thermal noise of the receiver 
depends on the signal bandwidth and SNR. With the 
same signal bandwidth, the larger the SNR of the 
target, the smaller the range error caused by the 
thermal noise of the receiver. Under the same SNR  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
condition, the larger the signal bandwidth, the smaller 
the range error caused by the thermal noise of the 
receiver. 

In fact, the range error of a radar is not only re-
lated to the thermal noise of the receiver, but also 
affected by factors such as angular glint, range quan-
tization error, multipath, transmitted pulse jitter, 
range Doppler coupling, and atmospheric refraction. 
Assume that the range error caused by factors other 
than the thermal noise of the receiver is σρ2. 

Because σρ1 and σρ2 are independent, there exists 
 

2 2 2
1 2= + .                                 (7) 

 

3.4  Implementation of target tracking methods 

3.4.1  Selection of measurement noise covariance 

The minimum SNR is calculated according to 
the detection probability and false alarm probability 
determined by a radar (Alberhseim, 1981; Tufts and 
Cann, 1983): 

 
minSNR 0.12 1.7 ,  A AB B               (8) 

 
where A=ln(0.62/Pfa) and B=ln(Pd/(1−Pd)). Pfa de-
notes the false alarm probability and Pd the detection 
probability. 

Assume that the target SNR at time k is SNRk. 
Then we have SNRk≥SNRmin. According to Eqs. (4)– 
(7), the measurement noise covariance at time k in the 
polar coordinate system can be obtained as follows: 

 

Fig. 2  Relationship between the angle error and SNR at 
different BW’s when Km=1.5 

Fig. 3  Relationship between the range error and SNR at 
different B’s 
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where θH denotes the azimuth 3-dB beam width, and 
φH denotes the elevation 3-dB beam width. 
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(10) 

 
denotes the measurement noise covariance caused by 
the thermal noise of the receiver, and Rk2 denotes the 
measurement noise covariance caused by the other 
factors.

 
3.4.2  Extended Kalman filter method based on the 
SNR model 

The SNR-EKF method applies the target SNR 
information to the EKF method. Supposing that the 
target state and covariance matrix are respectively 

1| 1
ˆ

k k X  and Pk−1|k−1 at time k−1, zk=[ρk, θk, φk]T, SNRk 
is the target SNR at time k, and Rk2 is the measure-
ment noise covariance caused by factors other than 
the thermal noise of the receiver at time k, the detailed 
steps of the SNR-EKF method are as follows:  

Step 1: judge whether SNRk satisfies the condi-
tion SNRk≥SNRmin. If it does, turn to step 2. 

Step 2: calculate Rk1 according to Eq. (10), and 
then substitute it into Eq. (9) to obtain Rk. 

Step 3: predict the state: 
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3.4.3  Unscented Kalman filter method based on the 
SNR model 

The SNR-UKF method applies the target SNR 
information to the UKF method. The assumption of 
the SNR-UKF method is the same as that of the 
SNR-EKF method. The detailed steps of the SNR- 
UKF method are as follows: 

Step 1: judge whether SNRk satisfies the condi-
tion SNRk≥SNRmin. If it does, turn to step 2. 

Step 2: calculate Rk1 according to Eq. (10), and 
then substitute it into Eq. (9) to obtain Rk. 

Step 3: update the time: 
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Step 4: update the measurement: 
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where c

i  is the weight to obtain the estimated mean 

of 1| 1, 
i
k k  m

i  is the weight to obtain the estimated 

covariance matrix of 1| 1, 
i
k k  | 1

ˆ
k kX  is the predicted 

target state at time k, and | 1k kP  is the predicted co-
variance matrix at time k. 

Step 5: update the filter: 
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where kK  is the Kalman gain, |
ˆ

k kX  is the target  

state at time k, and |k kP  is the covariance matrix at 
time k. 

4  Simulations and analysis 
 

To verify the effectiveness of the proposed 
methods, simulations have been conducted as follows: 
the target keeps 1000 m away from the initial position 
(10 000, 10 000, 1000) m, and moves in a uniform 
straight line at a speed of (100, −120) m/s. The target 
trajectory is shown in Fig. 4. The radar system pa-
rameters are as follows: Pt=5000 W, λ=0.056 m, 
Gt=Gr=45, B=5×106 Hz, F=3, L=6, σ=0.1 m2, Pd= 
50%, Pfa=10−6, σρ2=15 m, σ2=0.0286°. Bringing Pd 
and Pfa into Eq. (8), there exists SNRmin=13.3 dB. 
Two hundred Monte-Carlo simulations have been 
carried out with the observation data interval of 1 s 
and duration of 100 s. The process noise is the white 
noise with a mean value of 0 and state noise intensity 
of 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three scenarios are simulated here:  

Scenario 1    The range error remains unchanged at  
30 m, and the angle error varies with SNR.  

This scenario is designed to verify the effect  
of SNR on the angle error and target tracking  
performance.  
Scenario 2    The angle error remains unchanged at 
0.0432°, and the range error varies with SNR.  

This scenario is designed to verify the effect  
of SNR on the range error and target tracking  
performance.  
Scenario 3    The angle error and range error vary 
with SNR.  

This scenario is designed to verify the effect of 
SNR on the range error, angle error, and target 
tracking performance. The range error of the EKF and 
UKF methods is 30 m, and the angle error is 0.0432°. 

Fig. 4  Trajectory of the target 

y
(k

m
)



Liu et al. / Front Inform Technol Electron Eng   2020 21(12):1804-1814 1810

The SNR-EKF method, SNR-UKF method, tra-
ditional EKF method, and traditional UKF method are 
compared in the following four aspects: position 
precision, velocity precision, convergence speed, and 
computation time. 

The root mean square errors (RMSEs) of the 
target position and target velocity are as follows: 
 

2 2
p

1

1RMSE [( ) ( ) ],


   
M

i i
k k k k k

i

x x y y
M

  (28) 

2 2
v

1

1RMSE [( ) ( ) ],


       
M

i i
k k k k k

i

x x y y
M

  (29) 

 
where M is the number of simulations, ( , )i i

k kx y  is the 

estimated target position, and ( , ) i i
k kx y  is the esti-

mated target velocity in the ith simulation. 
According to radar parameters and the target 

route, the SNR variation can be obtained using Eq. (3). 
As shown in Fig. 5, with the increase of the target 
range, the target SNR decreases from 40.52 to  
34.53 dB. The azimuth error is generated by Eq. (4) 
and the range error is generated by Eq. (6) in real time. 
From the angle error curve in Fig. 6, it can be seen 
that with the increase of the target range, the angle 
error increases from 0.0384° to 0.0481°. From the 
range error curve in Fig. 7, it can be seen that with the 
increase of the target range, the range error increases 
from 25 to 34.9 m. 

The simulation results for Scenario 1 are shown 
in Figs. 8–10. 

From Fig. 8, we can see that the RMSEs of the 
target position of the traditional EKF and UKF  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

methods are both 38.7 m, while the RMSEs of the 
target position of the SNR-UKF method and the 
SNR-EKF method are both 29.7 m; the position ac-
curacy is improved by 9 m. Compared with the tradi-
tional EKF and UKF methods, the SNR-UKF method 
and the SNR-EKF method converge faster and have a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5  SNR variation curve 
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higher position accuracy. The performance of the 
SNR-UKF method is similar to that of the SNR-EKF 
method. 

From Fig. 9, it can be seen that the RMSE of the 
target velocity of the SNR-UKF method is 22.6 m/s, 
that of the traditional UKF method is 23.1 m/s, that of 
the SNR-EKF method is 31.98 m/s, and that of the 
traditional EKF method is 32.49 m/s. The velocity 
accuracy of the SNR-UKF method is 9.89 m/s higher 
than that of the traditional EKF method. The RMSE 
of the target velocity of the SNR-UKF method is the 
smallest and its velocity accuracy is the highest. 

Fig. 10 shows that the computation time of the 
SNR-EKF method and the traditional EKF method is 
maintained at 64 μs, while that of the SNR-UKF 
method and the traditional UKF method is maintained 
at 153 μs. The SNR-EKF method and the traditional 
EKF method are the best on computation time. 
Compared with the SNR-UKF method, the SNR-EKF 
method is better on computation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Figs. 8 and 9, it can be seen that the EKF 
method and the UKF method are sensitive to the value 
of the angle error. The angle error matching with the 
target SNR is conducive to improving performance. 

The simulation results for Scenario 2 are shown 
in Figs. 11–13. 

From Fig. 11, we can see that the RMSEs of the 
target position of the traditional EKF and UKF 
methods are both 35.0 m, while those of the SNR- 
UKF and SNR-EKF methods are both 27.0 m; the 
position accuracy is improved by 8.0 m. Compared 
with the traditional EKF and UKF methods, the SNR- 
UKF and SNR-EKF methods converge faster and 
have a higher position accuracy. The performance of 
the SNR-UKF method is similar to that of the SNR- 
EKF method. 

From Fig. 12, it can be seen that the RMSE of the 
target velocity of the SNR-UKF method is 22.74 m/s, 
that of the traditional UKF method is 22.86 m/s, that 
of the SNR-EKF method is 31.88 m/s, and that of the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  RMSEs of the target position for scenario 2 
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Fig. 12  RMSEs of the target velocity for scenario 2 
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traditional EKF method is 32.32 m/s. The velocity 
accuracy of the SNR-UKF method is 9.58 m/s higher 
than that of the traditional EKF method. The RMSE 
of the target velocity of the SNR-UKF method is the 
smallest and its velocity accuracy is the highest. 

Fig. 13 shows that the computation time of the 
SNR-EKF method and the traditional EKF method is 
maintained at 63 μs, while that of the SNR-UKF 
method and the traditional UKF method is maintained 
at 152 μs. The SNR-EKF method and the traditional 
EKF method are the best on computation time. 
Compared with the SNR-UKF method, the SNR-EKF 
method is better on computation time. 

From Figs. 11 and 12, it can be seen that the EKF 
method and the UKF method are sensitive to the value 
of the range error. The range error matching with the 
target SNR is conducive to improving performance. 

The simulation results for Scenario 3 are shown 
in Figs. 14–16. 

From Fig. 14, we can see that the RMSEs of the 
target position of the traditional EKF method and the 
UKF method are both 34.4 m, while those of the 
SNR-UKF and SNR-EKF methods are both 21.4 m, 
which means that the position accuracy is improved 
by 13 m. Compared with the traditional EKF and 
UKF methods, the SNR-UKF and SNR-EKF methods 
converge faster and have a higher position accuracy. 
The performance of the SNR-UKF method is similar 
to that of the SNR-EKF method. 

From Fig. 15, it can be seen that the RMSE of the 
target velocity of the SNR-UKF method is 22.29 m/s, 
that of the traditional UKF method is 22.74 m/s, that 
of the SNR-EKF method is 31.53 m/s, and that of the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

traditional EKF method is 32.16 m/s. The velocity 
accuracy of the SNR-UKF method is 9.87 m/s higher 
than that of the traditional EKF method. The RMSE 
of the target velocity of the SNR-UKF method is the 
smallest and its velocity accuracy is the highest. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Computation time of the four methods for sce-
nario 2 
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Fig. 15  RMSEs of the target velocity for scenario 3 
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Fig. 16 shows that the computation time of the 
SNR-EKF method and the traditional EKF method is 
maintained at 65 μs, while that of the SNR-UKF 
method and the traditional UKF method is maintained 
at 153 μs. The SNR-EKF method and the traditional 
EKF method are the best on computation time. 
Compared with the SNR-UKF method, the SNR-EKF 
method is better on computation time. 

From Figs. 14 and 15, it can be seen that the EKF 
method and the UKF method are sensitive to the value 
of the range error and the angle error. The range error 
and the angle error matching with the target SNR are 
conducive to improving performance. 

 
 

5  Conclusions 
 
In this paper, the SNR-EKF method and the 

SNR-UKF method have been proposed based on the 
SNR model. Through simulation analysis, the con-
clusions are as follows: 

1. Compared with the traditional EKF method 
and the UKF method, the SNR-EKF method and the 
SNR-UKF method have superior performance (higher 
prediction accuracy and higher convergence speed) 
and little influence on computation time. 

2. Compared with the SNR-EKF method, the 
SNR-UKF method has higher velocity precision, but 
longer computation time, and their position precision 
is almost the same. 
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