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Abstract: Extracting discriminative speaker-specific representations from speech signals and transforming them into
fixed length vectors are key steps in speaker identification and verification systems. In this study, we propose a latent
discriminative representation learning method for speaker recognition. We mean that the learned representations in
this study are not only discriminative but also relevant. Specifically, we introduce an additional speaker embedded
lookup table to explore the relevance between different utterances from the same speaker. Moreover, a reconstruction
constraint intended to learn a linear mapping matrix is introduced to make representation discriminative. Exper-
imental results demonstrate that the proposed method outperforms state-of-the-art methods based on the Apollo
dataset used in the Fearless Steps Challenge in INTERSPEECH2019 and the TIMIT dataset.
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1 Introduction

Speaker recognition (SR) is one of the most
widely used biometric recognition technologies, and
provides unique advantages in remote authentica-
tion. It has been extensively implemented in daily
life tasks. Speaker-specific representations play es-
sential roles in many speech recognition applica-
tions, such as speaker identification, verification, and
clustering. By comparing speaker representations,
a system can recognize the identity of a speaker
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and verify whether the current speaker matches an
enrolled target speaker or not (Togneri and Pul-
lella, 2011). Depending on the restrictions on ut-
terances, we can classify SR models into two cat-
egories, text-dependent and text-independent (Fis-
usi and Yesufu, 2007). When the transcript of the
utterances is lexically constrained, a task is consid-
ered text-dependent; otherwise, it is considered text-
independent.

Since the 1980s, numerous SR methods have
been proposed and achieved state-of-the-art results.
Starting with conventional methods and progress-
ing toward current deep learning ones, SR methods
can be categorized into three groups: non-parametric
models, parametric models, and artificial neural net-
works. The non-parametric models can be mod-
eled based on features of a speaker using particu-
lar operations. Conventional non-parametric models

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900690&domain=pdf


698 Huang et al. / Front Inform Technol Electron Eng 2021 22(5):697-708

include dynamic time warping (DTW) (Yu et al.,
1995; Dey et al., 2017) and vector quantization (VQ)
(Singh and Rajan, 2011). In DTW, an identification
template and a reference template are compared, and
then similarities between these two templates are
found. The VQ method extracts multi-dimensional
time-series vectors from a speech signal and estab-
lishes a speaker model by selecting particular repre-
sentative vectors.

The parametric models include the hidden
Markov model (HMM) (Rabiner, 1989) and Gaus-
sian mixture model (GMM) (Reynolds and Rose,
1995). GMM is the superposition of several Gaus-
sian functions, and the linear combination can sim-
ulate the continuous probability distribution of the
speaker vector feature, that is, describe the speaker’s
characteristics. Furthermore, a GMM universal
background model (GMM-UBM) (Reynolds et al.,
2000) and a support vector machine (Wan and
Campbell, 2000) were proposed to describe a tar-
get speaker. GMM-UBM aims to avoid overfitting
caused by insufficient training data. As a result
of introducing join factor analysis (Kenny et al.,
2007) and identity vector (i-vector) (Dehak et al.,
2011) modeling methods, the cooperation between i-
vector and probabilistic linear discriminant analysis
(PLDA) (van Leeuwen and Saeidi, 2013) has shown
excellent performance, which has remained unsur-
passed for a long time.

Artificial neural networks have proved their ap-
plicability to SR with the success of deep learning
in representation learning. Many researchers have
developed deep neural architecture (DNA) methods
to generate speaker-specific representations (Vari-
ani et al., 2014; Heigold et al., 2016; Li et al.,
2017). Deep learning frameworks are deemed power-
ful tools for complex data analysis, and many stud-
ies have proposed training deep nonlinear extractors
as solutions to SR. These frameworks have demon-
strated perspective results for text-dependent and
text-independent SR tasks.

Several studies based on deep neural networks
(DNNs) suggested replacing GMM with an i-vector
framework to obtain statistics (Lei et al., 2014), until
Google d-vector was proposed (Variani et al., 2014).
The method based on d-vector is the first SR system
entirely based on a DNN framework. Furthermore,
an end-to-end SR system based on triplet loss sub-
sequently emerged, and has been extensively studied

(Li et al., 2017; Zhang C and Koishida, 2017). Be-
sides the loss function, various speaker embedding
models have been introduced, including the d-vector
model for text-dependent tasks (Variani et al., 2014)
and the x-vector system for text-independent tasks
(Snyder et al., 2016, 2018).

In SR, learning discriminative features based on
an original input is one of the most important re-
search issues, including facial expression recognition
(Zhang FF et al., 2018), speech recognition (Luo
et al., 2018), speech emotion recognition (Mao et al.,
2014), and visual recognition of zero-shot learning
(Chen XB et al., 2015; Jiang et al., 2017). In
recent years, many feature learning methods em-
ployed in other recognition tasks have been applied
in SR. For example, discriminative methods used in
face recognition (Schroff et al., 2015; Wen et al.,
2016) have been successfully applied to SR tasks
(Li et al., 2017; Yadav and Rai, 2018). The basic
idea implemented in the above mentioned studies is
that in a latent feature space, the distance between
samples from the same class is reduced or limited,
while that between samples from different classes is
increased.

Inspired by the idea mentioned above, in this
study, we propose a latent discriminative representa-
tion learning (LDRL) method for SR. In this method,
we first use a dictionary learning framework to model
an original latent representation space, so that the
space can be constructed by dictionary items. Then,
a speaker embedding lookup table is constructed to
learn the relevance of samples from the same speaker.
Furthermore, to make latent representations discrim-
inative, we introduce a reconstruction constraint to
learn a linear mapping as an SR classifier. This con-
straint maps training samples to the corresponding
speaker labels. Finally, the latent representations
learned by LDRL are used to maintain the corre-
lation between samples from the same speaker and
provide sufficient discriminative capability. Experi-
mental results based on the Apollo dataset (Hansen
et al., 2018) used in the Fearless Steps Challenge in
INTERSPEECH2019 and the TIMIT dataset (Garo-
folo et al., 1993) demonstrate that the proposed ap-
proach can achieve stable and robust recognition
performance in complex scenes (for example, with
speaker variation and noise).

The major contributions of this paper can be
formulated as follows:
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1. Using a novel objective function, we can learn
latent representations that are relevant and discrim-
inative for SR. Specifically, LDRL from supervised
learning is divided into three blocks: basic latent rep-
resentation learning, latent relevance learning, and
latent discriminative learning. The latent represen-
tations are discriminative and robust, providing sig-
nificant performance improvement of SR.

2. The proposed embedding lookup table can
be used to learn correlations between different ut-
terances of the same speaker. Using this lookup
table, correlations between utterances from the
same speaker can be preserved, enabling latent rep-
resentations clustered in the latent representation
space.

3. The proposed LDRL method achieves state-
of-the-art SR performance on the TIMIT dataset,
and performs better than the baselines of the Fearless
Steps Challenge in INTERSPEECH2019 based on
the Apollo dataset.

2 Related works

A typical SR system consists of two main com-
ponents: a front-end processing unit which extracts
appropriate features from speech data and a classifier
which identifies the target speaker of a speech utter-
ance. In this section, we briefly review the methods
widely used in SR.

2.1 Feature extraction for speaker recognition

A speech signal comprises multiple features, in-
cluding the important and unimportant ones. In
the past few decades, many speaker-specific features
have been introduced, including conventional man-
ual features and the current deep learning ones,
such as Mel-frequency cepstral coefficients (MFCCs)
(Davis and Mermelstein, 1980), linear predictive cep-
stral coefficients (LPCCs) (Huang et al., 2001), line
spectral frequencies (LSFs) (Huang et al., 2001), and
perceptual linear prediction (PLP) coefficients (Her-
mansky, 1990). In the early 1980s, MFCCs were first
introduced into speech recognition and then applied
to SR. They were computed using a group of fil-
ter banks followed by a logarithmic compression and
the discrete cosine transform. LPCCs, LSFs, and
PLP use predictor coefficients to transform them-
selves into robust and less correlated features. In
recent years, with the development of deep learn-

ing in various fields, d-vector (Variani et al., 2014),
x-vector (Snyder et al., 2017), and j-vector (Chen
NX et al., 2015) extracted from speech signals us-
ing DNNs have been introduced into SR. Although
these studies have investigated the problem of fea-
ture learning in SR using various techniques, their
focus has been emphasized mainly on learning dis-
criminative features using input data. However, it
is still a challenging task to identify an appropri-
ate mode to learn discriminative and relevant fea-
tures in SR. In this study, we introduce an LDRL
method based on a dictionary learning framework.
Using a novel object function, it allows to integrate
latent relevance learning and latent discriminative
learning.

2.2 Classifiers for speaker recognition

SR refers to recognizing people from their voices.
Two individuals cannot have the same voice because
their vocal tract shape, throat size, and other vocal
organs are different. Besides these physical differ-
ences, everyone has a unique way to speak, including
specific accents, rhythms, intonation styles, pronun-
ciation patterns, and vocabulary choices. State-of-
the-art SR systems rely on the aforementioned fea-
tures in parallel, attempting to cover these unique
aspects and use them to achieve accurate recogni-
tion. Various methods have been applied for SR,
including VQ (Singh and Rajan, 2011), HMM (Ra-
biner, 1989), GMM (Reynolds and Rose, 1995; Kim
et al., 2017), DTW (Yu et al., 1995; Dey et al., 2017),
i-vector/PLDA (van Leeuwen and Saeidi, 2013), and
DNN (Variani et al., 2014; Heigold et al., 2016; Li
et al., 2017). However, experimental results indi-
cated that each method has its own advantages and
limitations. To combine the merits of different meth-
ods, an aggregation method has been proposed (De-
sai and Joshi, 2013).

3 Latent relevant and discriminative
representation learning for speaker
recognition

The architecture of the proposed method is il-
lustrated in Fig. 1. It has three stages: (1) latent
representation by dictionary learning; (2) latent rel-
evance learning; (3) latent discriminative learning.
In this section, we will describe each learning stage
in detail.
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Fig. 1 Architecture of the latent discriminative representation learning method for speaker recognition based
on dictionary learning
After extracting the original features, the implementation of the proposed approach is framed using a red rectangle. Three
steps of the implementation method are denoted by three red rectangles. The first rectangle refers to the input of the
i-vector to learn latent representations through dictionary learning. The second one represents the latent representations of
different utterances of the same speaker keeping relevance in the lookup table. The final one means using the reconstruction
constraint to learn a linear mapping matrix to make latent representations to classify different speakers, making the latent
representations discriminative. References to color refer to the online version of this figure

3.1 Latent representation by dictionary learn-
ing

One of the key issues associated with SR tasks
in the proposed approach is to find a latent represen-
tation space that can be used to specify relationships
between utterances. The latent representation space
is constructed based on a dictionary learning frame-
work. The problem can be formulated as follows:

l1{DDD,YYY } = argmin
DDD,YYY

‖XXX −DDDYYY ‖2F
s.t. ‖dddi‖22 ≤ 1 ∀i, (1)

where ‖ · ‖F denotes the Frobenius norm and dddi is
the ith column of the learned dictionary DDD ∈ R

m×h.
XXX ∈ R

m×n represents the the set of original in-
put features (i-vectors) of n labeled training sam-
ples, XXX = [xxx1,xxx2, . . . ,xxxn] (where xxxi represents the
ith i-vector), and m represents the dimension of the
i-vector. YYY ∈ R

h×n is the reconstruction coefficient
that corresponds to the target latent representation
extracted from the utterance of a speaker.

3.2 Latent relevance learning among utter-
ances of the same speaker

Although YYY can be viewed as latent represen-
tations in a recognition task, there are still several
questions that need to be clarified. First, there are
correlations among the latent representations cor-
responding to the same speaker. Therefore, it is

deemed unsuitable to learn representations of each
utterance independently. To address this problem,
a linear transformation matrix WWW is used to define
the relationship between a lookup table and latent
representations, providing relevant information for
different latent representations corresponding to the
same speaker. The latent relevance learning is de-
fined as follows:

l2{YYY ,WWW} = argmin
YYY ,WWW

‖YYY −WAWAWA‖2F
s.t. ‖wwwi‖22 ≤ 1 ∀i, (2)

where wwwi is the ith column of WWW ∈ R
h×k. It can be

inferred from Eq. (2) that the latent representations
can be represented as the linear combination of a
lookup table. AAA ∈ R

k×n denotes the speaker embed-
ding lookup table composed of MFCCs, where k de-
notes the dimension of the MFCCs. Speaker embed-
ding is identical for different latent representations
for the same speaker category, and the construction
of lookup table AAA will be described in the original
feature extraction section (i.e., Section 4.2). WAWAWA is
encouraged to be similar to latent representation YYY

in Eq. (2), thereby ensuring that the learned bases
depict dictionary items. YYY can be viewed as a linear
combination of speaker embeddings that implicitly
combine the strongly correlated ones. The lookup
table is aimed at guiding the latent relevance learn-
ing of different latent representations corresponding
to the same speaker. This is similar to building a
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cluster point for each speaker in a latent representa-
tion space, which can together pull different utter-
ances from the same speaker. In this way, relevant
information of the same speaker can be passed be-
tween different latent representations.

3.3 Latent discriminative learning among dif-
ferent speakers

Eq. (1) is to ensure that sparse coding for a
corresponding utterance provides the minimum re-
construction error. However, it does not guaran-
tee the best classification performance. Utterances
share some common information between different
speakers, such as voice and linguistic information in
human speech. To make a recognition task effective,
the latent representations must be discriminative. In
this case, we use a speaker classifier to make latent
representations discriminative. Specifically, linear
mapping CCC is learned by latent representations for
final speaker categories:

l3{CCC,YYY } = argmin
CCC,YYY

‖HHH −CYCYCY ‖2F

s.t. ‖ccci‖22 ≤ 1 ∀i, (3)

where ccci is the ith column of CCC ∈ R
s×h. CCC can be

considered a speaker classifier in a latent represen-
tation space, and HHH ∈ R

s×n represents the speaker
labels of the samples, where hhhi = [0, ..., 0, 1, 0, ..., 0]T

(i.e., ith column ofHHH) is a one-hot vector with dimen-
sion s. Dimension s represents the total number of
speaker categories. Eq. (3) is aimed to make latent
representations sufficiently discriminative to classify
different speakers. It implicitly pulls together utter-
ances from the same speaker and pushes them away
from different speakers. In summary, the overall ob-
jective function of SR is defined as follows:

l = l1 + αl2 + βl3, (4)

where α and β are super parameters. By adjusting
α and β, the constraint strength can be modified.

The latent representations learned by the pro-
posed method are not only discriminative, but also
relevant. First, in Eq. (2), the lookup table and
latent representations are connected using a linear
transformation matrix WWW . Using matrix WWW , we can
recover the speaker embeddings by the latent fea-
tures from the same speaker. Thus, latent represen-
tations share relevant information. Second, linear

mapping CCC in a latent representation space can be
viewed as a speaker classifier, and is used to map
latent representations to the corresponding speaker
category. This constraint enables latent representa-
tions to be discriminative.

3.4 Optimization

An obvious challenge is represented in Eq. (4),
which is not simultaneously convex forDDD, YYY ,WWW , and
CCC. An alternative optimization method can optimize
the overall objective function as follows:

1. Update latent representation YYY by fixing DDD,
WWW , and CCC. The subproblem can be formulated as
follows:

argmin
YYY

‖X̃XX − D̃DDYYY ‖2F, (5)

where

X̃XX =

⎡
⎣

XXX

αWAWAWA

βHHH

⎤
⎦ , D̃DD =

⎡
⎣

DDD

αIII

βCCC

⎤
⎦ , (6)

and III is the identity matrix. Let the derivative of
Eq. (5) be 0. We can obtain the closed solution of YYY
as

YYY =
(
D̃DD

T
D̃DD
)−1

D̃DD
T
X̃XX. (7)

2. Update latent representation dictionary DDD in
Eq. (1) by fixing YYY , WWW , and CCC. It can be optimized
by the Lagrangian dual. Therefore, the analytical
solution to DDD can be formulated as follows:

DDD =
(
XYXYXY T)(Y YY YY Y T +ΛΛΛ

)−1
, (8)

where ΛΛΛ is a diagonal matrix that comprises La-
grangian dual variables.

3. Update matrix WWW in Eq. (2) by fixing DDD, YYY ,
and CCC. It can also be optimized in the same way as
defined in Eq. (1). Thus, the analytical solution to
WWW is defined as follows:

WWW =
(
YYYAAAT)(AAAAAATTTT +ΛΛΛ

)−1
. (9)

4. Update linear mapping CCC in Eq. (3) by fixing
DDD, YYY , and WWW . It can also be optimized in the same
way as defined in Eq. (1). The analytical solution to
CCC is formulated as follows:

CCC =
(
HHHYYY T)(YYY YYY T +ΛΛΛ

)−1
. (10)
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3.5 Recognition with latent discriminative
representations

As the latent discriminative representation is
relevant and discriminative, we can perform the
recognition task in a latent representation space.
Given a test sample with its input feature xxxt, we
can calculate its latent discriminative representation
yyyt using the following formula:

yyyt = min
yyyt

‖xxxt −DDDyyyt‖+ λ‖yyyt‖22, (11)

where λ is the weight of the regularization term. In
this study, we concatenate different vector represen-
tations of an utterance to form the final representa-
tion. Then, we apply the nearest neighbor algorithm
to perform the SR task using the cosine distance as
follows:

Score(xxxt) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cos <

[
yyyt

CCCyyyt

]

,

[
WWWAAA

HHH

]

>, WWW �=000, CCC �=000,

cos <
[

CCCyyyt
]
,
[

HHH
]
>, WWW = 000,

cos <
[

yyyt
]
,
[

WWWAAA
]
>, CCC = 000,

(12)

where Score(·) denotes the score for the test sam-
ple and all speaker categories. The speaker with
the highest score is the target speaker. WWW = 000 de-
notes removing the latent relevance learning in LDR.
CCC = 000 denotes removing the latent relevance learning
(LRL). However, LDRL contains both of them.

4 Experiments

4.1 Datasets

To investigate the performance of the proposed
approach, we conducted experiments based on the
TIMIT and Apollo datasets.

1. TIMIT
The TIMIT dataset contains the broadband

recordings corresponding to 630 speakers of eight
major dialect regions (DRs) of American English,
and each reading is composed of 10 phonetically rich
sentences. The TIMIT corpus includes time-aligned
orthographic, phonetic, and word transcriptions and
a 16-bit, 16-kHz speech waveform file for each utter-
ance. Details are provided in Table 1.

2. Apollo
The Apollo dataset was supplied by the orga-

nizer of the Fearless Steps Challenge in INTER-
SPEECH2019. It comprises 19 000 h of naturalis-

tic multi-channel data. However, the organizer dis-
closed only more than 10 000 speech files, including
the development set and test set. Details are pre-
sented in Table 2. Data in this dataset is character-
ized by multiple classes of noise, degradation, and
overlapping instances over most channels. Most au-
dio channels are degraded due to high channel noise,
system noise, attenuated signal bandwidth, trans-
mission noise, cosmic noise, analog tape static noise,
and tag aging. These pose great challenges, and the
performance of the SR system depends on the speech
length. Contiguous speech by a single speaker with
the length of 0.4 to 50 s is provided in this dataset,
and a significant portion of short utterances exists in
the corpus.

4.2 Original feature extraction

In the experiments, speech signals were sampled
at a rate of 16 kHz and divided by a 25-ms Hamming
window with a 10-ms shift. An HMM toolkit (HTK)
(Young, 1993) was used to extract the MFCC fea-
ture normalized by the cepstrum mean. The Mi-
crosoft Research (MSR) identity toolbox (Sadjadi
et al., 2013) was used to develop a GMM-UBM sys-
tem and extract the i-vector as the input into the
proposed model. Details are presented in Fig. 1.

After extracting the MFCC features, we applied
two techniques. First, the MFCC features were used
to construct a speaker embedding lookup table. In
the experiments, we randomly selected an exemplar
from multiple speeches of a speaker, accumulated

Table 1 Dialect distribution of speakers

DR Male (%) Female (%) Total (%)

1 31 (63.3) 18 (36.7) 49 (7.8)
2 71 (69.6) 31 (30.4) 102 (16.2)
3 79 (77.5) 23 (22.5) 102 (16.2)
4 69 (69.0) 31 (31.0) 100 (15.9)
5 62 (63.3) 36 (36.7) 98 (15.5)
6 30 (65.2) 16 (34.8) 46 (7.3)
7 74 (74.0) 26 (26.0) 100 (15.9)
8 22 (66.7) 11 (33.3) 33 (5.2)

438 (69.5) 192 (30.5) 630 (100)

Table 2 Statistics of the development set (Dev) and
evaluation set (Eval) on the Apollo dataset

Set
Number of Average duration Number of
speakers per utterance (s) utterances

Dev 183 5.35 8394
Eval 183 4.69 3600
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the MFCC features over all frames, and averaged
and normalized them. The processed feature was
used to represent a particular speaker in a lookup
table. This procedure was inspired by the process
of extracting d-vectors. Second, the total variability
matrix and UBM were used to model i-vector based
on the MFCC features. The dimension of the ex-
tracted i-vector was fixed between 100 and 400 with
an interval of 100. Thereafter, the i-vector was used
as the input feature in LDRL. We conducted several
experiments by altering the i-vector dimension and
GMM mixture size to find the optimal condition of
the proposed model. At the UBM training step, dif-
ferent GMM mixture sizes (16, 32, 64, 128, 256, 512,
and 1024) were used.

4.3 Baselines

The LDRL method was compared with the fol-
lowing baseline approaches:

1. GMM-UBM
Following the conventional GMM-UBM frame-

work, a single speaker-independent universal back-
ground model (UBM) was constructed with the mix-
ture sizes of 256 and 1024. It performed training
during 10 iterations based on the training data.

2. i-vector/PLDA
Gender-independent i-vector extractors were

trained based on the TIMIT dataset. The probabilis-
tic LDA (PLDA) (Cumani et al., 2013) scoring was
then applied to perform recognition. As the i-vector
contained both speaker and channel information, we
focused only on the former. Therefore, implementing
a channel compensation algorithm called PLDA was
required to enable channel compensation. To com-
pare the results reported by Yoshimura et al. (2018),
the i-vector was extracted based on the total vari-
ability model with rank 200, and then modeled us-
ing PLDA comprising 100 dimensions of the speaker
subspace.

4.4 Model ablation

Model ablation was executed on the TIMIT
dataset and was not performed on the Apollo dataset
due to the elapsed deadline of the Fearless Steps
Challenge in INTERSPEECH2019. To obtain the
best parameter set, we performed several experi-
ments using different i-vector dimensions and mix-
ture sizes. Data division was the same as in Al-

Table 3 Speaker recognition accuracy (SRA) based
on different mixture sizes and i-vector dimensions for
120 speakers

SRA (%)

Mixture size i-vector dimension

100 200 300 400

16 91.67 90.21 85.00 83.54
32 97.50 96.04 91.00 78.75
64 98.54 98.33 98.13 92.08
128 99.38 98.33 98.54 97.08
256 99.79 99.58 98.96 98.13
512 100 99.58 99.17 98.54
1024 100 99.58 99.17 97.50

Kaltakchi et al. (2016). Table 3 presents the speaker
recognition accuracy (SRA) based on different GMM
mixture sizes and i-vector dimensions realized in the
proposed method.

It was observed that SRA augments with an in-
crease in the mixture size corresponding to the same
i-vector dimension when the i-vector dimension is
smaller than 400. However, at the same mixture size,
SRA decreases with an increase in the i-vector di-
mension. Experimental results demonstrated that in
the proposed method, the latent representation ob-
tained using the low-dimensional i-vector has greater
discriminative power in the recognition tasks. As
shown in Table 3, when the i-vector dimension is
100 and mixture size larger than 512, accuracy could
reach 100%.

The proposed method is associated with latent
relevance learning and latent discriminative learn-
ing, which makes the latent representations relevant
and discriminative. To verify the effectiveness of
each component, as described in Section 3.5, we com-
pared three different approaches. The results on the
TIMIT dataset with two data divisions are provided
in Table 4: (1) recognition with latent discrimina-
tive learning (LDL) by removing the second term in
Eq. (4); (2) recognition with LRL by removing the
third term in Eq. (4); (3) recognition with all con-
straint terms in Eq. (4), i.e., LDRL. To verify how
different feature extraction methods affect the per-
formance of the proposed method, we compared the
input i-vector with the x-vector features.

Comparing the performances of LDL, LRL, and
LDRL, we observed that the latent representations
are deemed the most applicable to SR tasks. More-
over, by imposing the discriminative constraint on
the basis of latent relevance learning in Eq. (4),
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the recognition accuracy was improved, as shown
through comparing LRL with LDRL in Table 4.
In addition, adding latent relevant learning to LDL
has indeed improved the speaker recognition perfor-
mance. Analyzing the experimental results of the
inputs x-vector and i-vector, we could see that the
effect of i-vector was better. The reason could be
that x-vector is based on the features extracted based
on the discriminative loss obtained through training
a deep learning model. Therefore, compared with
i-vector, there is a lack of relevant information be-
tween different x-vectors from the same speaker. As
shown in Table 5, experiments based on the TIMIT
and Apollo datasets were conducted using Ubuntu
16.04 LST with Matlab R2014b on NVIDIA TITAN
X GPU. A simple grid search method was used to
select the values of α, β, and λ in [0, 1] with the
i-vector dimension of 100 and mixture size of 512.

4.5 LDRL performance evaluation

To evaluate the LDRL in terms of the clas-
sification accuracy, we compared it with several
other well-established SR methods: GMM-UBM,
i-vector/PLDA, extreme learning machine (EML)
(Al-Kaltakchi et al., 2017), and variational autoen-
coder (VAE) (Yoshimura et al., 2018). We con-
sidered the deep learning methods called convolu-

Table 4 Speaker recognition accuracy (SRA) compar-
ison of 120 and 630 speakers on the TIMIT dataset
under different i-vector dimensions and different mix-
ture sizes

Method Number of speakers Dimi Mixture size SRA (%)

LDL 120 100 256 98.13
LRL 120 100 256 97.12

LDRLx 99.47
LDRLi 120 100 256 99.79

LDL 630 200 1024 98.89
LRL 630 200 1024 97.20

LDRLx 99.15
LDRLi 630 200 1024 99.21

Dimi denotes the i-vector dimension; subscripts x and i
denote the input features of x-vector and i-vector, respec-
tively. Best results are in bold

Table 5 Parameter setting based on the TIMIT and
Apollo datasets

Dataset α β λ C
Number of
iterations

TIMIT 0.8 0.60 0.85 [120, 1800] 300
Apollo 0.8 0.65 0.90 [183, 800] 400

tional long short-term memory (CLSTM) (Kumar
et al., 2018) and unsupervised adversarial invari-
ance (UAI) (Peri et al., 2019). Specifically, EML
was composed of an i-vector by three fusion methods
using an ELM classifier. VAE was defined as the
extended version of the variational autoencoder for
sequence modeling. The proposed approach could di-
rectly process variable-length observation sequences.
UAI employed an unsupervised adversarial invari-
ance disentangled method to obtain various robust
speaker embeddings, which are learned by separating
the speaker-related information from all other fac-
tors. In the CLSTM and UAI methods, the TIMIT
dataset was not used as a test dataset. Therefore,
in this study, we reproduce the code of the CLSTM
and UAI methods to verify the TIMIT dataset. In
the process of reproduction, we cut out the keyword
detection branch in CLSTM and adopted the super-
vised training policy to train UAI.

1. Comparison with the baseline and state-of-
the-art methods based on the TIMIT dataset

We evaluated the performances of the pro-
posed method, baseline approach GMM-UBM (Al-
Kaltakchi et al., 2016), and state-of-the-art one EML
(Al-Kaltakchi et al., 2017) based on the TIMIT
dataset. To ensure the consistency with the ex-
perimental setup used in EML (Al-Kaltakchi et al.,
2017), we considered 120 speakers corresponding to
dialects from one to four, and then extracted six sen-
tences per speaker for training on all five sentences
(SX, phonetically compact sentences). One sentence
(SA, dialect sentence) was employed for training, and
other sentences (SI, phonetically diverse sentences)
were used for testing the last sentence (SA). De-
tailed information is presented in Table 6. Table 7
provides the results of testing based on the TIMIT
dataset obtained by comparing the proposed method
with other methods. Using the same mixture size
(256) and i-vector dimension (100) as in Al-Kaltakchi
et al. (2016, 2017), the results clearly indicated that
LDRL outperformed the existing methods, improv-
ing SRA by 3.12% (state-of-the-art method, EML)
to 4.79% (baseline method, GMM-UBM). Compared
with CLSTM and UAI (Peri et al., 2019), LDRL im-
proved SRA by 3.48% and 2.37%, respectively.

To compare the performance of the proposed
method with that of VAE (Yoshimura et al., 2018),
we used the data of all speakers (630 speakers) for
model training. Nine sentences per speaker were
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selected for training, and the remaining one sen-
tence for testing (Table 8). Table 9 indicated that
the LDRL generally outperformed the baseline ap-
proaches GMM-UBM and i-vector/PLDA with an
increase of SRA by 8.42% and 8.26%, respectively.
Compared with state-of-the-art results of VAE in
Yoshimura et al. (2018), LDRL yielded a significant
improvement of 2.7%. Table 9 showed that the re-
sults of the deep learning methods CLSTM and UAI
based on the TIMIT dataset were 4.08% and 2.11%

Table 6 Development set and test set based on the
TIMIT dataset for 120 speakers

Set
Number of Number of utterances Number of
speakers per speaker utterances

Dev 120 6 (5/SX, 1/SA) 720
Test 120 4 (3/SI, 1/SA) 480

Total 10 (5/SX, 3/SI, 2/SA) 1200

SX means phonetically compact sentences, SI means dialect
sentences, and SA means phonetically diverse sentences

Table 7 Speaker recognition accuracy (SRA) com-
parison based on the TIMIT dataset for 120 speakers

Method SRA (%)

GMM-UBM (Al-Kaltakchi et al., 2016) 95.00
CLSTM+ (Kumar et al., 2018) 96.31
ELM (Al-Kaltakchi et al., 2017) 96.67
UAI+ (Peri et al., 2019) 97.42
LDRL 99.79

+ denotes that the TIMIT dataset was not used as a test
set in the literature. We reimplemented the code of this
method and tested it on the TIMIT dataset. Best result
is in bold

Table 8 Development set and test set based on the
TIMIT dataset for 630 speakers

Set
Number of Number of utterances Number of
speakers per speaker utterances

Dev 630 9 5670
Test 630 1 630

Total 10 6300

Table 9 Speaker recognition accuracy (SRA) com-
parison based on the TIMIT dataset for 630 speakers

Method SRA (%)

GMM-UBM (Yoshimura et al., 2018) 90.79
i-vector/PLDA (Yoshimura et al., 2018) 90.95
CLSTM+ (Kumar et al., 2018) 95.13
VAE model (Yoshimura et al., 2018) 96.51
UAI+ (Peri et al., 2019) 97.10
LDRL 99.21

+ denotes that the TIMIT dataset was not used as a test
set in the literature. We reimplemented the code of this
method and tested it on the TIMIT dataset. Best result
is in bold

lower than that of LDRL, respectively. The results
in Tables 7 and 9 demonstrated that the proposed
method is effective for SR tasks.

2. Comparison based on the Apollo dataset
used in the Fearless Steps Challenge in INTER-
SPEECH2019

In SR tasks, there are many cases in which
recognition accuracy is affected significantly. En-
vironmental factors such as ambient noise, rever-
beration, microphone type, multiple speakers, and
capture devices are deemed common sources of such
effect. We provided the results of performance evalu-
ation by applying the proposed method to a real envi-
ronment dataset, i.e., the Apollo dataset. The exper-
imental setup of the Apollo dataset provided by the
organizer of the Fearless Steps Challenge in INTER-
SPEECH2019 has been presented in Table 2. More
than 350 known speakers contributed with varying
degrees of content; however, the data of only 183
speakers was provided for the experiments. The
total voice content had a length of at least 10 s.
These speakers were distributed in the development
set (Dev, training set) and evaluation set (Eval, test
set).

Table 10 shows the results of the baseline ap-
proaches obtained during the Fearless Steps Chal-
lenge in INTERSPEECH2019 and those of the pro-
posed method. The baselines Dev and Eval denote
the baseline results provided by the organizer of the
Fearless Steps Challenge in the development set and
evaluation set, respectively. LDRL (Dev) and LDRL
(Eval) represent the results of the proposed method
in the development set and evaluation set, respec-
tively. The ground truth of each utterance appeared
in the top five labels of a prediction (Table 10). It
was assumed that the prediction result of the utter-
ance was correct. SRA obtained in the development
set by the proposed method was based on the known
speaker labels, while the sample labels in the eval-
uation set were unknown. Therefore, we fixed the
top five speaker labels of each utterance prediction
into a file and sent the file to the organizer of the
Fearless Steps Challenge who provided us with the
SRA obtained by the proposed method.

As shown in Table 10, the results of baseline ap-
proaches Dev and Eval on the development and eval-
uation sets provided by the Fearless Steps Challenge
were 58.17% and 47.00%, respectively. These low
SRA results were caused by the presence of multiple
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instances with rapid switching of speakers, short du-
ration, and environmental noise. The results demon-
strated that LDRL (Dev) outperformed the baseline
(Dev) by 32.98% and that LDRL (Eval) surpassed
the baseline (Eval) by 36.33%. These results proved
that the proposed model is robust when applied to
a speech with complex background noise. No model
ablation experiment was conducted on the Apollo
dataset owing to the elapsed deadline of the Fearless
Steps Challenge in INTERSPEECH2019.

3. Feature distribution visualization before/
after using LDRL

To provide an intuitive understanding of the
learned latent discriminative representations by
LDRL, we first visualized the i-vector for seven peo-
ple and transformed the corresponding latent repre-
sentation into a two-dimensional space of the same
scale using the proposed method. Specifically, Fig. 2
shows the distribution visualization of the i-vector
and latent discriminative representation. As shown
in Fig. 2a, the i-vector features corresponding to
different speakers were separated from each other.
Therefore, the i-vector was deemed sufficiently dis-
criminative to recognize speakers. However, dif-
ferent i-vector features corresponding to the same

Table 10 Top five speaker recognition accuracy (SRA)
comparison based on the Apollo dataset for 183
speakers

Method SRA (%)

Baseline (Dev) 58.17
LDRL (Dev) 91.15

Baseline (Eval) 47.00
LDRL (Eval) 83.33

speaker scattered relatively. Fig. 2b shows that la-
tent discriminative representation outperformed the
i-vector in the two-dimensional space of the same
scale. Not only the latent discriminative representa-
tions of different speakers were separated, but more
importantly, the different latent discriminative rep-
resentations of the same speaker were close to each
other. The latent representations obtained by the
proposed method were sufficiently discriminative for
different speakers and had strong correlations con-
cerning the same speaker. Finally, these results in-
dicated that we have achieved the goal of learning
latent discriminative representations with relevance
from the original feature input.

5 Conclusions

In this study, we have proposed a novel speaker
recognition approach based on latent discriminative
representation learning (LDRL). We have demon-
strated its effectiveness by comparison with other
methods during testing on the TIMIT dataset.
Moreover, we have conducted experiments on the
Apollo dataset introduced in the Fearless Steps Chal-
lenge in INTERSPEECH2019. The experimental
results confirmed that the latent representations
learned by the proposed method are sufficiently dis-
criminative for SR. Finally, we have experimentally
proved that performing a latent representation de-
pends on the following aspects: (1) i-vector fea-
tures used in dictionary learning to derive a ba-
sic latent representation; (2) a lookup table con-
nected to the latent representation space; (3) linear
transformation matrix CCC regarded as a speaker clas-
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sifier that makes the latent representation discrim-
inative. The latent representation obtained is not
only discriminative, but also relevant. In addition,
the visualization results supported these conclusions.
In the future, we plan to extend the proposed method
using deep networks and to evaluate its performance
on large-scale complicated speech datasets.
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