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Abstract: We study the containment control problem for high-order heterogeneous nonlinear multi-agent systems
under distributed event-triggered schemes. To achieve the containment control objective and reduce communication
consumption among agents, a distributed event-triggered control scheme is proposed by applying the backstepping
method, Lyapunov functional approach, and neural networks. Then, the results are extended to the self-triggered
control case to avoid continuous monitoring of state errors. The developed protocols and triggered rules ensure that
the output for each follower converges to the convex hull spanned by multi-leader signals within a bounded error. In
addition, no agent exhibits Zeno behavior. Two numerical simulations are finally presented to verify the correctness
of the obtained results.
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1 Introduction

To date, a great deal of work has been put into
cooperative control for multi-agent systems (MASs)
based on the behaviors of animal groups in nature
and their wide practical applications such as consen-
sus control (Wang ZD et al., 2013; Li HL et al., 2017;
Lin and Zheng, 2017; Rehan et al., 2018; Zheng YS
et al., 2018), rendezvous control (Fan et al., 2011),
formation control (Ma CQ and Zhang, 2012; Li WX
et al., 2014; Liu YF and Geng, 2015), and contain-
ment control (Liu KE et al., 2014; Ma Q and Miao,
2014; Qin et al., 2017). In the study of cooperative
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control for MASs, consensus is one of the most fun-
damental problems and has been extensively inves-
tigated in the past few decades. Consensus means
that by developing appropriate protocols, the states
of all agents in the system converge to a common
value. Generally speaking, MASs can be divided
into two categories: leaderless and leader-following
MASs. For an MAS with only one leader, the con-
sensus problem is called leader-following consensus
(Guo, 2016; Qin et al., 2016; Lu and Liu, 2019). In
some applications, there might be multiple leaders in
an MAS; the problem in this case is called contain-
ment control, in which all the followers are expected
to converge to the convex hull spanned by multi-
ple leaders under appropriate control laws (Ji et al.,
2008).

In recent years, containment control has at-
tracted enormous concern because of its pratical
applications (Xu and Zhu, 2011). Liu KE et al.
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(2014) addressed the containment control problem
for second-order linear MASs with time-varying de-
lays, where both dynamic and stationary leaders
were considered. Zhou and Wang (2015) studied
the containment control for linear MASs, where
the graph is directed and the control inputs of
the leaders may be time-varying. Ma Q and Miao
(2014) proposed distributed dynamic and static con-
trol methods for linear MASs with time-varying de-
lays. Haghshenas et al. (2015) and Chu et al. (2016)
proposed containment control schemes for heteroge-
neous linear systems. Fu and Wang (2016) solved
the finite-time containment control problem by de-
signing a distributed observer-based controller. Ob-
viously, there have been many achievements in con-
tainment control of linear MASs. However, it is uni-
versally known that most real systems are nonlinear,
and thus it is absolutely essential to study nonlinear
MASs (Yoo, 2013; He et al., 2015; Liu ZX et al., 2015;
Wang P and Jia, 2015; Wang W et al., 2015; Li WQ
et al., 2016). In the cooperative control of nonlinear
MASs, the major challenge lies in how to deal with
the nonlinearities. He et al. (2015) and Li YF et al.
(2017) designed nonlinear functions to satisfy some
growth conditions such as the Lipschitz condition.
Wang W et al. (2015) applied a fuzzy logic system to
approximate the nonlinearities.

In the view of continuous communication among
agents which may cause excessive data and waste
embedded processor resources, the event-triggered
method is more favorable when designing protocols
(Dimarogonas et al., 2012; Yan et al., 2014; Hu et al.,
2015; Wei and Xiao, 2016; Dolk and Heemels, 2017;
Wu et al., 2018a, 2018b; Zou and Xiang, 2019a).
Tabuada (2007) proposed an event-triggered scheme,
which was applied into MASs for both centralized
and distributed cases in Dimarogonas et al. (2012).
There have been some studies on distributed event-
triggered containment control of MASs with multi-
ple leaders. Miao et al. (2017) studied containment
control for first- and second-order systems with sin-
gle time delay and multiple time delays in event-
triggered schemes, respectively. Zou and Xiang
(2019b) designed event-triggered control strategies
with the improved triggered condition for second-
order MASs. The problem of event-triggered con-
tainment control for second-order MASs with sam-
pled position data was addressed in Xia et al. (2018).
Zou and Xiang (2017) presented an event-triggered

control method for heterogeneous linear MASs by an
output regulation approach. Zhang WB et al. (2017)
addressed the containment control problem using
event-triggered strategies for MASs, where commu-
nication may exist among the leaders and the Zeno
behavior is excluded. Li JZ et al. (2018) designed
event-triggered protocols for high-order MASs with
and without input delays.

Note that there have been few studies involving
event-triggered containment control for high-order
heterogeneous nonlinear MASs. In consideration of
this, we focus on high-order heterogeneous nonlinear
MASs. The main contributions of this study are
summarized as follows:

1. By applying the backstepping method, Lya-
punov stability approach, and neural network tech-
nique, both distributed event-triggered and self-
triggered containment control schemes are proposed.
Compared with the MASs in Miao et al. (2017),
Zhang WB et al. (2017), Zou and Xiang (2017), Li
JZ et al. (2018), and Xia et al. (2018), the system in
this study is more general. In addition, in most liter-
ature on nonlinear MASs, like Li YF et al. (2017) and
Zou and Xiang (2019b), nonlinear functions are usu-
ally required to satisfy specific conditions such as the
global Lipschitz condition. However, the restrictions
of the nonlinear terms in this study are relaxed and
the nonlinearities are totally unknown and heteroge-
neous. The control schemes in this study can achieve
the containment control objective in the presence of
more general nonlinearities.

2. Due to the existence of unknown and het-
erogeneous nonlinear terms, the lower bound of the
interval between two adjacent triggers may not exist,
which makes many existing control methods invalid
as the agents may exhibit Zeno behaviors. Under the
event-triggered and self-triggered schemes proposed
in this study, Zeno behavior can be excluded strictly
despite the MAS complexity.

Notations used in this paper are summarized as
follows: P > 0 (or P ≥ 0) indicates that matrix P ∈
R

n×n is positive definite (or positive semi-definite).
The maximum and minimum eigenvalues of P are
denoted by λmax(P ) and λmin(P ), respectively. “⊗”
represents the Kronecker product. The convex hull of
X is denoted as Co (X), where X = {x1, x2, . . . , xn}.
dis (x,Z) represents the distance from x ∈ R

n to the
set Z ⊆ R

n, and dis (x,Z) = inf
z∈Z

‖x− z‖, where ‖·‖
means the Euclidean norm of a vector or a matrix.
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2 Preliminaries and problem formula-
tion

2.1 Graph theory

Suppose that graph G = (V,E) with vertex set
V = {1, 2, . . . , N +M} and edge set E ⊆ V × V

stands for the communication topology of MASs
consisting of M leaders and N followers. A =

[aij ](N+M)×(N+M) is the adjacency matrix, where
each element is nonnegative. In detail, (j, i) ∈ E ⇔
aij > 0, and (j, i) /∈ E ⇔ aij = 0. (i, j) ∈ E

means that agent j can receive information from
agent i, and the neighbor set of agent i is Ni =

{j : j ∈ V, (j, i) ∈ E}. D = diag(d1, d2, . . . , dN+M )

implies the degree matrix of G, where di =
∑

j∈Ni

aij

is the degree of agent i. The Laplacian matrix can
be denoted as

L = D −A =

(
L1 L2

0M×N 0M×M

)

,

where L1 ∈ R
N×N and L2 ∈ R

N×M .

2.2 Radial basis function neural networks

The following radial basis function neural net-
works (RBFNNs) are applied to approximate an un-
known continuous function (Zhang T et al., 2000)

Φnn(y) = ZTH(y), (1)

where Z = (z1, z2, . . . , zl)
T ∈ R

l refers to the weight
vector and H (y) =[h1 (y) , h2(y), . . . , hl (y)]

T ∈ R
l

is the basis function vector (l > 1 represents the
number of nodes in the neural networks).

Denoting μi as the width of hi(y) and wi as the
center, select hi(y) as the Gaussian function:

hi(y) = exp

[

− (y −wi)
T(y −wi)

μ2
i

]

, i = 1, 2, . . . , l.

(2)
Any unknown function φ(y) that is continuous,

nonlinear, and defined on a compact set Ω ∈ R
q can

be approximated by a neural network (Z∗)TH (y);
that is, for any arbitrary accuracy δ0 > 0, one has

φ(y) = (Z∗)TH (y) + δ(y), y ∈ Ω, (3)

where Z∗ Δ
= arg

Z∈Rl

{

sup
y∈Ω

∣
∣φ (y)−ZTH (y)

∣
∣
}

means

the appropriate constant weight vector, and |δ (y)| <
δ0.

2.3 Problem formulation

Considering an nth-order nonlinear MAS which
consists ofM leaders andN followers, the ith follower
is modeled by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi,1 = xi,2 + fi,1 (xi,1) ,

ẋi,2 = xi,3 + fi,2 (xi,1, xi,2) ,

...

ẋi,n−1 = xi,n + fi,n−1 (xi,1, xi,2, . . . , xi,n−1) ,

ẋi,n = ui + fi,n (xi,1, xi,2, . . . , xi,n) ,

yi = xi,1, i ∈ Γ1,

(4)
where Γ1= {1, 2, . . . , N}, (xi,1, xi,2, . . . , xi,n)

T ∈ R
n

is the state of agent i, ui ∈ R and yi ∈ R are the con-
trol input and output of the ith follower, respectively,
and fi,p (·) ∈ R (p = 1, 2, . . . , n) is the unknown non-
linear function.

Denote wk as the kth leader signal, k ∈
Γ2= {N + 1, N + 2, . . . , N +M}.
Remark 1 If M = 1, the containment control
problem for MAS (4) will degrade into the leader-
following consensus. Compared with the MASs in
the existing studies on event-triggered containment
control, MAS (4) is more general. In addition, the
dynamics of the followers is heterogeneous and of
higher order, and the nonlinearities are not required
to satisfy specific conditions, such as the global
Lipschitz condition, challenging the achievement of
event-triggered containment control, and the exclu-
sion of Zeno behavior.
Assumption 1 The leader signal wk (k ∈ Γ2) is
an n-times continuously differentiable function. Be-
sides, there exists R0 > 0 such that

∣
∣
∣w

(p̄)
k

∣
∣
∣ ≤ R0,

p̄ = 0, 1, . . . , n.
Assumption 2 The communication graph among
all the followers is undirected and none of them could
send information to leaders. What is more, for each
follower, there is at least one leader that has a di-
rected path to it.
Lemma 1 (Meng et al., 2010) Suppose that As-
sumption 2 holds, and that L1 is positive definite
and symmetric. Each entry of −L−1

1 L2 is nonnega-
tive and the element sum of each row equals 1.
Lemma 2 (Hardy et al., 1952) For any u, v ∈ R,

|u|ν |v|π ≤ ν

ν + π
ρ|u|ν+π

+
π

ν + π
ρ−

ν
π |v|ν+π

, (5)

where ν, π, and ρ are arbitrary positive real numbers.
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Definition 1 (Ji et al., 2008) MAS (4)
can achieve the containment control objective if
the designed protocol makes the output of each
follower converge to the convex hull spanned
by leader signals, which means ∀i ∈ Γ1,
lim
t→∞ dis(yi,Co (wN+1, wN+2, . . . , wN+M )) = 0.

Let [w̃T
1 , w̃

T
2 , . . . , w̃

T
N ]T = (−L−1

1 L2 ⊗ In)

·[w̄T
N+1, w̄

T
N+2, . . . , w̄

T
N+M ]T, w̃i = [w̃i,1, w̃i,2, . . . ,

w̃i,n]
T ∈ R

n (i ∈ Γ1), and w̄k = [wk, w
(1)
k , . . . ,

w
(n−1)
k ]T ∈ R

n (k ∈ Γ2).
In this study, the practical containment control

objective can be achieved if the convergence state
error yi − w̃i,1 satisfies lim

t→∞ |yi − w̃i,1| ≤ ε0, ∀i ∈ Γ1,
where ε0 is a positive constant.

3 Event-triggered containment control

3.1 Event-triggered protocol design

For simplification, we first define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi,1=

N∑

j=1

aij
(
xr
j,1−xr

i,1

)
+

N+M∑

k=N+1

aik
(
wk−xr

i,1

)
,

ρi,2=

N∑

j=1

aij
(
xr
j,2−xr

i,2

)
+

N+M∑

k=N+1

aik

(
w

(1)
k −xr

i,2

)
,

...

ρi,n =
N∑

j=1

aij
(
xr
j,n − xr

i,n

)

+

N+M∑

k=N+1

aik

(
w

(n−1)
k − xr

i,n

)
, i ∈ Γ1,

(6)
where xr

i
Δ
=
[
xr
i,1, x

r
i,2, . . . , x

r
i,n

]T ∈ R
n is called the

objective route of agent i.
The dynamics of xr

i is given as follows:

ẋr
i = Axr

i +BKρi

(
tik
)
, t ∈ [tik, tik+1

)
, (7)

where A =

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]

∈ R
n×n,

B =
[
01×(n−1) 1

]T ∈ R
n, K = [K1,K2, . . . ,Kn]

∈ R
1×n (K needs to be designed later), ρi =

[ρi,1, ρi,2, . . . , ρi,n]
T ∈ R

n, and tik represents the trig-
gered instant of the ith follower. In distributed event-
triggered control, each follower has its own triggered
time.

Then, the triggered condition is given as

tik+1 = inf
{
t > tik |‖ωi‖ ≥ Δi

}
, Δi > 0, (8)

where ωi = ρi (t)− ρi

(
tik
)
, i ∈ Γ1.

Let ei = xr
i − w̃i, i ∈ Γ1. The Lyapunov func-

tion is chosen as

V0 = eT (IN ⊗ P ) e, (9)

where e =
[
eT1 , e

T
2 , . . . , e

T
N

]T and P > 0 such that

ATP + PA− 2PBBTP + σI ≤ 000, σ > 0. (10)

Then the derivative of V0 along system (7) is

V̇0 =eT[IN ⊗ (ATP + PA)− L1 ⊗ 2PBK]e

+ eT
{
L−1

1 L2[w
n
N+1, w

n
N+2, . . . , w

n
N+M ]

T

⊗ 2PB
}− eT(IN ⊗ 2PBK)ω, (11)

where ω =
[
ωT

1 ,ω
T
2 , . . . ,ω

T
N

]T.
Choosing K = αBTP , α > 0, and αλ1 ≥ 1

(λ1 = λmin (L1)), then from inequality (10), we have

eT[IN ⊗ (ATP + PA)−L1 ⊗ 2PBK]e

≤ −σeTe.
(12)

In addition, from triggered condition (8) and
using Lemma 2, one has

eT
{

L−1
1 L2

[
w

(n)
N+1, w

(n)
N+2, . . . , w

(n)
N+M

]T
⊗ 2PB

}

≤ 2 ‖e‖∥∥L−1
1

∥
∥ ‖L2‖ ‖P ‖

√
MR0

= 2ς ‖e‖
√
M

≤ ς

(
MeTe

β1
+ β1

)

, (13)

−eT (IN ⊗ 2PBK)ω ≤ γ ‖e‖ ‖ω‖

≤ γeTe

2β2
+

β2NΔ2
max

2
, (14)

where ς = R0

∥
∥L−1

1

∥
∥ ‖L2‖ ‖P ‖, γ =

λmax

(
2αPBBTP

)
, Δmax = max

i
{Δi}, and

β1 and β2 are positive constants to be designed.
According to inequalities (12)–(14), it can be

easily determined that

V̇0 ≤ −q1e
Te+ q2, (15)

where q1 = σ − ςM

β1
− γ2

2β2
, q2 = β1ς +

β2NΔ2
max

2
,

and β1 and β2 are positive constants making q1 > 0.
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Next, the design process of the control input
ui (i ∈ Γ1) will be given using the neural network
technique and the backstepping method.

Define the following coordinate transformation:
{
ξi,1 = xi,1 − xr

i,1,

ξi,l = xi,l − ξ∗i,l−1, l = 2, 3, . . . , n,
(16)

where ξ∗i,l (l = 1, 2, . . . , n) is the virtual controller to
be designed later.

Step 1: Choose the Lyapunov function as
follows:

Vi,1 =
1

2
ξ2i,1 +

1

2
ϑ̃2
i,1, (17)

where ϑ̃i,1 = ϑi,1 − ϑ̂i,1. Here, ϑ̂i,1 is a dynamic
auxiliary variable, and ϑi,1 is a constant that needs
to be designed later.

From Eq. (16), one has

ξ̇i,1 = ξi,2 + ξ∗i,1 + fi,1 − xr
i,2. (18)

Then it is easy to determine that

V̇i,1 = ξi,1
(
ξi,2 + ξ∗i,1 + fi,1 − xr

i,2

)− ˙̂
ϑi,1ϑ̃i,1. (19)

By Lemma 2, we have ξi,1ξi,2 ≤ 1

2
ξ2i,1+

1

2
ξ2i,2, so

Eq. (19) yields

V̇i,1 ≤ ξi,1

(

fi,1 +
1

2
ξi,1 − xr

i,2

)

+ ξi,1ξ
∗
i,1

+
1

2
ξ2i,2 − ˙̂

ϑi,1ϑ̃i,1.

(20)

Define

Φi,1 (Xi,1) = fi,1 +
1

2
ξi,1 − xr

i,2, (21)

where Xi,1 =
(
xi,1, x

r
i,1, x

r
i,2

)T.
RBFNNs are applied to approximate Φi,1 (·)

on compact set Ωi, because the nonlinear function
Φi,1 (·) is totally unknown and cannot be deter-
mined to design protocols. There exists an RBFNN
(Z∗

i,1)
THi,1 (Xi,1) for any given constant δ1 > 0

such that

Φi,1 (Xi,1) = (Z∗
i,1)

THi,1 (Xi,1) + δi,1 (Xi,1) , (22)

where Z∗
i,1 is an adjustable parameter vector,

Hi,1 (Xi,1) the basis function vector satisfying
HT

i,1 (Xi,1)Hi,1 (Xi,1) ≤ Li,1 (Li,1 is the dimension
of Hi,1(Xi,1)), and δi,1 (Xi,1) the approximation er-
ror satisfying |δi,1 (Xi,1)| ≤ δ1.

According to Eq. (22), we can determine

ξi,1Φi,1 (Xi,1) ≤
∥
∥Z∗

i,1

∥
∥2Li,1

2υ1
ξ2i,1+

1

2μ1
ξ2i,1+c1, (23)

where c1 =
υ1
2

+
μ1

2
δ21 , and υ1 and μ1 are both

positive constants.
Then we choose the virtual input as
⎧
⎪⎨

⎪⎩

ξ∗i,1 = −
(

k1 +
1

2μ1
+ ϑ̂i,1

)

ξi,1,

˙̂
ϑi,1 = ξ2i,1 − η1ϑ̂i,1,

(24)

where k1 > 0 and η1 > 0.

Letting ϑi,1 =

∥
∥Z∗

i,1

∥
∥2Li,1

2υ1
, one has

V̇i,1 ≤ −k1ξ
2
i,1 + η1ϑ̂i,1ϑ̃i,1 +

1

2
ξ2i,2 + c1. (25)

Step 2: Select the Lyapunov function with the
following form:

Vi,2 = Vi,1 +
1

2
ξ2i,2 +

1

2
ϑ̃2
i,2, (26)

where ϑ̃i,2 = ϑi,2−ϑ̂i,2. Here, ϑ̂i,2 is a dynamic auxil-
iary variable, and ϑi,2 is a constant to be determined.

Based on the definition of ξi,2, we obtain

ξ̇i,2 = ξi,3 + ξ∗i,2 + fi,2 − ξ̇∗i,1, (27)

where ξ̇∗i,1=
∂ξ∗i,1
∂xi,1

(xi,2 + fi,1)+
∂ξ∗i,1
∂xr

i,1

xr
i,2+

∂ξ∗i,1
∂ϑ̂i,1

˙̂
ϑi,1.

By Lemma 2, it can be found that

V̇i,2 ≤ −k1ξ
2
i,1 + η1ϑ̂i,1ϑ̃i,1 + c1 + ξi,2ξ

∗
i,2 + ξi,2

· (fi,2 + ξi,2 − ξ̇∗i,1)− ˙̂
ϑi,2ϑ̃i,2 +

1

2
ξ2i,3.

(28)

Define
Φi,2 (Xi,2) = fi,2 + ξi,2 − ξ̇∗i,1, (29)

where Xi,2 = (xi,1, xi,2, x
r
i,1, x

r
i,2, ϑ̂i,1)

T.
There exists a neural network

(Z∗
i,2)

THi,2 (Xi,2) for any given constant δ2 > 0

such that

Φi,2 (Xi,2) = (Z∗
i,2)

THi,2 (Xi,2) + δi,2 (Xi,2) , (30)

where HT
i,2 (Xi,2)Hi,2 (Xi,2) ≤ Li,2 and

|δi,2 (Xi,2)| ≤ δ2.
In view of Eq. (30), we can determine that

ξi,2Φi,2 (Xi,2) ≤
∥
∥Z∗

i,2

∥
∥2Li,2

2υ2
ξ2i,2+

1

2μ2
ξ2i,2+c2, (31)
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where c2 =
υ2
2

+
μ2

2
δ22 , and υ2 and μ2 are both

positive constants.
Then we choose the virtual input as
⎧
⎪⎨

⎪⎩

ξ∗i,2 = −
(

k2 +
1

2μ2
+ ϑ̂i,2

)

ξi,2,

˙̂
ϑi,2 = ξ2i,2 − η2ϑ̂i,2,

(32)

where k2 > 0 and η2 > 0.

Letting ϑi,2 =

∥
∥Z∗

i,2

∥
∥2Li,2

2υ2
, we have

V̇i,2 ≤
2∑

j=1

(
−kjξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
+

1

2
ξ2i,3. (33)

Step l (l = 3, 4, . . . , n−1): Supposing that under
the Lyapunov function

Vi,l−1 =
l−1∑

j=1

(
1
2ξ

2
i,j +

1
2 ϑ̃

2
i,j

)
(34)

where

ϑ̃i,l−1 = ϑi,l−1 − ϑ̂i,l−1 (35)

and the virtual input
⎧
⎪⎨

⎪⎩

ξ∗i,l−1 = −
(

kl−1 +
1

2μl−1
+ ϑ̂i,l−1

)

ξi,l−1

˙̂
ϑi,l−1 = ξ2i,l−1 − ηl−1ϑ̂i,l−1

(36)

at step l − 1, we can determine that

V̇i,l−1 ≤
l−1∑

j=1

(
−k1ξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
+

1

2
ξ2i,l,

(37)

where ϑi,l−1 =
‖Z∗

i,l−1‖2Li,l−1

2υl−1
and cl−1 =

υl−1

2
+

μl−1

2
δ2l−1.
Based on the statement above, the Lyapunov

function is chosen as

Vi,l = Vi,l−1 +
1

2
ξ2i,l +

1

2
ϑ̃2
i,l, (38)

where ϑ̃i,l = ϑi,l − ϑ̂i,l. Here, ϑ̂i,l is a dynamic auxil-
iary variable, and ϑi,l is a constant to be determined.

In view of the definition of ξi,l, one has

ξ̇i,l = ξi,l+1 + ξ∗i,l + fi,l − ξ̇∗i,l−1, (39)

where ξ̇∗i,l−1=
l−1∑

j=1

∂ξ∗i,l−1

∂xr
i,j

xr
i,j+1 +

l−1∑

j=1

∂ξ∗i,l−1

∂θ̂i,j

˙̂
ϑi,j +

l−1∑

j=1

∂ξ∗i,l−1

∂xi,j
(xi,j+1 + fi,j).

Substituting Eq. (39) into Eq. (38) yields

V̇i,l ≤
l−1∑

j=1

(
−kjξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
+ ξi,lξ

∗
i,l + ξi,l

· (fi,l + ξi,l − ξ̇∗i,l−1)− ˙̂
ϑi,lϑ̃i,l +

1

2
ξ2i,l+1.

(40)

Define

Φi,l (Xi,l) = fi,l + ξi,l − ξ̇∗i,l−1, (41)

where Xi,l=
(
xi,1,. . . ,xi,l,x

r
i,1,. . . ,x

r
i,l,ϑ̂i,1,. . . ,ϑ̂i,l

)T
.

There exists a neural network (Z∗
i,l)

THi,l (Xi,l)

for any given constant δl > 0 such that

Φi,l (Xi,l) = (Z∗
i,l)

THi,l (Xi,l) + δi,l (Xi,l) , (42)

where HT
i,l (Xi,l)Hi,l (Xi,l) ≤ Li,l and |δi,l (Xi,l)| ≤

δl.
In view of Eq. (42), we can determine that

ξi,lΦi,l (Xi,l) ≤
‖Z∗

i,l‖2Li,l

2υl
ξ2i,l +

1

2μl
ξ2i,l + cl, (43)

where cl =
υl
l
+
μl

2
δ2l , and υl and μl are both positive

constants.
Then we choose the virtual input as
⎧
⎪⎨

⎪⎩

ξ∗i,l = −
(

kl +
1

2μl
+ ϑ̂i,l

)

ξi,l,

˙̂
ϑi,l = ξ2i,l − ηlϑ̂i,l,

(44)

where kl > 0 and ηl > 0.

Letting ϑi,l =
‖Z∗

i,l‖2Li,l

2υl
, we have

V̇i,l ≤
l∑

j=1

(
−kjξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
+

1

2
ξ2i,l+1.

(45)
Step n: Determine the Lyapunov function as

Vi,n =
n∑

j=1

(
1

2
ξ2i,j +

1

2
ϑ̃2
i,j

)

, (46)

where ϑ̃i,n = ϑi,n − ϑ̂i,n. Here, ϑ̂i,n is a dynamic
auxiliary variable, and ϑi,n is unknown and needs to
be determined later.

Since ξ̇i,n = ui + fi,n − ξ̇∗i,n−1, it can be easily
determined that

V̇i,n ≤
n−1∑

j=1

(
−kjξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
+

1

2
ξ2i,n

+ ξi,n

(
ui + fi,n − ξ̇∗i,n−1

)
− ˙̂
ϑi,nϑ̃i,n.

(47)
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Define

Φi,n (Xi,n) = fi,n +
1

2
ξi,n − ξ̇∗i,n−1, (48)

where Xi,n =
(
xi,1, . . . , xi,n, x

r
i,1, . . . , x

r
i,n, ϑ̂i,1, . . . ,

ϑ̂i,n

)T
.

There exists a neural network
(Z∗

i,n)
THi,n (Xi,n) for any given constant δn > 0

such that

Φi,n (Xi,n) = (Z∗
i,n)

THi,n (Xi,n) + δi,n (Xi,n) ,

(49)
where HT

i,n (Xi,n)Hi,n (Xi,n) ≤ Li,n and
|δi,n (Xi,n)| ≤ δn.

In view of Eq. (49), we can determine that

ξi,nΦi,n (Xi,n) ≤
∥
∥Z∗

i,n

∥
∥2Li,n

2υn
ξ2i,n +

1

2μn
ξ2i,n + cn,

(50)
where cn =

υn
n

+
μn

2
δ2n, and υn and μn are both

positive constants.
Then, we choose the input control signal as

ui = −
(

kn +
1

2μn
+ ϑ̂i,n

)

ξi,n, (51)

˙̂
ϑi,n = ξ2i,n − ηnϑ̂i,n, (52)

where kn > 0 and ηn > 0.

Letting ϑi,n =

∥
∥Z∗

i,n

∥
∥2Li,n

2υn
, we have

V̇i,n ≤
n∑

j=1

(
−kjξ

2
i,j + ηj ϑ̂i,j ϑ̃i,j + cj

)
. (53)

The controller design procedure can be summa-
rized as follows:

1. According to the order of MAS (4), A and
B can be determined. Then select σ and solve P to
satisfy inequality (10).

2. Calculate λ1 = λmin (L1) and choose α > 0

so that αλ1 ≥ 1. Then K can be obtained by K =

αBTP , and the dynamics of xr
i can be determined

by Eq. (7).
3. Choose kl, μl, and ηl to design the virtual

input ξ∗i,l at step l (l = 1, 2, . . . , n− 1).
4. Select kn, μn, and ηn to determine the control

input ui at step n.

3.2 Convergence analysis

Theorem 1 Consider MAS (4) under the protocols
given in Eqs. (7), (51), and (52), and the triggered
condition is designed as Eq. (8). If Assumptions 1
and 2 hold, then the practical containment control
objective can be achieved.
Proof From inequality (15), we have

V̇0 ≤ − q1
‖P ‖V0 + q2. (54)

Then from inequality (54), it can be determined that
∀i ∈ Γ1,

lim
t→∞
∣
∣xr

i,1 − w̃i,1

∣
∣ ≤ ε1

Δ
=

√
q2 ‖P ‖

q1λmin (P )
. (55)

By applying Lemma 2, for j = 1, 2, . . . , n, we
have

ϑ̂i,j ϑ̃i,j = −ϑ̃2
i,j + ϑi,j ϑ̃i,j ≤ −1

2
ϑ̃2
i,j +

1

2
ϑ2
i,j . (56)

Then inequality (53) can be rewritten as

V̇i,n ≤ −�Vi,n + C, (57)

where � = min {2k1, 2k2, . . . , 2kn, η1, η2, . . . , ηn}
and C =

n∑

j=1

(

cj +
1

2
ηjϑ

2
i,j

)

.

Thus, we can obtain

lim
t→∞
∣
∣yi − xr

i,1

∣
∣ ≤ ε2

Δ
=

√
2C

�
. (58)

Combining inequalities (55) and (58), it can be
concluded that

lim
t→∞ |yi − w̃i,1| ≤ ε0

Δ
= ε1+ε2, ∀i ∈ Γ1. (59)

Remark 2 On account of the triggered
condition (8) and inequality (54), it is easy to de-
termine that the frequency of the events and the
convergence error for each follower are affected by
Δi (i ∈ Γ1). Specifically, as Δi increases, the con-
vergence error becomes larger. However, a relatively
large Δi will contribute to a relatively low frequency
of the events.

3.3 Exclusion of Zeno behavior

Theorem 2 Consider MAS (4) under the protocols
given in Eqs. (7), (51), and (52), and the triggered
condition is designed as Eq. (8). If Assumptions 1
and 2 hold, no agent exhibits Zeno behavior.
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Proof According to Eqs. (6), (8), and (11), we can
easily find

d ‖ωi‖
dt

≤ ‖ω̇i‖ ≤ ‖ω̇‖ = ‖ρ̇‖ ≤ ‖L1‖ ‖ė‖
≤ ‖L1‖ ‖Q‖ ‖e‖+ ‖L1‖Π0, (60)

where Q = IN ⊗ A − L1 ⊗ αBBTP and Π0 =∥
∥L−1

1

∥
∥ ‖L2‖

√
MR0 + α ‖P ‖√NΔmax.

From inequality (15), we can determine that

‖e‖ ≤

√
√
√
√
√

max

{

V0 (0) ,
q2 ‖P ‖

q1

}

λmin (P )

Δ
= Π1. (61)

Thus, ∀t ∈ [tik, tik+1

)
(i ∈ Γ1), inequality (60)

can be transformed to

d ‖ωi‖
dt

≤ ‖L1‖ ‖Q‖Π1 + ‖L1‖Π0
Δ
= Π, (62)

and it is obvious that under the event-triggered con-
dition (8), we can determine that tik+1 − tik ≥ τi

Δ
=

Δi

Π
.

3.4 Self-triggered control scheme design

Under the event-triggered control scheme, con-
tinuous state measurement is required to check con-
dition (8) in

[
tik, t

i
k+1

)
(i ∈ Γ1, k = 0, 1, . . .).

To avoid such continuous communication and state
monitoring among agents, a self-triggered control
scheme is designed.

Define

ϕ
(
tik
)
=

n∑

j=2

∣
∣ρi,j(t

i
k)
∣
∣

+ k1

∣
∣
∣
∣
∣
∣

N∑

j=1

aijρj,1(t
j
kj
)−

N+M∑

l=1

ailρi,1
(
tik
)
∣
∣
∣
∣
∣
∣

+ k2

∣
∣
∣
∣
∣
∣

N∑

j=1

aijρj,2(t
j
kj
)−

N+M∑

l=1

ailρi,2(t
i
k)

∣
∣
∣
∣
∣
∣

+ . . .

+ kn

∣
∣
∣
∣
∣
∣

N∑

j=1

aijρj,n(t
j
kj
)−

N+M∑

l=1

ailρi,n(t
i
k)

∣
∣
∣
∣
∣
∣
,

(63)

where tjkj
represents the last triggered instant of

agent j before tik.

Suppose that the last triggered instant of
agent i (i ∈ Γ1) is tim, and define t∗ = tim +

ln

(
Δi

ϕ(tik)+gih
+ 1

)

, where Δi > 0 and gi =

N+M∑

k=N+1

aik. If no neighbor is triggered before

t∗, then tim+1 = t∗. If at tp1 (tp1 < t∗)
one neighbor p1 is triggered, let Δ′

i = Δi −
[ϕ
(
tik
)
+ gih](e

tp1−tim − 1). If Δ′
i ≤ 0, the next

triggered instant is tp1 ; otherwise, recalculate ϕ
(
tik
)

by substituting ρp1,1 (tp1) , ρp1,2 (tp1) , . . . , ρp1,n (tp1)

into Eq. (63). Then we can determine that

t∗ = tp1 + ln

(
Δ′

i

ϕ(tik)+gih
+ 1

)

. If at tp2 (tp2 <

t∗) another neighbor p2 is triggered, let Δ′′
i =

Δ′
i − [ϕ

(
tik
)
+ gih] (e

tp2−tp1 − 1). If Δ′′
i ≤ 0,

tim+1 = tp2 ; otherwise, update ϕ
(
tik
)

by substituting
ρp2,1 (tp2) , ρp2,2 (tp2) , . . . , ρp2,n (tp2) into Eq. (63),

which makes t∗ = tp2 +ln

(
Δ′′

i

ϕ(tik)+gih
+1

)

. This pro-

cess will be repeated until no triggering exists among
the neighbors of agent i before t∗. Then, the next
triggered instant tim+1 can be finally determined as
tim+1 = t∗.
Theorem 3 Considering MAS (4) under the self-
triggered rule, if Assumptions 1 and 2 hold and the
protocols are given in Eqs. (7), (51), and (52), prac-
tical containment control can be achieved and no
agent exhibits Zeno behavior.
Proof First, it is easy to determine that for any
t ∈ [tik, tik+1

)
,

d
∥
∥ρi (t)− ρi

(
tik
)∥
∥

dt

≤ ‖ρ̇i (t)‖ ≤
∥
∥
∥(ρ̇i,1, ρ̇i,2, . . . , ρ̇i,n−1)

T
∥
∥
∥+ |ρ̇i,n|

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥

ρi,2 (t)− ρi,2
(
tik
)

ρi,3 (t)− ρi,3
(
tik
)

...
ρi,n (t)− ρi,n

(
tik
)

∥
∥
∥
∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥
∥
∥
∥

ρi,2
(
tik
)

ρi,3
(
tik
)

...
ρi,n
(
tik
)

∥
∥
∥
∥
∥
∥
∥
∥
∥

+

∣
∣
∣
∣
∣
∣

N∑

j=1

aij
(
ur
j − ur

i

)
+

N+M∑

k=N+1

aik

(
w

(n)
k − ur

i

)
∣
∣
∣
∣
∣
∣

≤ ∥∥ρi (t)− ρi

(
tik
)∥
∥+ ϕ

(
tik
)
+ gih,

(64)

where ur
i = k1ρi,1

(
tik
)
+k2ρi,2

(
tik
)
+. . .+knρi,n

(
tik
)
.

Then it can be obtained that ‖ρi (t)− ρi (tk)‖ ≤(
et−tik − 1

)
[ϕ (tk) + gih]. From the self-triggered

rule, we can further determine that ‖ωi‖ =

‖ρi (t)− ρi (tk)‖ ≤ Δi.
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To construct the Lyapunov function (9), by tak-
ing its derivative, we have

V̇0 ≤ −χ1e
Te+ χ2, (65)

where χ1 = σ − ςM

b1
− γ2

2b2
, χ2 = b1ς +

b2NΔ2
max

2
,

ς = R0

∥
∥L−1

1

∥
∥ ‖L2‖ ‖P ‖, γ = λmax

(
2αPBBTP

)
,

Δmax = max
i

{Δi}, and b1 and b2 are positive con-
stants making χ1 > 0.

Following the proof procedure for Theorem 1,
we can prove that the practical containment control
objective can be achieved.

In addition, according to Eq. (63) we can deter-
mine that

ϕ
(
tik
) ≤

n∑

j=2

‖ρ‖+k1 (2ιi + gi) ‖ρ‖+ k2 (2ιi + gi) ‖ρ‖

+ . . .+ kn (2ιi + gi) ‖ρ‖

≤
⎛

⎝n− 1 + (2ιi + gi)
n∑

j=1

kj

⎞

⎠ ‖ρ‖ .

(66)

Then from inequality (65), we have

‖e‖ ≤

√
√
√
√
√

max

{

V0 (0) ,
χ2 ‖P ‖

χ1

}

λmin (P )

Δ
= Π2. (67)

In view of inequality (67), we can determine
from inequality (66) that

ϕ
(
tik
) ≤
⎛

⎝n− 1 + (2ιi + gi)

n∑

j=1

kj

⎞

⎠ ‖L1‖ ‖eee‖ Δ
= Ω,

(68)

where ιi =
N∑

j=1

aij , i ∈ Γ1.

Thus, from inequality (68) and the self-triggered
rule, it can be easily determined that Zeno behavior
can be excluded.
Remark 3 It is worth mentioning that under the
event-triggered scheme, continuous monitoring of the
triggered condition (8) is still required for follower i
while tik + τi ≤ t ≤ tik+1 (i ∈ Γ1), which means that
follower i needs to continuously communicate with
its neighbors during this period. In contrast, the
self-triggered rule overcomes this problem because
the next triggered time for follower i is decided by
updating only Eq. (63) and computing t∗ until there
is no neighbor triggered before the latest recalculated
t∗.

4 Simulations

In this section, we will provide two numerical
simulation examples using MATLAB/Simulink to il-
lustrate the validity of the obtained results. Con-
sider a third-order MAS consisting of four followers
(labeled 1, 2, 3, and 4) and two leaders (labeled 5
and 6), which means that N = 4, M = 2, and n = 3.
The communication topology among agents is shown
in Fig. 1, where aij = 1 if (j, i) ∈ E and aij = 0

otherwise.

5 1 2

3 4 6

Fig. 1 Topology of the multi-agent system

First, the dynamics of the followers is given as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi,1 = xi,2 + 0.02x
2/3
i,1 ,

ẋi,2 = xi,3 + 0.1 (cosxi,1 + sinxi,2) ,

ẋi,3 = ui + 0.2 (sinxi,2 + cosxi,3) ,

yi = xi,1, i = 1, 2,

(69)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋi,1 = xi,2 + 0.1 sinxi,1,

ẋi,2 = xi,3 + 0.08
(
cosxi,1 + sinx2

i,2

)
,

ẋi,3 = ui + 0.1 (cosxi,2 sinxi,3) ,

yi = xi,1, i = 3, 4.

(70)

Then, the initial states of the followers are given as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[x1,1 (0) , x1,2 (0) , x1,3 (0)] = [−2, 1, 0.1] ,

[x2,1 (0) , x2,2 (0) , x2,3 (0)] = [4,−0.5, 1] ,

[x3,1 (0) , x3,2 (0) , x3,3 (0)] = [1,−1, 0.2] ,

[x4,1 (0) , x4,2 (0) , x4,3 (0)] = [−3, 0.5,−0.2] ,

(71)
and the initial states of the objective route for each
follower are shown as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
xr
1,1 (0) , x

r
1,2 (0) , x

r
1,3 (0)

]
= [5,−1, 0.1] ,

[
xr
2,1 (0) , x

r
2,2 (0) , x

r
2,3 (0)

]
= [−8, 1,−0.2] ,

[
xr
3,1 (0) , x

r
3,2 (0) , x

r
3,3 (0)

]
= [4, 0.3, 0.5] ,

[
xr
4,1 (0) , x

r
4,2 (0) , x4,3

r (0)
]
= [3, 2, 0.1] .

(72)
In addition, two leader signals are determined as

w
(3)
5 = 0.1 (w5 sin t+ ẇ5 cos t+ ẅ5 sin t) and w

(3)
6 =
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0.1 (w6 cos t+ ẇ6 cos t+ ẅ6 sin t). The initial states
for leaders are [w5 (0) , ẇ5 (0) , ẅ5 (0)] = [1,−0.5, 0.1]

and [w6 (0) , ẇ6 (0) , ẅ6 (0)] = [−1, 0.5, 0.2].
Example 1 In this example, the containment
control protocol consisting of Eqs. (7), (51), and (52)
with the event-triggered condition (8) is adopted.

Let σ = 4. We can determine that PPP =⎡

⎣
20 14 6

14 25 9

6 9 12

⎤

⎦. Because λ1 = 0.382, we choose

α = 3 so that KKK = [18, 27, 36]. Other parameters
are given as k1 = k2 = k3 = 8, μ1 = μ2 = μ3 = 2,
η1 = η2 = η3 = 12, and Δi = 0.1 (i ∈ Γ1) in the
triggered condition.

Simulation results are shown in Figs. 2–5. Fig. 2
shows that the objective route of each follower can
converge to the convex hull spanned by the two
leader signals with a bounded error. Fig. 3 shows
that the practical containment control objective is
achieved. Fig. 4 presents the followers’ control in-
puts. Triggered instants are given in Fig. 5.
Example 2 In this example, the protocol con-
sisting of Eqs. (7), (51), and (52) with the self-
triggered rule is considered. Parameters are the same
as those in Example 1. Simulation results are shown
in Figs. 6–9. Fig. 6 indicates that the objective routes
achieve practical containment control. Fig. 7 shows
that the outputs converge to the convex hull spanned
by the leaders. Fig. 8 presents the control inputs of
the followers. Triggered instants are given in Fig. 9.

According to the simulation results, we can de-
termine that both event-triggered and self-triggered
control schemes can make followers achieve practical
containment control. Under the proposed control
method, each follower communicates with only its
neighbors at the triggered instant, which reduces the
consumption of communication resources.

In addition, from Figs. 5 and 9, we can see that
the followers’ triggered instants are different under
the event-triggered and self-triggered schemes. Con-
tinuous monitoring of the error state is not required
between two adjacent triggered instants under the
self-triggered scheme, but more triggers exist for the
followers.

5 Conclusions

In this study, we have discussed the contain-
ment control problem for a class of high-order
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Fig. 2 Objective routes of the followers under the
event-triggered scheme
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Fig. 3 Outputs of the followers under the event-
triggered scheme
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Fig. 9 Triggered instants of the followers under the
self-triggered scheme

heterogeneous nonlinear multi-agent systems
(MASs) with the distributed event-triggered mech-
anism. By developing an appropriate distributed
event-triggered control scheme, the practical con-
tainment control objective has been achieved and
Zeno behavior has been avoided. Then a distributed
self-triggered control scheme has been proposed.
Finally, we have provided two simulation examples
to validate the correctness of the main results.
In future study, we will focus on event-triggered
containment control for nonlinear MASs with
switched topologies and finite-time event-triggered
containment control for MASs.
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