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Abstract: Traditional diagnosis of attention deficit hyperactivity disorder (ADHD) in children is primarily through
a questionnaire filled out by parents/teachers and clinical observations by doctors. It is inefficient and heavily
depends on the doctor’s level of experience. In this paper, we integrate artificial intelligence (AI) technology into
a software-hardware coordinated system to make ADHD diagnosis more efficient. Together with the intelligent
analysis module, the camera group will collect the eye focus, facial expression, 3D body posture, and other children’s
information during the completion of the functional test. Then, a multi-modal deep learning model is proposed
to classify abnormal behavior fragments of children from the captured videos. In combination with other system
modules, standardized diagnostic reports can be automatically generated, including test results, abnormal behavior
analysis, diagnostic aid conclusions, and treatment recommendations. This system has participated in clinical
diagnosis in Department of Psychology, The Children’s Hospital, Zhejiang University School of Medicine, and has
been accepted and praised by doctors and patients.
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1 Introduction

The most severe neurodevelopmental disorder in
children and adolescents is attention deficit hyperac-
tivity disorder (ADHD). The clinical symptoms in-
clude difficulty in concentration, excessive activity,
emotional instability, and learning difficulties. The
disease leads to multiple functional impairments in
patients during childhood, such as learning abilities,
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social skills, family relationships, and self-esteems.
Additionally, the disease continues to affect adoles-
cents and adults (Willcutt et al., 2012; Polanczyk
et al., 2014; Sayal et al., 2018). Moreover, other
studies showed a global ADHD incidence of about
5%, where the prevalence of ADHD in China is
about 6.26%, which is higher than the international
level, with about 23 million patients in total (Wang
et al., 2017). A retrospective study conducted by
the World Health Organization (WHO) in 10 coun-
tries found that ADHD has a 50% adult prevalence
rate and is more likely to suffer from various adult
mental illnesses. For example, patients with ADHD
are more likely to have comorbid substance abuse,
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with a risk of lifetime use of nicotine and illegal sub-
stances. About 16%–31% of the clinically confirmed
adult ADHD patients also meet the major depres-
sive episode, which is about five times the general
population. Among children with ADHD, the rate
of early antisocial personality disorder in adults is
18%–24%. It is, therefore, of great medical and so-
cial significance to improve the diagnosis ability of
ADHD and detect the disease in an early stage.

The standard evaluation and monitoring ap-
proach for children’s ADHD is to collect proof of
a child’s everyday actions by parents/teachers in
families/schools. The preliminary diagnosis is based
on the results of psychology questionnaires, along
with the doctors’ findings during the consultation
period. The conventional approach has the follow-
ing problems: (1) Because of a lack of medical ser-
vices, doctors must restrict each child’s outpatient
time, which sometimes makes doctors unable to in-
teract thoroughly with them. The child is psycho-
logically suppressed by the impact of a fresh atmo-
sphere and authority, so it is difficult to evaluate
the child’s true actions correctly. (2) Parental con-
cern regarding abnormal behaviors of children and
personality differences can seriously affect the objec-
tive accuracy of the parental feedback. Due to time
and space constraints, the input from the teachers
cannot be obtained in real time, so it is either inac-
cessible or has significant deviations. (3) Because of
the diversity and non-standardization of information
sources, the information is prone to inconsistencies
or even contradictions, making the diagnostic con-
clusions entirely dependent on the physician’s sub-
jective judgment and level of experience. In reality,
multiple visits are necessary for diagnosing ADHD
accurately, resulting in unnecessary wastage of med-
ical resources and increasing the burden on families.

In this study, we propose an artificial intel-
ligence (AI) based software-hardware cooperation
program to assist in the assessment and diagno-
sis of ADHD in children. This approach incor-
porates software-based executive functional testing
(i.e., completing a task to assess children’s inhibition
function or cognitive transferability). We then use
self-designed hardware modules (consisting of three
cameras) to record visual information such as eye
motions, facial expressions, and three-dimensional
(3D) body postures. This, in effect, feeds into a
multi-modal deep learning model (BERT) for detect-

ing abnormal behaviors in children from the recorded
video. Finally, we combine the results of various
scale questionnaires, the results of executive function
evaluations, and the smart detection of children’s
activities to automatically generate objective, mea-
surable, and regular auxiliary diagnostic reports for
doctors and parents’ references. Compared to tra-
ditional solutions, the three significant innovations
and contributions of this research are as follows: (1)
the introduction of computer vision technology into
the ADHD diagnostic process to assist doctors in
the measurable analysis of behavioral characteristics;
(2) the use of BERT-based multi-modal fusion tech-
nology to assess the time segment of the abnormal
behavioral character of the patient; (3) the presenta-
tion of a more procedural and standardized ADHD
diagnosis mode compared with the traditional diag-
nostic process. Without raising doctors’ workload,
it can track the actions of patients more adequately
and form a more detailed diagnostic report with di-
agnostic bases.

2 Related work

AI has been widely used within the medical field
in recent years. For example, deep learning uses
models of a convolutional neural network (CNN) to
complete tasks such as detection, segmentation, and
medical image classification. Extensive research of
the related techniques has been conducted on various
clinical fields, such as skin disorders, diabetic fundus,
brain magnetic resonance imaging (MRI), chest X-
rays, CT, and pathological cancer cells. Natural lan-
guage processing (NLP) can analyze unstructured
medical record information, extract and structure
critical information, which is useful for standardiz-
ing and analyzing medical record data.

Compared with issues such as diabetic fundus
and X-ray-based lung disease examination, studies
on computer-aided diagnosis for mental illnesses,
such as ADHD, are few. Zou et al. (2017) continued
the benefits of in-depth medical imaging research,
and attempted to examine the differences between
ADHD patients and healthy children from the brain
MRI image perspective. The electroencephalogram
(EEG) was used (Marcano et al., 2018) based on the
finding that the EEG signals of ADHD patients dif-
fer from those of healthy people. Chen et al. (2019)
developed a multichannel deep learning network to
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analyze patient brain rs-fMRI data for ADHD diag-
nosis. Aradhya et al. (2019) further captured the
spatio-temporal correlation between different brain
regions, significantly improved the diagnosis accu-
racy, and ensured the consistency of model logic
and medical logic. Such works much inspired the
study of AI-based ADHD analysis. However, these
researches’ rationalities were not fully confirmed or
validated from the medical point of view. Moreover,
clinically, these findings still significantly differ from
the current method of diagnosing ADHD, which is
not conducive to enhancing the actual clinical diag-
nosis process.

Another type of research is dedicated to exam-
ining the visual characteristics such as attention, ex-
pression, and movement of ADHD patients (Jaiswal
et al., 2017). As our closest research on diagnos-
ing the ADHD and autism spectrum disorder (ASD)
with computer vision analysis technology, they used
RGBD (color + deep) sensors to collect the facial vi-
sual signals of the testee, taking various features into
account, such as the facial expression, head position,
body movement, distance of motion, and response
time, and classified the ADHD and ASD with the
support vector machine (SVM). Leo et al. (2018)
used the computer vision technology to quantita-
tively assess children with ASD’s ability to produce
facial expressions. Muñoz-Organero et al. (2019)
used wrist and ankle acceleration sensors to track
the child’s activity status, and measured the actions
of typical children and ADHD patients using the
recurrent neural network (RNN) based model. Li
et al. (2019) used hierarchical long-short term mem-
ory (LSTM) to examine time-series eye movement
data from children with ASD to help diagnose the
disorder. These researches show that visual percep-
tion technology and machine learning technology for
intelligent diagnosis of ADHD have feasibility and
research value. However, their work was not well in-
tegrated with the traditional methods and basis for
diagnosing ADHD. Studying pure visual behaviors is
not sufficient to support the complete logic chain of
ADHD diagnosis, significantly limiting the medical
landing value of this solution. Additionally, they did
not use the new deep learning models to fuse and
discern multidimensional signals, which also hinders
their work’s technical development.

Our study defines and analyzes children with
ADHD from multidimensional perspectives. The

basis for our inspiration comes from the cooperat-
ing doctor team’s existing diagnostic experience and
logic. AI technology captures and analyzes facial ex-
pressions, eye focus, movements, and other content,
and quantifies those findings using a deep learning
fusion model as an objective diagnostic basis. The
intelligent auxiliary diagnostic system finally gener-
ates a diagnostic report that can be fully understood
by the doctors and parents, making the diagnostic
solution both feasible and useful.

3 System design

The ADHD intelligent auxiliary diagnostic sys-
tem is composed mainly of four modules: scale test
module, software-hardware coordination module, in-
telligent analysis module, and multi-modal fusion
module. The specific structure is shown in Fig. 1.

Scale test module Software-hardware coordination module

Intelligent analysis module

Auxiliary diagnostic report

Domain
knowledge graph

Multi-modal fusion module

IQ
test

Emotion
test

Parents &
Teachers feedback

Executive
function test

Visual behavior
perception

Eye attention Facial expression 3D skeleton Test result

Test results

Diagnosis conclusion

Abnormal behaviors

Recommendations for treatment

Fig. 1 Architecture of the intelligent auxiliary diag-
nostic system for attention deficit hyperactivity dis-
order (ADHD) in children

1. Scale test module
This module implements different traditional

ADHD developmental psychology measures to cap-
ture and assess all aspects of children’s behavioral
success and related abilities. Traditional paper ques-
tionnaire approaches have issues including the com-
plex filling process, the complicated data collection
procedure, and the difficulties of further analysis.
So, instead of traditional paper questionnaires, we
have developed a full set of WeChat mini-programs.
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Testees will fill in from their cell phones by scanning
the QR code. The results of the test can be auto-
matically integrated into the final smart diagnostic
assistant report for reference by doctors.

2. Software-hardware coordination module
We take three traditional executive function

tests and build correct testing software to allow the
child to carry out interactive and fun-related tasks.
At the same time, the hardware modules that we de-
signed (multi-camera groups and synchronous con-
trol systems) during task testing can record atten-
tion to eye movement, facial expression, and body
posture. Further smart analysis can be carried out
later on the captured footage.

3. Intelligent analysis module
This module is designed to process the multi-

media information obtained in the previous module,
and to use computer vision technology to analyze,
monitor, and classify eye movements, focus, gestures,
and postures. After that, we turn them into a rep-
resentation of homogenization vectors, which can be
further forwarded to the deep learning model men-
tioned in the following session. At the same time,
we document and monitor the mouse movements,
clicks, keyboard input, and other behaviors of the
testee, which can be incorporated for joint analysis
with the above multimedia information.

4. Multi-modal fusion module
In this module, we use the time-series fusion

model BERT (Devlin et al., 2019) to pre-train the
similar vector obtained in the previous step, and fi-
nally generate a model that can decide if the patient
has an abnormal behavior during this period. The
type and frequency of an abnormal behavior serve as
an essential guideline for the final report of an auxil-
iary diagnosis, replacing subjective findings that de-
pend solely on the level of expertise of the doctor in
conventional diagnosis.

The software-hardware coordination module,
along with the following vision algorithms and deep
learning model, is the core innovation point of the
entire ADHD diagnostic system. The real test envi-
ronment is shown in Fig. 2a. It consists of a desktop
computer and camera group and is equipped with an
assistant operation console to assist the test. The
system has been deployed in Department of Psychol-
ogy, The Children’s Hospital, Zhejiang University
School of Medicine and Deqing Branch, Institute of
Artificial Intelligence, Zhejiang University to serve

the scientific research data collection of this paper.
The schema view, as shown in Fig. 2b, describes

the relationship between the cameras and the test
subject. The camera No. 1 located behind the com-
puter screen is used to capture the front image of
the test subject, collecting mainly the testee’s face
and eye. The No. 2 binocular depth cameras lo-
cated on the side of the testee’s seat can be used
to capture the entire body of the testee, collecting
mainly the 3D body posture information of the tes-
tee. The software we developed performs executive
function tests. It also provides camera module syn-
chronization control and data acquisition, storage,
and management functions. Combined with the re-
sults of the scale test, we can automatically generate
a standard, objective, and quantitative interpretable
auxiliary diagnostic report.

Note that this report has two main advantages:
(1) The conclusions and the basis listed in our report
are consistent with the existing logic of the medical
diagnosis of ADHD. The key benefit lies in using

(a)

(b)

Camera No. 2

Camera No. 1Test area

Control area

Assistant

Child

Fig. 2 Environment diagram of the software-hardware
coordination module: (a) actual deployment; (b)
schematic diagram
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AI technology to replace the subjective findings and
descriptions of doctors. (2) Combined with the cur-
rent doctors’ information network, we integrate the
adjuvant care guidelines into the report based on
the test results and diagnostic conclusions, offering
higher medical value.

4 System modules

4.1 Scale test module

Table 1 lists a set of psychological scale measures
widely used in ADHD diagnosis to determine the ca-
pacities of the testee, such as intellect, emotion, and
social capacity. The primary purpose of the feedback
scale is to carry out a preliminary assessment of the
daily behavioral function of the patient. Intelligence
and emotion testing is specifically to help the doc-
tor consider the patient’s condition before conduct-
ing the following functional examination, eliminat-
ing interference factors such as intellectual disability
and short-term emotional disorders. That will pro-
vide a more accurate and thorough conclusion to the
diagnosis.

4.2 Software-hardware coordination module

The executive function tasks are designed to
evaluate multiple psychological abilities, including
concentration, cognitive anti-interference, abstract
thinking, cognitive conversion, emotional recogni-
tion, and social cognition. We adopt three execu-
tive function tests: Stroop test (Bench et al., 1993),
Wisconsin card sorting test (WCST) (Monchi et al.,
2001), and expression recognition test (Ekman, 1999;
Oerlemans et al., 2014). The framework of the three
tests is shown in Fig. 3. The Stroop test evalu-
ates testees’ ability to suppress cognitive interference
mainly by conflicting word meanings and font colors;
the WCST evaluates testees’ cognitive transfer abil-
ity mainly by changing color, shape, and number of
test rules; the expression recognition test primarily
evaluates the social cognition ability of testees by
classifying the expressions of the face pictures.

We integrate the above three executive function
tasks into a set of task testing software, and the com-
plete set of task completion time is roughly controlled
within 20–30 min. In addition to functional imple-
mentation, we let professional software designers and

Table 1 Design and summary of the scale test module

Test type Test name Test goal

IQ test Raven’s SPM (Raven et al., 1983) Intelligence and reasoning ability
Emotion test SCARED (Birmaher et al., 1997) Generalized anxiety disorder, social anxiety disorder,

phobic disorders, and potential academic anxiety
DSRSC (Birleson et al., 1987) Depression assessment for children
CDI (Saylor et al., 1984) Severity of depressive symptoms

Parents & Teachers feedback SNAP-IV (Atkins et al., 1985) Symptoms of ADHD and ODD
WFIRS-P (Thompson et al., 2017) Negative mood, interpersonal problems, ineffectiveness,

anhedonia, and negative self-esteem
Conner’s CBRS (Conners et al., 2011) Academic, behavioral, and social issues

SPM: standard progressive matrices; SCARED: screen for child anxiety related disorders; DSRSC: depression self-rating scale for
children; CDI: children’s depression inventory; SNAP-IV: Swan-son Nolan and Pelham, version IV; ODD: oppositional defiant
disorder; WFIRS-P: Weiss functional impairment rating scale-parent report; CBRS: comprehensive behavior rating scales

You can look
for patterns
in three ways
1. Shape
2. Color
3. Amount

Stroop test Wisconsin card sorting test Expression recognition test

Red

Green

Red

Yellow

Blue

Nature

Disgusted

Amazed

Fearful

Ability to suppress cognitive interference Abstract thinking and cognitive transfer Emotion cognition

Happy

Angry

Sad

Hyperactivity poor self-control inattention emotional social disorder

Fig. 3 Framework and purpose of the executive function tests
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child psychology professionals guide software inter-
action and interface design, so that the tested child
can complete the design task within the prescribed
time.

During the three tasks, the test software can
interact with the camera module. When the testee
starts the test, the software will start the camera
module to start recording and record the testee’s
eyes, expressions, and postures. The information is
used for the intelligent analysis module to analyze
and extract key features. When the test is com-
pleted, the test software will stop the recording of
the camera module synchronously.

4.3 Intelligent analysis module

The two modules mentioned above gather and
digitize the information needed. In this module, we
describe how AI technology can be used to process
and analyze the data collected intelligently. Our
camera module collects two types of video informa-
tion: (1) The camera facing the testee’s face focuses
on the testee’s eye movement (attention focus) and
facial muscle movement (abnormal expression); (2)
The lateral binocular depth camera extracts the hu-
man skeleton’s position at each moment using 3D
visual perception technology to analyze postures.
We should expand the basic methods of produc-
tion of the three definitions of behavior technologies
and the final vector representation of the behavior
features.

4.3.1 Eye attention

The input of the eye attention model is the col-
lected frontal video Vfront and the camera calibration
matrix Cr. The output is the generated eye attention
feature vector Fg. The specific calculation process is
described in Algorithm 1 and can be divided into
three steps:

Step 1: Pupil position calculation
The pupil position feature for frame i is de-

fined as a six-dimensional (6D) vector er, including
both pupils’ 3D spatial positions. First, we estimate
the head’s 3D location and align the landmarks on
the forehead. The histogram of oriented gradient
(HOG) based method detects the face position in
the frame (King, 2009). When identifying multiple
face regions, we will take into account the largest
face bounding-box. The conceptual structure of the

Algorithm 1 Calculation of the eye attention
feature
Input: Video of front camera Vfront and front camera

calibration matrix Cr

Output: Eye attention feature Fg

1: for vi in Vfront do
// Step 1: Pupil position calculation

2: Detect facial ROI and landmarks
3: Obtain pupils’ flat positions eh

4: Calculate head rotation matrix Rr and translation
vector tr

5: Spatial pupil location er ← tr + eh

// Step 2: Gaze direction calculation
6: W ← CnMC−1

r // Transform matrix
7: Obtain e by multiplying W and vi

8: Rn ←MRr // Head rotation matrix
9: Convert Rn to rotation vector h

10: Input e and h into CNN to obtain gaze vector g

// Step 3: Screen position conversion
11: Calculate intersection point ps between gaze and

plane
12: Calculate region type r based on ps and the screen

structure
13: Obtain the eye attention feature for vi, fgi =

[er, g, r]

14: end for
15: Fg = [fg1 ,fg2 , ..., fgN ]

continuous conditional neural field (CCNF) is used
for the identification of facial landmarks PL (Bal-
trušaitis et al., 2014). Accordingly, the two pupils’
flat positions, eh, can be determined based on the
positions of both eyes’ corners. Then we use the effi-
cient perspective-n-point (EPnP) algorithm to align
the facial landmarks (Lepetit et al., 2009), which
will align the observed face with the regular aver-
age 3D facial model F , and measure the head rota-
tion matrix (Rr) and the translation vector (tr) in
the camera coordinate. The detected face fits into
a coordinate system that constructs the eyes and
mouth positions of the standard facial model F . The
pose is further improved by reducing the Levenberg-
Marquardt distance. The performance of that step
is the spatial pupil location er = tr + eh.

Step 2: Gaze direction calculation
The gaze direction feature can be expressed as

a 2D vector g, including two angles (yaw and pitch).
To obtain the gaze vector, we need to normalize
the eye image. First, we use the inverse matrix of
the camera calibration matrix (C−1

r ) to convert the
original image to a 3D position. Then we compute
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the conversion matrix M = SR, where R is the ro-
tation matrix and S is the scaling matrix. Fix the
eye position on the z axis of the camera coordinate
system and at a fixed distance from the camera. At
the same time, make sure that the x axis of the head
coordinate system is perpendicular to the y axis of
the camera coordinate system. Thus, the normalized
position is obtained. Finally, the normalized eye po-
sition is converted by a standard camera projection
matrix Cn to a normalized grayscale 2D image e. In
the normalized space, there is a head rotation ma-
trix Rn = MRr. To calculate the gaze vector, we
transform Rn into a 2D rotation vector h. Taking h

and e as inputs of a 16-layer VGGNet-based model
(Simonyan and Zisserman, 2014), the output of the
model is the gaze direction feature vector g.

Step 3: Screen position conversion
The screen midpoint coordinates (Pscreen) and

the screen plane average vector (Fscreen) can be ob-
tained from the camera coordinate system via exter-
nal calibration. The line equation on which the gaze
is centered can be obtained according to the angle
of gaze g and the location of the eye (er). Then,
the intersection point of the gaze line and the screen
plane ps is determined as the landing point of the
sight on the screen, and the eye focus region type
r is acquired according to the practical test screen
structure.

In summary, the eye attention feature vector of
the ith frame fgi = [er, g, r] is finally obtained by
combining the output of the above steps.

4.3.2 Facial expression

The changes in expression can be defined
through facial motion units and behavior of 22 types
of the facial action coding system (Hamm et al.,
2011). The feature is expressed as Fexp, where
fexpi

∈ Fexp is a 22D facial expression vector for
frame i. Specifically, micro-expressions can be iden-
tified using a combination of regional of interests
(ROI) adaptation, multi-label learning, and opti-
mal LSTM-based temporal fusion structure. The
input of the measurement of the expression feature
is the collected frontal video Vfront, and the out-
put is the Fexp function sequence created by the
facial action unit (AU). The calculation process is
outlined in Algorithm 2. Based on the physiologi-
cal structure of the face, the location of the corre-
sponding muscle linked to the expression motor unit

PAU can then be determined through the fixed mode
conversion, depending on the position of these land-
marks PL from Section 4.3.1. Depending on this,
we can create ROI cropping networks (ROI Nets),
depending on VGGNet (Simonyan and Zisserman,
2014). The function representation corresponding to
each AU is obtained by cutting out the network’s
12th layer feature diagram. Around that moment,
all the function vectors are concatenated to obtain
the overall FAU vector describing the expression
features.

Because the input form of the expression recog-
nition task is video data, we can more reliably and
smoothly predict the state of expression of the cur-
rent moment based on the state of expression of the
previous moments. Therefore, we use a multi-layer
LSTM structure (Graves and Schmidhuber, 2005) to
process the feature vectors for the time-series ex-
pression. The multi-task binary classification prob-
lem for multiple AUs is achieved by comparing the
expression features at the current moment with the
backward state, and the facial expression feature se-
quence is generated based on the AU feature activa-
tion probability called Fexp.

Algorithm 2 Calculation of the facial expression
feature
Input: Video of front camera Vfront

Output: Facial expression feature Fexp

1: for vi in Vfront do
2: Detect facial ROI
3: Detect facial landmarks PLi

4: Derive muscle position PAUi from PLi according
to the fixed method

5: Use ROI Nets to obtain the feature vector of AU,
FAUi

6: end for
7: Obtain facial feature sequence Fexp from FAU by

multi-task binary classification of LSTM

4.3.3 3D skeleton

The input of the 3D skeleton calculation is the
captured side video Vside, and the output is the gen-
erated 3D pose feature sequence F3D. For frame i,
the motion feature is expressed as f3Di

(f3Di
∈ F3D),

including 3D coordinates for 25 key points. The spe-
cific calculation process is described in Algorithm 3,
and it consists mainly of three steps:

Step 1: Confidence map and PAF calculation
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For a frame of the video, we extract the im-
age features F through the 10th layer of VGG-19
(Simonyan and Zisserman, 2014), and then input F

into two multi-stage CNNs. The first network pro-
duces detection confidence maps to obtain the po-
sition of critical points, and the second network de-
termines the limb orientation through part affinity
fields (PAF) (Cao et al., 2017). In the first stage, the
inputs of both CNNs are image features F , and the
confidence maps S1 = ρ1(F ) and PAF L1 = φ1(F )

are the output. Afterward, the confidence map and
PAF of the tth subsequent stage can be expressed as{

St = ρt(F ,St−1,Lt−1), ∀t ≥ 2,

Lt = φt(F ,St−1,Lt−1), ∀t ≥ 2.
(1)

We can further improve the accuracy through
the results of multiple stages, and obtain the fi-
nal output containing the confidence maps S =

(S1,S2, ...,SJ) and PAF L = (L1,L2, ...,LC),
where J and C represent the type number of key
points and limbs respectively.

Algorithm 3 Calculation of the 3D skeleton feature
Input: Video of side camera Vside

Output: 3D posture feature F3D

1: for vi in Vside do
// Step 1: Confidence map and PAF calculation

2: Extract image features F from vi

3: for Stage t in CNN do
4: if t==1 then
5: S1 ← ρ1(F ) // Maps
6: L1 ← φ1(F ) // PAF
7: else
8: St = ρt(F ,St−1,Lt−1)

9: Lt = φt(F ,St−1,Lt−1)

10: end if
11: end for

// Step 2: 2D posture generation
12: for c ← 1 to C do
13: Optimize weight Ec by the Hungarian algorithm
14: end for
15: Connect all limbs with common key points to

generate 2D pose sequence F2Di

// Step 3: 3D posture conversion
16: Convert F2Di to F3Di by a neural network
17: end for
18: F3D = [f3D1 ,f3D2 , ..., f3DN ]

Step 2: 2D posture generation
According to the confidence map, we can obtain

the positions of key points. Letting dm
j indicate the

mth detected point which belongs to the jth type,
then for the key point pair (dm

j1
,dn

j2
) about limb type

c, we can calculate the confidence Emn
j1j2

whether the
points connect with Lc:

Emn
j1j2 =

∫ u=1

u=0

Lc(p(u)) ·
dn
j2
− dm

j1∥∥dn
j2
− dm

j1

∥∥
2

du, (2)

where p is the interpolation function between the
two points:

p(u) = (1− u)dm
j1 + udn

j2 . (3)

The zero-one variable zmn
j1j2

indicates whether
dm
j1 is connected to dn

j2 . Our task shifts to maxi-
mizing the weight of selected connections:

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

Emn
j1j2 · zmn

j1j2

s.t.

⎧⎨
⎩

∀m ∈ Dj1 ,
∑

n∈Dj2z
mn
j1j2

≤ 1,

∀n ∈ Dj2 ,
∑

m∈Dj1z
mn
j1j2

≤ 1,

(4)

where Ec represents the total weight of limb c in the
current matching method, Zc represents the set of z
about limb c, and Dj represents the set of key points
for the jth type.

To reduce the computation, we prune the full
connection, keep only the connections between adja-
cent points, and decompose the problem into a set
of pairwise matching problems between key points.
The overall optimization goal can be expressed as

max
Z

E =

C∑
c=1

max
Zc

Ec. (5)

We can use the Hungarian algorithm to optimize
such a problem (Kuhn, 1955), and connect the limbs
with common key points to form a complete human
2D pose feature f2Di

.
Step 3: 3D posture conversion
Finally, we input the 2D posture feature f2Di

into a neural network to obtain the final output 3D
pose sequence f3Di (Martinez et al., 2017). Thus,
for the whole video, the 3D skeleton feature F3D =

[f3D1
,f3D2

, ...,f3DN
] is observed.

5 Abnormal behavior detection

The core task of diagnosing ADHD is to observe
the presence of abnormal behaviors. From the video
recordings, we extract three separate dimensions of
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eye focus, speech, and posture in the intelligent anal-
ysis module. Via in-depth consultation with quali-
fied physicians, we outline many examples of signif-
icant irregular behaviors often exhibited by children
with ADHD during functional testing (Table 2). The
key idea is to replace the doctor’s observations of
children’s behaviors by using AI technology to au-
tomatically detect fragments of abnormal behavior
in the videos. More precisely, we are proposing a
model based on BERT for a multi-modal fusion of
knowledge. The performance of the smart research
module is combined with the functional test results
to train an abnormal behavioral classification model.
The detection algorithm is divided primarily into the
following two steps:

1. Video segmentation

As seen in Fig. 4, the entire testee video takes
about 20–30 min. We can divide the entire video into
several segments based on the testees’ completion
situation of the executive function tests.

2. Segment classification

We combine the performance of the intelligent
analysis module with the functional test result to
form the instant feature vector for each section.
Moreover, we concatenate the instantaneous vectors
to form time-series features representing time seg-
ments that can be used to evaluate if the testee has
irregular behaviors.

Table 2 Description of abnormal behavior types

Behavior type Specific behaviors

Eye attention Erratic eyes
Incorrect focus position

Facial expression Facial muscle twitching
Frequent head shaking
Hand-to-mouth movement

Body posture Leg shaking
Twitching
Playing with microphone or cameras

5.1 BERT

BERT is a landmark model in the NLP field
(Devlin et al., 2019). It once smashed the record of
11 tasks in the NLP sector, when it was proposed in
2018. Great for handling sequence problems, BERT
analyzes the relationship between items in the whole
sequence of inputs to encode the current item. The
BERT model structure is shown in Fig. 5. It is com-
posed of 12 transformer encoder layers. Each layer of
encoders comprises a layer of attention and forward
feedback (Vaswani et al., 2017). In the attention
layer, the point product attention function for the
input x is determined to obtain a vector group Z,
which represents the impact weight of each sequence
element on the current item:

Z = softmax

(
QKT

√
dk

)
V , (6)

Fragment
N−1

Fragment
N

Fragment
N+1

Eye attention

Facial expression

Time-series feature vector

3D skeleton

Test result

Normal

Abnormal

107D

50

Side
camera

Front
camera

Fig. 4 Framework of the abnormal behavior detection algorithm
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where Q, K, and V are hidden variables in the at-
tention mechanism, and

√
dk is the square root of the

vector dimension of vector group K. For the multi-
head attention model, it is necessary to use multiple
independent sets ofQ, K, V hidden variables to gen-
erate multiple vector groups {Z1,Z2, ...,ZT }, where
T is the total number of vector groups to obtain a
better model expression ability. The weighted sum-
mation of all vector groups, Zfinal, can be explained
as a multi-head attention result:

Zfinal = Concat(Z1,Z2, ...,ZT )W
o, (7)

where W o is a dimension-reduction matrix.
The forward feedback layer consists of two fully

connected layers that are responsible for process-
ing the attention layer output further. Addition-
ally, residuals are applied to both the attention layer
and the forward feedback layer to prevent gradients
from disappearance during back propagation when
the number of encoder layers is large.

Classifier

Add & Norm

y0 y1 y2 y3 ... yN−1 yN

x0 x1 x2 x3 ... xN−1 xN

Add & Norm

Feed forward

Multi-head attention

Positional
encoding

12×

Input

Fig. 5 Framework of the BERT block

Back to our problem of identifying abnormal
behaviors, the behavioral vectors created by the in-
telligent analysis module can be used as sequence
input. To make a final decision, the analysis of the
feature vector vi must be combined each time with
the feature vectors of other moments in the behavior
feature vector group V . In the following subsections,
we will elaborate on the algorithm and the accuracy
of detection.

5.2 Detection algorithm

For the entire answering process, there are front
video Vfront, side video Vside, and answer opera-
tion sequence A = {a1,a2, ...,aK}, where ai (i =

1, 2, . . . , K) represents the timestamp of answer-
ing the ith question and K is the total number of
answers. As the estimated answer time is 2 s, K ′

periods can be selected from the entire answering
process. For each time period, in the case where
the frame rate is 25 frames/s, the video frames cor-
responding to Vfront and Vside can form an image
sequence in length 50. The corresponding visual
feature is extracted from the video frames, includ-
ing eye attention vector Fg, facial expression vector
Fexp, and posture vector F3D.

For moment i, we concatenate three different
vectors (fgi (9D), fexpi

(22D), and f3Di (75D)) ob-
tained by the intelligent analysis module and the
current answer fansi (which forms the final vector
representing the behavior characteristics of the tes-
tee at that time). For a fragment, we can obtain the
behavior feature xi = [fgi ,fexpi

,f3Di , fansi ] (107D)
representing the current moment. Therefore, for the
entire test, we can obtain the 107D behavior feature
vector group X = {x0,x1,x2, ...,xN}, where x0 is a
constant vector.

The output vector group obtained by BERT is
recorded as Y = {y0,y1,y2, ...,yN}, where y0 is
the output corresponding to x0, which represents
the vector representation of the entire time segment.
To send y0 to a fully connected layer classifier, we
can determine whether this fragment contains abnor-
mal behaviors. Considering that no matter for the
ADHD patients or healthy children, the proportion
of normal fragments occupies the majority, we use
weighted cross-entropy as the loss function to train
the model to alleviate the problem of data imbalance.

5.3 Experiment

We collected diagnostic data from 82 children at
The Children’s Hospital, Zhejiang University School
of Medicine from August 2019 to December 2019.
The data for each child included 7 scale test results,
3 executive function test results, and 2 camera group
video shots of the patient’s face and side body. We
carried out manual marking of irregular behaviors
on the 53-h videos obtained, under the supervision
of the medical team.
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5.3.1 Labeling rules

According to the video duration and frame rate,
if more than 30% of the time segment is marked as an
abnormal activity, the segment is considered to be an
abnormal segment; otherwise, it is considered to be
a normal one. We can divide the entire video into a
large number of shorter time segments, thus obtain-
ing enough time fragments to support an abnormal
behavior detection model for deep learning.

5.3.2 Dataset

The 82 children we recruited include 71 patients
with ADHD and 11 non-patients (Table 3). We re-
ceived 9116 abnormal fragments from 71 patients
with ADHD after the manual marking mentioned
above, which were further divided into two subsets
(6700 for training and 2416 for testing). Similarly,
from 11 healthy children, we obtained 27 666 nor-
mal fragments, which were further divided into two
subsets (24 461 for training and 3205 for testing).
Note that only a small portion of fragments were
abnormal for the children with ADHD, so even if
the abnormal children were with the majority, the
number of abnormal fragments was not significant.
Implementation details were as follows: The batch
normalization scale was set at 5 during the train-
ing phase, the model’s initial learning rate was set
at 1 × 10−4, and the cosine annealing scheduler was
used as the learning rate adjustment technique. To
optimize the model, we used the stochastic gradi-
ent descent (SGD) optimization algorithm and each
model was trained for 100 epochs.

5.3.3 Results

The test results of the detection module for ab-
normal behaviors are shown in Table 4. We mea-
sured the model’s performance through different in-
dicators including accuracy, sensitivity, specificity,
false positive rate (FPR), and false negative rate
(FNR). Also, we have added two conventional deep

sequential models (GRU and LSTM) as control ex-
periments. From the tests, it can be seen that our
model achieved 80.25% accuracy in detection. Our
model maintained a high sensitivity (0.9357), keep-
ing the excellent performance of avoiding misjudging
the normal behaviors into abnormal. Considering
that the vast majority of normal fragments were oc-
cupied, the higher sensitivity ensured that the results
were valid. On this basis, our model obtained a good
specificity result (0.6258).

5.3.4 Multi-modal priority

To determine the importance of specific multi-
modal data for abnormal behavior identification, Ta-
ble 4 also offers four ablation experiments, sepa-
rately masking eye focus information (BERT-eye),
facial expression (BERT-fac), 3D-skeleton (BERT-
ske), and test response (BERT-ans). From the re-
sults, we can see that the effect of 3D-skeleton on
detecting abnormal behaviors was the most signifi-
cant, with minimum impact on eye attention. We be-
lieve that this finding was triggered by the following
two principal reasons: (1) Hyperactivate is the most
common, direct, and significant symptom of ADHD,
whereas eye attention abnormality is relatively vague
and challenging to observe; (2) The action contains
high-dimensional and adequate information, while
the eye movement features are relatively small in di-
mension. We are noting that the response situation
has a significant influence, showing that through this
kind of knowledge, we can differentiate abnormal be-
haviors from normal large-scale information.

6 Intelligent system

6.1 Auxiliary diagnostic system

We have developed a complete ADHD diagnos-
tic process system, including a set of scale tests, ex-
ecution function tests, an AI algorithm suite, and a
platform for information management.

1. Scale test tool

Table 3 Description of the video fragment dataset

Testee group Training set Testing set Total

Number of patients 58 13 71
Number of abnormal fragments 6700 2416 9116

Number of non-patients 9 2 11
Number of normal fragments 24 461 3205 27 666
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Table 4 Results of abnormal behavior detection

Method
Accuracy

Sensitivity Specificity FPR FNR
(%)

GRU 73.10 0.8720 0.5439 0.4561 0.1280
LSTM 76.26 0.8933 0.5894 0.4106 0.1067
BERT (ours) 80.25 0.9357 0.6258 0.3742 0.0643
BERT-eye 76.65 0.9045 0.5836 0.4164 0.0955
BERT-fac 74.95 0.8689 0.5911 0.4089 0.1311
BERT-ske 66.09 0.8970 0.3477 0.6523 0.1030
BERT-ans 74.26 0.8633 0.5837 0.4163 0.1367

FPR: false positive rate; FNR: false negative rate. The best
performance of each metric is in bold

Patients can register personal information and
perform various scale tests via WeChat, based on the
WeChat mini-program platform.

2. Execution function test software
On the PC side, the software is implemented and

created through C # WPF. The software is to simul-
taneously accomplish the executive function testing
and camera module control and report the user op-
erations and timestamps.

3. AI algorithm suite
The suite is developed using the languages C++

and Python. It is implemented using the deep learn-
ing framework of Pytorch 1.0.1 and uses the gen-
eral parallel computing architecture of CUDA 10.0
to implement GPU operations. For the processing of
images, we use the openCV library.

4. Information management platform
We have created a web-app that is deployed on

Alibaba Cloud. It uses the SQL Server database to
implement the storage and management of informa-
tion. The core role of this platform is to produce the
patient’s auxiliary diagnostic report.

6.2 Auxiliary diagnostic report

We can automatically generate an auxiliary di-
agnostic report after completing the entire ADHD
testing process (Fig. 6). The report includes scale
tests (IQ, emotion, social functioning, etc.), execu-
tive function test results (Stroop test, WCST, com-
prehension of expression), and the nature and fre-
quency of repetitive behaviors observed in recorded
videos. At the same time, diagnostic conclusions and
treatment guidelines will be automatically generated
based on the ADHD medical information network as
well as the detailed test results. In the right-top cor-
ner of the diagnostic report, doctors and patients can
scan the QR code to obtain the detailed results for
each individual test.

Diagnostic Report

WEISS (Social Ability Scale)

SNAP-IV (Attention Rating Scale)
Test Result (Parents):

Test Result (Teachers):

Defective Section (Parents):
Defective Section (Teachers):

Conners Questionnaire for Parents
Abnormal Factors:

Raven’s SPM

SCARED (Screen for Child Anxiety Related Disorders)

DSRSC (Depression Self-Rating Scale for Children)

CDI (Children’s Depression Inventory)

Stroop Test

WCST (Wisconsin Card Sorting Test)

Expression Test

Visual assessment
Stroop Test:

Wisconsin Card Sorting Test:

Expression Test:

Assessment result:

Diagnosis conclusion

Treatment opinion
Behavioral therapy:

Self-control training:

Others:

Fig. 6 Real case of an ADHD diagnostic report

7 Conclusions

The conventional medical diagnosis of ADHD is
frequently restricted by the lack of medical resources,
resulting in insufficient monitoring of children at the
clinic. This is also highly reliant on the level of ex-
pertise of the doctor. Hence, we have designed an
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auxiliary diagnostic system to fully leverage the AI
technology. During the completion of related func-
tional tests, our specially designed software and
hardware system can record children’s behaviors and
intelligently analyze the eye attention, facial ex-
pressions, and information on body postures. We
have proposed a deep learning model (BERT) to
fuse all information for the identification of abnor-
mally behaved segments, with all the visual signals
needed. The entire information system standard-
izes the method of ADHD diagnosis. It provides
detailed assessment reports, including scale test find-
ings, findings of executive function evaluations, ab-
normal behavior review, implications of medical aids,
and treatment recommendations.

Our system has been carrying out auxiliary di-
agnostic work for several months at The Children’s
Hospital, Zhejiang University School of Medicine,
which has greatly improved doctors’ efficiency and
provided children with a rich and standardized diag-
nostic report. First, just an operative assistant with
no medical training is needed, and the patient will
perform the executive function tests of 20–30 min
properly for a more abundant evaluation. The appli-
cation of intelligent analysis complemented the in-
sufficient assessment of patients by doctors, which
decreases the time cost of outpatient assessment.
Thereby, the average consultation time is reduced
from 15–20 min to around 10 min, increasing the
turnaround performance of outpatient. At the same
time, comprehensive and standardized diagnostic re-
ports are generated automatically and allow doctors
to obtain a faster diagnosis, reducing the potential
for inconclusive diagnosis, misdiagnosis, and the un-
necessary follow-up treatment. Adequate diagnostic
foundation decreases the risk for difficult diagnosis
and misdiagnosis and thereby induces unnecessary
follow-up diagnosis. Additionally, although it takes
the AI system about 30 min to analyze the video,
patients do not have to wait for hospital outcomes.
They will subsequently receive more detailed and
standardized electronic diagnostic reports, with no
harm to the treatment experience.

We plan to promote this system to more hos-
pitals in the future, shortly, to gather more clinical
data. We will constantly track the recovery process
of the patients using the system and quantitatively
analyze the clinical diagnosis support from our
program. We will also develop the algorithms

and the auxiliary program, and take the diagnosis
of more related diseases and complications into
account so that we can empower more patients with
the AI technology.
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