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Abstract: Three-dimensional (3D) reconstruction of shapes is an important research topic in the fields of computer
vision, computer graphics, pattern recognition, and virtual reality. Existing 3D reconstruction methods usually
suffer from two bottlenecks: (1) they involve multiple manually designed states which can lead to cumulative errors,
but can hardly learn semantic features of 3D shapes automatically; (2) they depend heavily on the content and
quality of images, as well as precisely calibrated cameras. As a result, it is difficult to improve the reconstruction
accuracy of those methods. 3D reconstruction methods based on deep learning overcome both of these bottlenecks by
automatically learning semantic features of 3D shapes from low-quality images using deep networks. However, while
these methods have various architectures, in-depth analysis and comparisons of them are unavailable so far. We
present a comprehensive survey of 3D reconstruction methods based on deep learning. First, based on different deep
learning model architectures, we divide 3D reconstruction methods based on deep learning into four types, recurrent
neural network, deep autoencoder, generative adversarial network, and convolutional neural network based methods,
and analyze the corresponding methodologies carefully. Second, we investigate four representative databases that
are commonly used by the above methods in detail. Third, we give a comprehensive comparison of 3D reconstruction
methods based on deep learning, which consists of the results of different methods with respect to the same database,
the results of each method with respect to different databases, and the robustness of each method with respect to
the number of views. Finally, we discuss future development of 3D reconstruction methods based on deep learning.
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autoencoder; Generative adversarial network; Convolutional neural network
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1 Introduction

Vision-based three-dimensional (3D) recon-
struction refers to the computing process and tech-
nology that recovers 3D information (such as geo-
‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61772049, 61632006, 61876012, U19B2039, and
61906011) and the Beijing Natural Science Foundation of China
(No. 4202003)

ORCID: Caixia LIU, https://orcid.org/0000-0002-1802-
8197; Dehui KONG, https://orcid.org/0000-0001-7722-7172;
Shaofan WANG, https://orcid.org/0000-0002-3045-624X; Zhiy-
ong WANG, https://orcid.org/0000-0002-8043-0312; Jinghua
LI, https://orcid.org/0000-0002-5583-8260; Baocai YIN,
https://orcid.org/0000-0002-8125-4648
c© Zhejiang University Press 2021

metric shape and texture) of objects from images
acquired by a camera. Using this technique, 3D
shapes with accurate information and photorealism
are reconstructed. These 3D shapes can provide
functions of scene visualization and virtual roaming,
and also meet the high requirements of data archiv-
ing, measurement, and analysis, which consequently
leads to wide digital applications with respect to
ancient buildings, museums, urban planning, medi-
cal research, aerospace, shipbuilding, justice, archae-
ology, industrial measurement, ade-commerce (Sun
YY, 2011; Chen et al., 2015; Udayan et al., 2015),
and other fields.
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Most traditional reconstruction methods, such
as structure from motion (SFM) and simultaneous
localization and mapping (SLAM) (Furukawa and
Ponce, 2006; Goesele et al., 2007), require a large
number of views and the assumption that features
can be matched across views. Although multi-view
stereo (Wu ZR et al., 2015; Gwak et al., 2017) and
space carving (Wu JJ et al., 2016b) have shown good
performance in 3D reconstruction from images, they
require precisely calibrated cameras and high-quality
images, which restricts them from being widely ap-
plied in practice. Moreover, traditional 3D recon-
struction methods consist of several manually de-
signed steps, including image preprocessing, point
cloud computing, data fusion, and texture mapping
(Fig. 1). These steps lead to cumulative errors and
inaccurate semantic features of 3D shapes, and there-
fore seriously affect 3D reconstruction quality. In ad-
dition, it is difficult for traditional methods to recon-
struct invisible parts when 3D shapes are partially
occluded or missing, which makes 3D reconstruction
tasks challenging.

In recent years, the rapid development of deep
learning models and the distribution of a large num-
ber of 3D shapes have provided ideas for tradi-
tional 3D reconstruction. 3D reconstruction meth-
ods based on deep learning (i.e., deep 3D reconstruc-
tion methods) can avoid manually designed algo-
rithms for extracting features and complicated cam-
era calibration. What is more important, deep 3D
reconstruction methods can learn 3D shapes, explore
both the common and specific characteristics among
different 3D shapes by training deep networks, and
transfer the knowledge to testing data for predict-
ing the corresponding 3D shapes. In other words,
these methods can fully learn visible parts of 3D
shapes and reconstruct occluded parts of 3D shapes

by training objective functions, which makes up for
the inherent defect of traditional vision-based 3D re-
construction and improves the reconstruction accu-
racy. Therefore, deep 3D reconstruction methods
have been widely studied, and promising results are
achieved.

Han XF et al. (2019) and Laga (2019) proposed
state-of-the-art surveys on 3D reconstruction. In
particular, Han XF et al. (2019) first divided 3D re-
construction methods according to the decomposed
architectures that contain the encoding stage from
different latent spaces and the decoding stage from
different shape representations, and then analyzed
them by different training mechanisms. Laga (2019)
reviewed related topics and addressed works that use
deep learning techniques to estimate 3D depth from
one or multiple images. We provide a comprehen-
sive survey of deep 3D reconstruction methods and
review architectures and characteristics of different
reconstruction methods. Compared with previous
surveys (Han XF et al., 2019; Laga, 2019), the main
contributions and differences in this survey are sum-
marized as follows:

1. Progressively hierarchical classification. We
divide deep 3D reconstruction methods into four
types based on the model’s whole architecture,
and divide each type of method based on decod-
ing method, data priors, and shape representations.
In addition, we introduce the methodology of each
method.

2. Detailed introduction of four representative
databases. We describe four databases that are com-
monly used for 3D reconstruction, introduce them
based on many aspects, such as the type of 3D shape,
the number of 3D shape categories, the number of 3D
shapes, and images, and provide the download links.

3. Comprehensive comparison of reconstruction

Image acquisition by sensors
...

Image preprocessing Point cloud computing Data fusion 3D object

3D object

I(3)

I(2)

I(4)

I(0)

Camera

2D image: I(1)

u

v
xo

Xc

Oc

Yc

Zc

P(Xw, Yw, Zw)

p(x, y)

f y

Fig. 1 Traditional three-dimensional (3D) reconstruction based on stereo vision
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methods. We provide a comparison of different
methods with respect to common databases, a com-
parison of each method with respect to different
databases, and a comparison of the robustness of
each method with respect to the number of views.

2 Methodologies of deep 3D recon-
struction methods

Applying deep learning models to 3D recon-
struction brings new ideas to traditional vision-based
3D reconstruction methods. In this section, we first
analyze deep learning models and introduce their ap-
plications to 3D reconstruction. Then, we sort exist-
ing deep 3D reconstruction methods into four types
and progressively introduce the methodology of each
reconstruction type.

Fig. 2 shows the development history of deep
learning models. These models have achieved great
success in many pattern recognition tasks for many
reasons: a large amount of training data, various
deep networks whose architectures mimic the neu-
ral connections in human brains, the rise of graph-
ics processing unit (GPU) computing, and novel
techniques (dropout and batch normalization) that
help improve training and generalization of the net-
works. Specifically, prior knowledge, such as com-
mon and specific characters among different cate-
gories of data, can be explored from training data
through multiple single-layer nonlinear networks and
then transferred to testing data by subtle models
(e.g., classifiers and regressors) for various applica-
tions. This makes deep 3D reconstruction methods
outperform other methods.
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Fig. 2 Development history of deep learning models

In general, deep learning models consist of an
encoder and a decoder whose parameters are learned
from a training set. The trained encoder maps im-
ages to a latent vector in an implicit feature space,
and then the trained decoder maps the latent vec-

tor to an output space so that the predicted re-
sults correspond to the ground-truth targets as close
as possible (Zeiler et al., 2010). 3D reconstruction
methods have witnessed significant progress through
the use of deep learning models, which include the
back-propagation neural network, recurrent neural
network (RNN), long short-term memory (LSTM),
convolutional neural network (CNN), and deep gen-
erative models. In particular, deep generative mod-
els, which include the restricted Boltzmann machine,
deep belief network, deep Boltzmann machine, deep
autoencoder (DAE), variational autoencoder (VAE),
and generative adversarial networks (GANs), have
attracted more and more attention (see Fig. 3 for a
classification of deep generative models). The main
idea of 3D reconstruction based on these models is as
follows: the encoder maps input images to a latent
vector space and the decoder maps the latent vector
to a 3D shape space, which minimizes the distance
between the generated 3D shapes and ground-truth
3D shapes. Deep learning models have a strong abil-
ity to learn complex 3D or higher-dimensional data
distribution and capture latent features of 3D shapes
by various deep networks when applied to 3D re-
construction. As a result, deep 3D reconstruction
methods outperform vision-based 3D reconstruction
methods.
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Fig. 3 Taxonomy of generative models (Goodfellow,
2016)

According to network architectures, deep 3D
reconstruction methods are divided roughly into
RNN-, DAE-, GAN-, and CNN-based methods. In
summary, RNN-based methods have a memory func-
tion that can save and transfer the features of pre-
vious inputs to current inputs; DAE-based methods
exhibit a strong ability to expand and infer latent
information from images; GAN-based methods have
a strong ability to learn both the similarities and
differences between 3D shapes through adversarial
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discriminators; CNN-based methods have a strong
ability to learn features of 3D shapes through con-
volution and pooling operations. We will introduce
these methods in detail.

2.1 RNN-based 3D reconstruction methods

RNN is a deep model that specializes in process-
ing sequence data. Each RNN neuron has two inputs,
current input information and previously generated
memory information, which results in the RNN re-
taining the sequence-dependent type. As shown in
Fig. 4, the RNN unfolds in time series, with the tar-
get memory given by{

ssst =f(UUUxxxt +WWWssst−1 + bbb),

ooot =g(VVV ssst),

where UUU is the weight matrix of the input xxxt, WWW is
the weight matrix of ssst−1, VVV is the weight matrix of
the output, ssst is a memory that captures information
at time t, bbb is the bias, f(·) and g(·) are activation
functions, and ooot is the output. It can be concluded
that RNN performs the same task for each element in
a sequence, and that the output depends on both the
input and the memory. It is difficult to establish fea-
ture correspondences between views with traditional
3D reconstruction methods due to local appearance
changes, self-occlusion, or a lack of texture for 3D
shapes (Fitzgibbon and Zisserman, 1998; Lhuillier
and Quan, 2005; Agarwal et al., 2009; Engel et al.,
2014). In contrast, RNN-based methods can effec-
tively avoid the problem by selectively concatenating
memory cell information that corresponds to views
when a single view (or multiple views) is (are) fed
into networks.
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Fig. 4 Structure of a recurrent neural network

According to the decoding process, RNN-based
methods can be divided roughly into two types: di-
rect decoding based RNN reconstruction methods
and indirect decoding based RNN reconstruction
methods. In general, the first type of method gener-
ates 3D shapes by direct deconvolution of the latent

vector obtained by an encoder, while the second type
of method generates 3D shapes by first obtaining the
parts of 3D shapes one-by-one with deconvolution of
the latent vector and then combining those parts.

2.1.1 Direct decoding based RNN reconstruction
methods

Choy et al. (2016) proposed a 3D recurrent
neural network (3D-R2N2) which uses the power
of LSTM (Hochreiter and Schmidhuber, 1997; Sun-
dermeyer et al., 2012; Sutskever et al., 2014) to re-
tain previous observations and incrementally refined
reconstruction results as more observations become
available. Specifically, 3D-R2N2 takes one or more
images of a 3D shape from arbitrary views as the
input, encodes each input image as a latent vector
using 2D-CNN, selectively updates cell states of the
latent vector or retains the cell states by closing in-
put gates using 3D-LSTM, decodes the cell states
of the LSTM units, and generates a 3D shape using
3D-DCNN. 3D-R2N2 takes full advantage of infor-
mation from different views, and allows adaptive and
consistent learning of the appropriate representation
of 3D shapes, leading to a faithful mapping between
images and 3D shapes from a large amount of syn-
thetic data. 3D-R2N2 requires neither annotations
of images nor class labels of 3D shapes during train-
ing and testing. Moreover, 3D-R2N2 is superior to
SFM/SLAM reconstruction methods.

2.1.2 Indirect decoding based RNN reconstruction
methods

Different from the first type of method, indirect
decoding based methods usually combine geometric
primitives generated by deep models to reconstruct
3D shapes. The motivation comes mainly from the
fact that 3D shapes are often composed of multiple
primitives which are regarded as a structured and
abstract representation of the 3D world. Zou et al.
(2017) proposed a 3D primitive recurrent neural net-
work (3D-PRNN) to predicte primitive sequences in
shape-centered coordinates. Specifically, 3D-PRNN
first sends a latent vector of a depth image to a re-
current generator consisting of LSTMs and mixture
density networks, iteratively predicts a set of prim-
itives and features, and combines the primitives to
reconstruct 3D shapes according to the predefined
contexts. 3D-PRNN achieves comparable accuracy
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and high efficiency with fewer parameters than voxel-
based reconstruction methods (Hu and Zhu, 2015;
Huang et al., 2015; Bansal et al., 2016) during train-
ing, because it retains the information of a previous
primitive to generate the current primitive. It is
worth noting that 3D-PRNN uses the Gaussian field
and energy minimization (Zhu et al., 1997) to acquire
ground-truth primitives of 3D shapes, which is chal-
lenging for 3D reconstruction. However, 3D-PRNN
has less freedom in the representation of 3D shapes.

We conclude that RNN-based methods are suit-
able for 3D reconstruction from input samples with
a dependent or complementary relationship because
they can transfer useful information learned from
previous input to current input. In other words,
these methods are conducive to the reconstruction
of 3D shapes with commonalities.

2.2 DAE-based 3D reconstruction methods

DAE is a type of deep models that consist of two
parts, an encoder represented by the function zzz =

f(XXX) and a decoder XXX ′ = g(zzz) that represents the
reconstruction with some constraints to ensure the
closeness between XXX ′ and XXX (Fig. 5). It is difficult
for traditional 3D reconstruction methods to learn
features of 3D shapes from images automatically. In
contrast, DAE-based methods can consider which
parts of 3D shapes need to be reconstructed first,
learn useful characteristics of 3D shapes, and mine
underlying semantics of 3D shapes.

Input 
image X Encoder

Latent 
vector z Decoder

Output 
image X′

Fig. 5 Structure of deep autoencoder

DAE-based methods are divided into two types,
database matching based DAE reconstruction meth-
ods and deconvolution decoding based DAE re-
construction methods. In general, the first type
of method reconstructs 3D shapes through prior
databases based on the idea that similar 3D shapes
share similar structural characteristics, while the sec-
ond type of method predicts 3D shapes by deconvo-
lution layers after obtaining the latent vector from
input images.

2.2.1 Database matching based DAE reconstruction
methods

In view of the noise, low resolution, occlusion,
and missing depth information in general images,
Kong et al. (2017) reconstructed 3D shapes from
images using a local dense correspondence (LDC)
graph, which is a directed graph whose nodes are
3D shapes and edges are the dense correspondences
between 3D shapes. Specifically, Kong et al. (2017)
first created an LDC graph using the non-rigid iter-
ative closest point algorithm, quickly selected the
“closest” 3D shape from the graph by orthogonal
matching tracking, and finally combined the simi-
lar 3D shapes to fit the final 3D shape sparsely and
linearly. Pontes et al. (2017) improved the means of
choosing the “closest” 3D shape from the graph us-
ing the idea of 3D-2D registration, i.e., to make the
selected 3D shape best fit the contours of input im-
ages. Pontes et al. (2018) proposed a learning-based
3D reconstruction architecture called Image2Mesh,
which further improves the means of selecting the
“closest” 3D shape. Specifically, Image2Mesh uses a
convolutional autoencoder to extract a latent vector
from images, trains a multi-label classifier to clas-
sify the vector according to an index of similar 3D
shapes, and selects a 3D shape whose latent vec-
tor is the closest to the input images. Compared
to previous works, Image2Mesh relies on neither
contours nor image landmarks, and effectively re-
constructs 3D shapes while retaining important geo-
metric features.

Nan et al. (2012), Shao et al. (2012), Li YY
et al. (2015), and Shi et al. (2016) proposed 3D re-
construction methods that are similar to the above
works. Their common idea is that given a partial
shape input, DAE encodes the input to obtain latent
features representing 3D shapes. It then sets these
features as the inputs to a classifier that attempts to
retrieve the same or the most likely 3D shapes and
aligns them with the scan, and finally combines these
3D shapes linearly with the combination coefficients
given by deep models. However, these methods suf-
fer from two issues: (1) they explicitly assume that
databases contain the same or highly similar shapes
as reconstructed 3D shapes; (2) they show less ro-
bustness and generalization (i.e., they are less effec-
tive if novel 3D shapes or categories are included in
the testing phase).
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2.2.2 Deconvolution decoding based DAE recon-
struction methods

Inspired by the idea that a good latent vector
can generate a 3D shape and should also be able
to be predicted from images, Girdhar et al. (2016)
proposed a TL-embedding network which consists
of T network for training and L network for testing.
Specifically, the T network sends images and ground-
truth 3D shapes to two encoders for predicting em-
bedded latent vectors and sends the latent vectors of
images into a decoder for reconstructing 3D shapes.
The L network sends images to the corresponding
trained encoder and reconstructs 3D shapes using
the trained decoder. The TL-embedding network
adopts the latent vector of ground-truth 3D shapes
to constrain those images on the basis of common re-
construction losses. As a result, the TL-embedding
network outperforms the baselines on each object of
CAD models from ShapeNet (Chang et al., 2015),
and generalizes well to real images from IKEA (Lim
et al., 2014).

Lin et al. (2018) proposed a 3D generation
method that effectively reconstructs 3D shapes with
dense point clouds from images. Specifically, the
method predictes 3D shapes by fitting multi-view
depth images encoded by latent vectors and opti-
mizing objective functions with 2D projection of 3D
shapes. This method has great advantages in pre-
dicting similarity and density of 3D shapes. Lun
et al. (2017) proposed 3D point cloud generation
(3D-PCG), which predicts 3D point clouds from 2D
sketches. Specifically, 3D-PCG first uses an encoder
to convert 2D sketches into a compact representation
of 3D shapes. Then a decoder converts the repre-
sentation into multi-view depth images and normal
maps, and 3D-PCG merges the images and maps to
obtain 3D point clouds. 3D-PCG offers several ad-
vantages over voxel-based reconstruction methods,
such as higher-resolution 3D outputs and better 3D
topology retention.

As an improvement of DAE, VAE (Gregor et al.,
2015) is an encoder-decoder network for learning
complex distributions. The encoder of VAE observes
samples from the target distribution and produces a
set of Gaussian mean and variance vectors, which
are sampled to produce a latent vector; the VAE
decoder attempts to reproduce the original samples
from the latent vector. Nash and Williams (2017)

introduced the shape variation autoencoder (Shape-
VAE), which is a deep generative model based on
VAE for 3D reconstruction. Specifically, Shape-
VAE learns low-dimensional shape embedding us-
ing a deep probabilistic autoencoder, extracts sam-
ples from previously embedded distributions, and ob-
tains novel shapes with point orientations using a
decoder. ShapeVAE can capture semantically mean-
ingful shapes and generate reasonable shapes.

Rezende et al. (2016) proposed a conditional
generative model that learns 3D shapes from vol-
umetric data or images. Different from previous
DAE-based reconstruction methods, context cues are
added to the latent vector by an encoder, where the
context cues can be category labels, or more views
from different cameras. The method shows how to
reconstruct 3D shapes without any use of ground-
truth 3D labels, and demonstrates the feasibility of
learning to infer 3D representation of the world in a
purely unsupervised manner.

It is concluded that deconvolution decoding
based DAE reconstruction methods are more pop-
ular than database matching based DAE reconstruc-
tion methods. This is because the former is an end-
to-end architecture, in which it is easy for objective
functions to feed errors back and update network pa-
rameters, while the latter requires similar and high-
quality 3D shapes in databases, which are limited in
many practical applications.

2.3 GAN-based 3D reconstruction methods

Goodfellow et al. (2014) proposed GAN, which
consists mainly of two parts, a generator and a dis-
criminator (Fig. 6). The generator is used mainly to
learn distribution of real images, making the gener-
ated images more realistic and fooling the discrim-
inator. The discriminator needs to make judgment
on (real or fake) generated images. Through train-
ing, two networks finally achieve a dynamic equilib-
rium: the generated image is close to the real image
distribution and the discriminator does not recog-
nize the real or fake images. It is difficult for tradi-
tional 3D reconstruction methods to reconstruct in-
visible parts when 3D shapes are partially occluded

Normal 
distribution

 Generator Discriminator

Fig. 6 Structure of a generative adversarial network
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or missing. In contrast, GAN-based methods incor-
porate the adversarial discriminator into the process
of generation modeling, which implicitly learns rich
similarities and differences of 3D shapes and thus
helps infer occluded or missing parts.

Based on whether the input information has
priors from 3D shapes, GAN-based methods are di-
vided into two types, single GAN based reconstruc-
tion methods and fusion GAN based reconstruction
methods. The first type of method reconstructs 3D
shapes from random noise, while the second type of
method reconstructs 3D shapes from priors, such as
images and incomplete shapes.

2.3.1 Single GAN based reconstruction methods

Motivated by the applications of GAN on im-
age processing (Denton et al., 2015; Radford et al.,
2015; Li C and Wand, 2016; Wang XL and Gupta,
2016), Wu JJ et al. (2016a) proposed 3D-GAN,
which uses volume convolutions based GAN to gen-
erate 3D shapes from a latent space. Specifically, the
generator of 3D-GAN maps a 200-dimensional latent
vector randomly sampled from the probability latent
space to a 64× 64× 64 cube, which represents a 3D
shape in the voxel space, and the discriminator of
3D-GAN outputs a confidence value to determine if
3D shapes are real or fake. 3D-GAN has three ad-
vantages: first, using adversarial standards rather
than traditional heuristics, it enables the generator
to implicitly capture details of 3D shapes and thus
produce high-quality 3D shapes; second, the gener-
ator establishes the mapping from low-dimensional
probability spaces to 3D-shape spaces, so that 3D
shapes sampled without reference images can be ex-
plored; third, the discriminator provides a powerful
3D shape descriptor that has a wide range of appli-
cations in 3D recognition without supervision.

Although 3D-GAN is proficient in generating
high-quality 3D shapes for each category, it is diffi-
cult to train multi-category data whose distributions
are quite different. 3D-GAN uses Kullback-Leibler
divergence to minimize the difference between real
data and the generated one. This makes the gradi-
ent of objective functions disappear when the distri-
butions of real data and the generated one do not
overlap, and thus causes unstable training and low
reconstruction accuracy.

Wu JJ et al. (2016a) proposed 3D-IWGAN,
which stably trains a generator and a discrimina-

tor in tandem for predicting realistic 3D shapes from
random noise. 3D-IWGAN uses WGAN-GP; that is,
it incorporates Wasserstein GAN (Gulrajani et al.,
2017), which uses Wasserstein distance to measure
the distance between real data and the generated one
by weight clipping (i.e., limiting the weights of the
network within a compact space) and the gradient
penalty (GP), as the discriminator loss. WGAN-GP
can avoid a few issues: modeling weakening, gra-
dient explosion, and disappearance. As a result,
3D-IWGAN can perform stable training for multi-
category data.

It is concluded that GAN-based 3D reconstruc-
tion methods can generate realistic samples of 3D
shapes from complex distributions, yet they may suf-
fer from instability during training and fail to gener-
ate target 3D shapes from images when using original
GAN loss. In addition, it is noted that the dimen-
sion of input random noise is difficult to determine;
that is, high-dimensional noise needs a large amount
of training time, while low-dimensional noise fails to
guarantee the generalization of complete and accu-
rate 3D shapes.

2.3.2 Fusion GAN based reconstruction methods

The input of GAN-based methods is the random
noise, which generates a type of 3D shape that ap-
proximates only ground-truth 3D shapes but fails to
reconstruct the corresponding 3D shapes from im-
ages. Alternatively, GAN is combined with other
deep models to add prior knowledge of 3D shapes
from images and then jointly generate target 3D
shapes.

As a popular fusion GAN model, DAE-GAN
(Wang LJ and Fang, 2017; Yang et al., 2018, 2019)
combines the effective coding of DAE with the gen-
eration capability of GAN to generate samples based
on prior data. The working principle is to use a sin-
gle network as both a generator and a decoder (i.e.,
the decoding network of DAE acts as the genera-
tion network of GAN), and combine two loss func-
tions during the training process. Yang et al. (2018)
proposed 3D-RecGAN, which combines DAE and
conditional GAN to reconstruct 3D shapes. 3D-
RecGAN requires only the 2.5D voxel grid repre-
sentation of a depth image as the input and can gen-
erate a complete 3D voxel grid with the resolution
of 64 × 64 × 64 by filling the occlusion/missing re-
gions. 3D-RecGAN achieves the best reconstruction
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effect on the chair image in the large synthetic
dataset. On this basis, Yang et al. (2019) pro-
posed 3D-RecGAN++ as an improvement of 3D-
RecGAN. 3D-RecGAN++ improves mainly the reso-
lution of 3D shapes by adding two upsampling layers
in the decoder part, and generates 3D shapes of the
256 × 256 × 256 resolution, while the intersection-
over-union (IoU) score drops 0.033. In addition,
Wang LJ and Fang (2017) proposed U3DRec based
on DAE-GAN, which reconstructs 3D shapes from
images in an unsupervised way (that is, images have
neither manual annotation nor corresponding 3D
shapes). Specifically, U3DRec first embeds images
and the synthesized images from similar 3D shapes
into a shared latent vector and then converts the la-
tent vector into a 3D shape space. U3DRec designs
the reconstruction loss �1 norm between the recon-
structed 3D shapes and similar 3D shapes.

Similar to DAE-GAN, VAE-GAN (Wu JJ et al.,
2016a; Smith and Meger, 2017) fuses the advantages
of VAE into GAN. The working principle is to use
the decoder of VAE as the generator of GAN and
combine their loss functions during training. Wu JJ
et al. (2016a) proposed 3D-VAE-GAN, which learns
a set of parameters (mean and variance) by an en-
coder, achieves a latent vector sampled from the pa-
rameters, generates 3D shapes from the latent vector
by a decoder/generator, and sends the generated 3D
shapes and ground-truth 3D shapes to a discrimi-
nator. 3D-VAE-GAN outperforms previously state-
of-the-art models in voxel-level prediction and other
baseline methods. Smith and Meger (2017) proposed
3D-VAE-IWGAN, which improves mainly the train-
ing of the discriminator in 3D-VAE-GAN by penal-
izing the gradient of weights to stabilize the training
process.

RNN-GAN has been proposed by introducing
the memory function of RNN into GAN. Gwak et al.
(2017) proposed McRecon, which combines RNN
and GAN to reconstruct 3D shapes. Specifically,
McRecon encodes multi-view images as a latent vec-
tor by an RNN network, decodes the latent vector
as a 3D shape, and sends the generated 3D shapes
and similar 3D shapes to a discriminator. McRe-
con has two remarkable advantages: for adversarial
loss, it compensates for the missing information in
3D shapes by learning shape distribution of similar
3D shapes; for generative loss, it renders the gener-
ated 3D shapes into 2D contours using a perspective

ray-tracing pooling layer and uses real 2D contours
as mask supervision.

Compared with previous methods, fusion GAN
based reconstruction methods perform better be-
cause of the advantage of GAN and other deep mod-
els, but take longer for convergence due to the in-
stability of GAN during training. In general, the
architectures of fusion GAN are worth exploring in
the future.

2.4 CNN-based 3D reconstruction methods

CNN is the most widely used deep learning
model and is successfully applied to image classifica-
tion and signal reconstruction, because it can learn
the characteristics of images at various levels through
convolution and pooling operations. Traditional 3D
reconstruction methods involve manually designed
algorithms, which have difficulty in completely learn-
ing local and global features, surface and abstract
features, and geometric and structural features of
3D shapes given input images. In contrast, CNN-
based methods can adopt convolution and pooling
operations to mine the adaptive, discriminative, and
semantic features of 3D shapes, and thus improve
reconstruction accuracy.

It should be noted that all methods in Sec-
tions 2.1–2.3 can be regarded as CNN-based methods
because they use CNN to extract features by convo-
lution and pooling operations. However, other meth-
ods, e.g., Wu JJ et al. (2016b)’s and Wang NY et al.
(2018)’s approaches, do not belong to any category in
Sections 2.1–2.3. To reflect the differences among all
CNN-based methods, we divide them into four types,
skeleton-based methods, voxel-based methods, point
cloud based methods, and mesh-based methods, ac-
cording to their representations of 3D shapes.

2.4.1 Skeleton-based CNN reconstruction methods

Skeletons composed of the connections between
pairwise keypoints are popularly used to represent
3D shapes due to their robustness to the variation of
3D shapes. Wu JJ et al. (2016b) proposed a 3D IN-
terpreter network (3D-INN), which first uses a multi-
scale CNN to estimate 2D keypoint heatmaps from
images and uses four fully connected layers to infer
the skeletons of 3D shapes from the heatmaps. 3D-
INN updates the skeletons of 3D shapes by making
their projected 2D keypoints closer to ground-truth
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2D marker images. In addition, Akhter and Black
(2015) used skeletons to represent different 3D hu-
man body poses for 3D reconstruction from images.

2.4.2 Voxel-based CNN reconstruction methods

Häne et al. (2017) proposed hierarchical sur-
face prediction (HSP), which first maps images to
a latent vector using a convolutional encoder and
predictes high-resolution voxel grids of 3D shapes
from the latent vector using a convolutional decoder.
Because of the subtle design of the decoding process
(cropping the feature block part centered around the
child node’s octant and upsampling the feature map
to the new feature block with higher spatial resolu-
tion), HSP seems promising in its ability to capture
3D shape surfaces. Choy et al. (2016) and Yang et al.
(2018, 2019) predicted higher-resolution voxel grids
of 3D shapes than those of HSP.

2.4.3 Point cloud based CNN reconstruction
methods

Fan et al. (2017) proposed a point cloud out-
put network (PointOutNet), which first maps images
and random vectors to a latent vector and generates
point clouds of 3D shapes from the latent vector.
Specifically, PointOutNet combines a fully connected
branch for showing good performance at describing
intricate structures and a deconvolution branch for
large smooth 3D shape surfaces. PointOutNet also
integrates the hourglass model (Newell et al., 2016)
for learning global and local 3D shape information
well. PointOutNet infers mainly the point positions
in a 3D frame determined by input images and view
positions. However, Lun et al. (2017) reconstructed
point clouds of 3D shapes by consolidating multi-
view depth and normal maps obtained from a deep
encoder-decoder network.

2.4.4 Mesh-based CNN reconstruction methods

Wang NY et al. (2018) proposed Pixel2Mesh,
which reconstructs meshes of 3D shapes by progres-
sively deforming an ellipsoid and using perceptual
features extracted from input images. Specifically,
Pixel2Mesh represents 3D mesh with a graph-based
convolutional network (GCN), where the vertices
and edges of the mesh are directly represented as
nodes and connections in a graph, respectively. So,
Pixel2Mesh enables features to be exchanged across

neighbor nodes by convolutional layers and eventu-
ally regresses the 3D location for each vertex by for-
ward propagation. Pixel2Mesh also designs a projec-
tion layer that incorporates features of input images
into 3D geometry represented by GCN. In addition,
Henderson and Ferrari (2019) generated 3D mesh
samples by learning the pose of 3D meshes from la-
tent codes. Liu et al. (2019) proposed a 3D mesh
reconstruction method, which first outputs the dis-
placement vectors from input images by a mesh gen-
erator and obtains the reconstructed 3D mesh from
the vectors by a template model.

The skeleton representation can capture geo-
metric changes of articulated shapes and preserve
the structural properties that we are interested in,
but skeleton-based methods predict only abstract 3D
shapes. Currently, most existing works resort to the
voxel grid representation, which is a regular structure
and easily fits into deep model architectures; how-
ever, voxel-based methods lead to imbalanced trade-
offs between sampling resolution of 3D shapes and
network efficiency, and obscure natural invariance of
3D shapes under rigid motions. The point cloud rep-
resentation is a simple and uniform structure that
is easy to learn and allows simple manipulation dur-
ing geometric transformation and deformation of 3D
shapes; however, point cloud based methods may
lose important surface details of 3D shapes. In con-
trast, the mesh representation is lightweight, capable
of modelling shape details, and easily deformed for
animation, so mesh-based methods are more desir-
able for many real applications.

3 Commonly used 3D geometric
databases

In this section, we first summarize several public
3D databases (Table 1) by providing the data type,
number of categories, number of samples, and down-
load links. Then we present detailed discussions on
four of the most commonly used databases (Table 2),
ShapeNet, ModelNet, PASCAL3D+, and IKEA.

3.1 ShapeNet database

ShapeNet is an annotated, large-scale 3D shape
database created by Princeton, Stanford, and TTIC
researchers (Chang et al., 2015). The raw 3D shapes
for ShapeNet come from public online repositories or
existing research datasets.
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Table 1 Public 3D geometric databases

Database Data type
Number of 3D shape Image

categories Number Type Number Type Camera

ShapeNet (Chang et al., 2015) Synthetic 55/270§ 51 300/12 000§ Mesh – Rendered �
ModelNet (Wu ZR et al., 2015) Synthetic 662 127 915 Mesh – Rendered
PASCAL3D+ (Xiang et al., 2014) Real-world, indoor, 12 36 000 Mesh 30 899 Real-world

outdoor
IKEA (Lim et al., 2014) Real-world, indoor 7 219 Mesh 759 Real-world
Pix3D (Sun XY et al., 2018) Real-world, indoor 9 418 Mesh 16 913 Real-world
ObjectNet3D (Xiang et al., 2016) Real-world, indoor 100 44 147 Mesh 90 127 Real-world �
NYUdv2 (Silberman et al., 2012) Real-world, indoor 894 35 064 Mesh 1449 Real-world �
§: Red for ShapeNetCore and blue for ShapeNetSem. ShapeNet: https://www.shapenet.org; Model-
Net: http://modelnet.cs.princeton.edu; PASCAL3D+: http://cvgl.stanford.edu/projects/objectnet3d; IKEA:
http://ikea.csail.mit.edu; Pix3D: http://pix3d.csail.mit.edu; ObjectNet3D: http://cvgl.stanford.edu/projects/objectnet3d;
NYUdv2: https://cs.nyu.edu/∼silberman/datasets. “–” denotes that there are no images in the database, but images can be
obtained by rendering 3D shapes from the database. References to color refer to the online version of this table

Table 2 Deep learning models used on 3D geometric databases
Method Model Literature ShapeNetModelNet PASCAL3D+ IKEA ObjectNet3DNYUdv2 Pix3D Note

RNN 3D-R2N2 Choy et al. (2016) � – � – – – – Supervised
RNN 3D-PRNN Zou et al. (2017) – � – – – � – Supervised
DAE TL Girdhar et al. (2016) � – – � – – – Supervised
DAE Image2Mesh Pontes et al. (2018) � – � – – – – Supervised
DAE 3D-PCG Lun et al. (2017) � – – – – – – Supervised
DAE SketchModeling Nash and Williams (2017) � – – – – – – Supervised
DAE PointOutNet Fan et al. (2017) � – – – – – – Supervised
DAE Pix2Vox Xie et al. (2019) � – � – – – – Supervised
DAE Base-AttSets Yang et al. (2020) � – – – – – – Supervised
DAE HRShapeCompletion Han XG et al. (2017) � – – – – – – Supervised
DAE Object-completion Varley et al. (2017) � – – – – – – Supervised
DAE MarrNet Wu JJ et al. (2017) – – – – – – � Supervised
DAE HSP Häne et al. (2017) � – – – – – – Supervised
GAN 3D-GAN Wu JJ et al. (2016a) – � – – – – – Unsupervised
GAN 3D-IWGAN Smith and Meger (2017) – � – – – – – Unsupervised
DAE-GAN 3D-RecGAN++ Yang et al. (2019) � – – – – – – Supervised
DAE-GAN 3D-RecGAN Yang et al. (2018) – � – – – – – Supervised
DAE-GAN 3D-VAE-GAN Wu JJ et al. (2016a) – – – � – – – Supervised
DAE-GAN 3D-VAE-IWGAN Smith and Meger (2017) – � – � – – – Supervised
DAE-GAN U3DRec Wang LJ and Fang (2017) – – � – – – – Unsupervised
RNN-GAN McRecon Gwak et al. (2017) � – – – � – – Weakly supervised
CNN 3D-INN Wu JJ et al. (2016b) – – � � – – – Supervised
CNN Pixel2Mesh Wang NY et al. (2018) � – – – – – – Supervised

ShapeNet contains models that span a
multitude of semantic categories and provides ex-
tensive sets of annotations for every model and cor-
respondences between models. The annotations are
mainly language-related annotations (category and
descriptions of 3D shapes), geometric annotations
(rigid alignments, parts and keypoints, and symme-
try and shape size), functional annotations (func-
tional parts and affordances), and physical anno-
tations (surface material and weight), which make
ShapeNet uniquely valuable. Fig. 7 shows this dense
network of interlinked attributes of shapes.

ShapeNet provides a view of data in a hierar-
chical categorization according to WordNet synsets

(Fig. 8). It consists of two subsets, ShapeNetCore
and ShapeNetSem. ShapeNetCore is composed of
clean 3D shapes, manually validated category labels,
and alignment annotations. ShapeNetCore covers 55
common shape categories with approximately 5300
unique 3D shapes. ShapeNetSem is a smaller, more
intensive subset with 12 000 models spread over a
broader set of 270 categories. In addition to man-
ually validated category labels and consistent align-
ment, the models from ShapeNetSem are annotated
with real-world dimensions, material composition at
the category level, volume, and weight.

ShapeNetCore is a widely used subset in the lit-
erature; its shapes are shown in Fig. 9. Its v1 release



662 Liu et al. / Front Inform Technol Electron Eng 2021 22(5):652-672

Alignment+symmetry

WordNet synset

Part hierarchy Part correspondencesDefinitions

Swivel chair: a chair that 
swivels on its base
Hypernyms: chair>seat>
furniture>... 
Part meronyms: backrest, 
seat, base, ...
Sister terms: armchair,
barber chair, ... 

Backrest Seat

BaseLeg

WheelUpright and 
front sides 

Fig. 7 ShapeNet annotations illustrated for chair (Chang et al., 2015)

Fig. 8 Screenshot of the online ShapeNet taxonomy view

is of 30.3 GB of size and contains mainly zip and csv
files. Each zip file name is an eight-digit, zero-padded
string by the offset in WordNet synset. Within each
synset zip file, there is a set of annotated 3D shapes,
each of which contains mainly a geometric structure
(obj file), material component (mtl file), and texture
images (jpg files). The csv files are the interpretation
and description of 3D shapes in the zip files.

3.2 ModelNet database

ModelNet (Wu ZR et al., 2015) is a 3D
shape database provided by the Princeton ModelNet
Project for researchers in computer vision, computer
graphics, robotics, and cognitive science. To build

Bench Car Chair Table

Fig. 9 Common 3D shapes for reconstruction in
ShapeNetCore (Chang et al., 2015)

the database, the organization compiles a list of the
most common shape categories in the world using
statistical information obtained from the extensive
Scene UNderstanding (SUN) database (Xiao et al.,
2010). One can query each shape category using
the shape vocabulary, collect 3D shapes of shape
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classes using the online search engine, and manually
determine whether each model belongs to a speci-
fied category on Amazon Mechanical Turk using the
internally designed quality control tool.

3D shapes in ModelNet are shown in Fig. 10.
ModelNet provides two versions, ModelNet10 and
ModelNet40. ModelNet10 includes 10 popular cat-
egories of 3D shapes for training networks in deep
learning projects, and each category has multiple 3D
shape styles; ModelNet40 contains 40 categories of
3D shapes, and shares similar properties with Mod-
elNet10. 3D shapes in ModelNet are indoor and
clean, with manually aligned orientation, and stored
as off files. Unlike ShapeNet, the data in ModelNet
consists of training data and testing data.

ChairTable Night stand Stool Toilet

Fig. 10 Common 3D shapes for reconstruction in
ModelNet (Wu ZR et al., 2015)

3.3 PASCAL3D+ database

PASCAL3D+ (Xiang et al., 2014) was origi-
nally a 3D shape detection and pose recognition
dataset created by the Stanford University Compu-
tational Vision and Geometry Lab (CVGL). PAS-
CAL3D+ augments 12 rigid categories of images and
corresponding 3D shapes from PASCAL VOC (Ev-
eringham et al., 2015) with 3D annotations. Many
researchers often use PASCAL3D+ to verify the
robustness of 3D reconstruction methods by com-
paring it with other databases.

3D shapes in PASCAL3D+ are shown in Fig. 11.
Currently, PASCAL3D+ provides two versions, Re-
lease 1.0 (1 GB size) and Release 1.1 (7.5 GB size).
The 3D shapes in each category are collected from
Google 3D Warehouse when they represent intra-
class variations of a particular category. The anno-
tations for each 3D shape include related 3D shapes,
2D markers, and 3D continuous poses. The images
in PASCAL3D+ are more variable than those in the
existing 3D datasets.

However, when PASCAL3D+ is used for bench-
mark 3D reconstruction, it is not appropriate to train
3D shapes in PASCAL3D+, because the same set of
3D shapes is used to annotate the test set. There-

CarChair Sofa BusAeroplane TV

Fig. 11 Common 3D shapes for reconstruction in
PASCAL3D+ (Xiang et al., 2014)

fore, using 3D shapes in training and testing is bi-
ased for 3D reconstruction. In addition, the images
in PASCAL3D+ are derived from real-world scenes;
that is, the images have complex backgrounds, which
may affect the reconstruction accuracy of target 3D
shapes.

3.4 IKEA database

IKEA was originally created for developing and
evaluating fine pose estimation based on 3D shapes.
IKEA includes images and corresponding 3D shapes
from indoor scenes, which are collected from Google
3D Warehouse and Flickr, respectively. Similar to
PASCAL3D+, IKEA is often used to verify the ro-
bustness of 3D reconstruction methods.

3D shapes in IKEA are shown in Fig. 12.
IKEA contains approximately 759 images and 219
3D shapes. All images are annotated with avail-
able models (approximately 90 different models). In
addition, the images are divided into two different
partitions, IKEA shape and IKEA room. Each 3D
shape contains mainly geometry structure (obj file),
material component (mtl file), and view images (png
files). IKEA images have complex backgrounds,
which may affect the extraction of pertinent infor-
mation, thereby reducing reconstruction accuracy of
target 3D shapes.

Table Chair Bookcase SofaBed Desk

Fig. 12 Common 3D shapes for reconstruction in
IKEA (Lim et al., 2014)

4 Performance comparison of deep 3D
reconstruction methods

To judge whether deep 3D reconstruction meth-
ods are effective in predicting 3D shapes, a common
means is to compare their results on the same
database, using the same evaluation function. At



664 Liu et al. / Front Inform Technol Electron Eng 2021 22(5):652-672

present, the evaluation functions for 3D recon-
struction include mainly the IoU, average precision
(AP), chamfer distance (CD), Earth mover’s dis-
tance (EMD), and cross entropy (CE), where IoU
and AP are the two most common functions. Ac-
cording to the experimental results provided by the
literature, we list quantitative results of different
3D reconstruction methods on four databases in Ta-
bles 3–6. In this section, we will analyze and compare
the above deep 3D reconstruction methods.

4.1 Comparison of reconstruction methods
based on different deep models

As can be seen from Table 3, most of the meth-
ods mentioned in Section 2 have reconstruction re-
sults on ShapeNet. Therefore, we highlight repre-
sentative reconstruction methods on this database,
analyze their characteristics in detail, and compare
their performances.

RNN-based reconstruction methods obtain rel-
atively low IoU scores which are about 0.567 on
average in Table 3. Specifically, 3D-R2N2 and
HRShapeCompletion (Han XG et al., 2017) adopt
LSTM to learn a set of view images for reconstruct-
ing 3D shapes. LSTM is a special structure of RNN
and consists of three control units (called cells), in-
put gate, output gate, and forget gate. As features
of view images enter networks, each cell will judge
whether the features remain or are forgotten, so RNN
is often used to fuse the features of multi-view im-
ages. However, RNN can memorize only a certain
number of view images. Once too many view images
are input, the reconstruction accuracy cannot be im-
proved and the computation burden is increased.

Moreover, the input order of view images affects the
reconstruction effect; that is, inconsistent 3D shapes
are estimated from the same image set with differ-
ent orders. The reconstruction accuracy of McRecon
is much lower than those of other methods, because
it uses inexpensive 2D silhouettes and approximate
views as weak supervision instead of complete 3D
shapes.

DAE-based reconstruction methods perform
better than RNN-based reconstruction methods ex-
cept Image2Mesh and HSP (Table 3). This is
because DAE-based methods process the features
of previous input and current input independently,
which may reduce the interference of irrelevant fea-
tures from previous input for current input. In par-
ticular, Image2Mesh produces a lower IoU score than
other DAE methods (Fan et al., 2017; Varley et al.,
2017; Yang et al., 2018, 2020; Xie et al., 2019) on
ShapeNet. This is because Image2Mesh fits limited
3D shapes from databases to reconstruct 3D shapes
from images. However, PointOutNet, Pix2Vox (Xie
et al., 2019), Object-completion (Varley et al., 2017),
Base-AttSets, and 3D-RecAE (Yang et al., 2018) em-
ploy a decoder to reconstruct 3D shapes from the
latent features instead of fitting 3D shapes, and
they are end-to-end architectures whose parame-
ters are updated by loss functions. HSP produces
worse results than other DAE methods, but it can
predict 3D voxel grids with a high resolution of
256× 256× 256.

Fusion GAN based reconstruction methods with
supervision achieve relatively high IoU scores than
other methods (Table 3). It is also found that fu-
sion GAN based methods perform the best on other

Table 3 Quantitative results of different methods on ShapeNet

Method Model Literature
IoU 3D

Resolution Note
Bench Car Chair Table Mean representation

RNN 3D-R2N2 Choy et al. (2016) 0.421 0.798 0.466 0.513 0.550 Voxel grid 323 Supervised
HRShapeCompletion Han XG et al. (2017) 0.611 – 0.524 0.615 0.583 Voxel grid 323 Supervised

DAE HSP Häne et al. (2017) – 0.698 0.361 – 0.530 Voxel grid 2563 Supervised
Image2Mesh Pontes et al. (2018) – 0.664 0.403 – 0.534 Mesh – Supervised
PointOutNet Fan et al. (2017) 0.550 0.831 0.544 0.606 0.633 Point cloud 323 Supervised
Pix2Vox Xie et al. (2019) 0.613 0.806 0.599 0.613 0.658 Voxel grid 323 Supervised
Base-AttSets Yang et al. (2020) 0.569 0.848 0.571 0.597 0.646 Voxel grid 323 Supervised
Object-completion Varley et al. (2017) 0.653 – 0.619 0.678 0.650 Voxel grid 323 Supervised
3D-RecAE Yang et al. (2018) 0.800 – 0.790 0.808 0.799 Voxel grid 323 Supervised
3D-RecAE Yang et al. (2018) 0.733 – 0.736 0.759 0.742 Voxel grid 643 Supervised

DAE-GAN 3D-RecGAN++ Yang et al. (2019) 0.806 – 0.793 0.821 0.807 Voxel grid 323 Supervised
DAE-GAN 3D-RecGAN++ Yang et al. (2019) 0.745 – 0.741 0.772 0.753 Voxel grid 643 Supervised
RNN-GAN McRecon Gwak et al. (2017) 0.295 0.562 0.350 0.353 0.390 Voxel grid 323 Weakly supervised
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databases from Tables 4–6. In particular, accord-
ing to Table 3, 3D-RecGAN++ achieves the high-
est mean IoU score of 0.807 among all methods,
and can reconstruct 3D shapes with a resolution
of 64 × 64 × 64. However, other methods predict
only 3D shapes with lower resolution. The suc-
cess of 3D-RecGAN++ benefits from combining the
generative capabilities of DAE and GAN. McRecon
performs worse than 3D-RecGAN++, because 3D-
RecGAN++ takes a real 3D shape and a fake 3D
shape as the inputs of a discriminator, while McRe-
con takes a real 2D silhouette and a fake 2D occu-
pancy map rendered by a reconstructed 3D shape as
the inputs of a discriminator. Although both dis-
criminators can distinguish whether the estimated
3D shapes are plausible or not, McRecon observes
3D shapes using 2D views and it is a weakly super-
vised method.

CNN-based reconstruction methods learn fea-
tures of 3D shapes using convolution operations in-
stead of traditional manually designed algorithms.

From Tables 3–6, it is found that most deep 3D re-
construction methods use voxel grids to represent
3D shapes, because voxel grids are regular structures
and easily fit into deep model architectures. From
Table 7, it can be seen that Pixel2Mesh performs the
best by achieving the lowest CD and EMD, which
benefits from the mesh representation of 3D shapes
provided by GCN. We analyze that point clouds (Fan
et al., 2017) and voxel grids (Choy et al., 2016) tend
to lose important surface details of 3D shapes; how-
ever, meshes are capable of modeling shape details
and are easy to deform for animation.

Based on the above analysis, it is concluded
that different methods have their own advantages
and disadvantages for 3D reconstruction, but fu-
sion GAN methods are more conducive because of
the inherent architectures, and the mesh represen-
tation of 3D shapes is more suitable for 3D recon-
struction. In addition, it is worth noting that deep
3D reconstruction methods often use popular CNNs,
e.g., VGGNet (Simonyan and Zisserman, 2015) and

Table 4 Quantitative results of different methods on ModelNet

Method Model Literature
IoU 3D

Resolution Note
Chair Table Night stand Stool Toilet Mean representation

RNN 3D-PRNN Zou et al. (2017) 0.245 0.188 0.204 – – 0.212 Point cloud 303 Supervised
DAE Object-completion Varley et al. (2017) 0.564 – – 0.273 0.503 0.447 Voxel grid 403 Supervised
DAE 3D-RecAE Yang et al. (2018) 0.633 – – 0.488 0.520 0.547 Voxel grid 643 Supervised
DAE-GAN 3D-RecGAN Yang et al. (2018) 0.661 – – 0.501 0.569 0.577 Voxel grid 643 Supervised

Table 5 Quantitative results of different methods on PASCAL3D+

Method Model Literature
IoU 3D

Resolution Note
Aeroplane Bus Car Chair Sofa TV Mean representation

RNN 3D-R2N2 Choy et al. (2016) 0.544 0.816 0.699 0.280 0.332 0.574 0.541 Voxel grid 323 Supervised
DAE Image2Mesh Pontes et al. (2018) 0.366 0.280 0.371 0.236 0.207 – 0.292 Mesh – Supervised
DAE Pix2Vox Xie et al. (2019) 0.690 0.760 0.657 0.593 0.634 0.694 0.671 Voxel grid 323 Supervised
DAE-GAN U3DRec Wang LJ and Fang (2017) – – 0.634 0.241 0.450 0.247 0.393 Voxel grid 323 Unsupervised

Table 6 Quantitative results of different methods on IKEA

Method Model Literature
AP 3D

Resolution Note
Bed Bookcase Chair Desk Sofa Table Mean representation

DAE TL Girdhar et al. (2016) 56.3 30.2 32.9 25.8 71.7 23.3 40.03 Voxel grid 203 Supervised
DAE-GAN 3D-VAE-GAN Wu JJ et al. (2016a) 63.2 46.3 47.2 40.7 78.8 42.3 53.08 Voxel grid 203 Supervised
DAE-GAN 3D-VAE-IWGAN Smith and Meger (2017) 77.7 51.8 56.2 49.8 82.0 52.6 61.68 Voxel grid 323 Supervised
RNN-GAN McRecon Gwak et al. (2017) – – 32.0 28.6 55.7 29.0 36.33 Voxel grid 323 Weakly supervised

Table 7 Quantitative results of different 3D representations for CNN-based reconstruction methods on
ShapeNet

Method Literature
CD EMD 3D

Bench Car Chair Table Mean Bench Car Chair Table Mean representation

3D-R2N2 Choy et al. (2016) 1.891 0.845 1.432 1.116 1.321 1.136 1.670 1.466 1.641 1.478 Voxel grid
Pixel2Mesh Wang NY et al. (2018) 0.624 0.268 0.610 0.498 0.500 0.965 1.297 1.399 1.480 1.285 Mesh
PointOutNet Fan et al. (2017) 0.629 0.333 0.645 0.517 0.531 1.113 1.747 1.946 2.121 1.732 Point cloud
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AlexNet (Krizhevsky et al., 2012), to learn 3D shape
features. For example, Niu et al. (2018) initialized
a network using the trained parameters of VGGNet
and then re-trained it using suitable loss functions to
accurately reconstruct 3D shapes from images.

4.2 Performance comparison of reconstruc-
tion methods on different databases

As can be seen from Tables 3–6, different recon-
struction methods use different databases because
deep learning models have their own advantages
when dealing with a specific database. We will ana-
lyze four commonly used databases by comparing the
reconstruction methods in detail in this subsection.

For synthetic databases, ShapeNet is more
widely used than ModelNet. According to the re-
sults of the chair image (which is the only common
shape in these two databases) from Tables 3 and 4,
ShapeNet obtains higher IoU than ModelNet under
the same model 3D-RecAE. We argue that this is
because ShapeNet has more annotations and repre-
sentations for each 3D shape than ModelNet, and
the additional information helps deep learning mod-
els learn more prior knowledge and mine more fea-
ture cues for complete recovery of 3D shapes during
that reconstruction.

For real-world databases, the reconstruction
on PASCAL3D+ and IKEA does not work well.
This may because images provided by the databases
are real-world images; that is, the images have
cluttered backgrounds which cause interference and
noise and affect accurate reconstruction of target 3D
shapes, thus resulting in lower precision. Moreover,
PASCAL3D+ and IKEA contain a relatively small
number of categories, which may cause poorer
generalization capabilities than the previous two
databases.

The above analysis demonstrates that the dif-
ferences in database quality, quantity, and addi-
tional information can directly affect the perfor-
mance of 3D reconstruction methods. In addition,
there are two findings: (1) many deep 3D reconstruc-
tion methods train networks by synthetic databases
and verify their robustness and generalization on
real-world databases; (2) many deep 3D reconstruc-
tion methods use AP to evaluate the performance on
IKEA.

4.3 Impact of the number of views on 3D re-
construction methods

As can be seen from Table 8, whether super-
vised or unsupervised, the number of input views
affects 3D reconstruction results. When the num-
ber of views increases, the IoU score increases, which
means that the reconstructed 3D shapes are closer to
ground-truth 3D shapes. In essence, the more views
there are, the more comprehensive are the features
of representing 3D shapes. In this subsection, we
analyze 3D reconstruction methods by input views
in detail.

According to different views of input images,
3D reconstruction tasks can be divided into single-
view reconstruction and multi-view reconstruction.
The main idea of single-view reconstruction is to
first encode an input image as a latent vector,
and then decode the latent vector to recover a 3D
shape. Currently, single-view reconstruction has two
types of architectures reconstructing 3D shapes from
single-view images (Girdhar et al., 2016; Smith and
Meger, 2017; Yang et al., 2018) and reconstructing
3D shapes from multi-view images predicted from
single-view images (Lin et al., 2018). The difference
between these two types of methods lies in the de-
coding process. The first type of method decodes

Table 8 Quantitative results with respect to the number of views on ShapeNet

Method Model Literature
Number IoU 3D

Resolution Note
of views Chair Car Table Bench Mean representation

1 0.466 0.798 0.513 0.421 0.550
2 0.515 0.821 0.550 0.484 0.593

RNN 3D-R2N2 Choy et al. (2016) 3 0.533 0.829 0.564 0.502 0.607 Voxel grid 323 Supervised
4 0.541 0.833 0.573 0.516 0.616
5 0.550 0.836 0.580 0.527 0.623

RNN-GAN McRecon Gwak et al. (2017)
1 0.350 0.562 0.353 0.295 0.390

Voxel grid 323
Weakly

5 0.437 0.614 0.420 0.401 0.468 supervised
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the latent vector to reconstruct a 3D shape by 3D
deconvolution layers which take up a large computer
memory. The second type of method makes multiple
copies of the latent vector, and then decodes these
vectors to reconstruct a 3D shape by 2D deconvolu-
tion layers. The second type of method uses inexpen-
sive 2D depth images from several views as optimiza-
tion targets instead of 3D shapes, and uses 2D de-
convolution accordingly instead of 3D deconvolution,
which largely reduces computational cost. It is diffi-
cult to predict complete 3D shapes using single-view
reconstruction because of incomplete sampling infor-
mation. However, this problem is offset by the con-
tinuous improvement in network performance and
the completeness of prior knowledge acquired by net-
work training. In addition, the convenience of single-
view reconstruction in applications further enhances
its availability.

Multi-view reconstruction provides a more pre-
cise result than single-view reconstruction; however,
it suffers from two issues: (1) it requires images of
3D shapes from as many views as possible; (2) it re-
quires a subtle fusion scheme of multi-view images,
which needs both multi-view feature descriptors and
cross-view feature matching. With the development
of hardware technology and the reduction of hard-
ware cost, the former problem has been increasingly
ignored. Currently, the advantage of reconstruction
accuracy brought by abundant sampling information
has become increasingly prominent for multi-view re-
construction.

Based on the above analysis, it is concluded
that single-view reconstruction and multi-view re-
construction have their own strengths and weak-
nesses, so researchers can choose network designs
according to their needs.

5 Future development of 3D recon-
struction

Although deep 3D reconstruction methods have
made breakthrough progress, further studies are nec-
essary. In this section, we summarize the possible
future development of deep 3D reconstruction meth-
ods from three aspects: supervised learning versus
unsupervised learning models, matrix neural net-
works versus non-matrix neural networks, and low-
resolution versus high-resolution outputs.

5.1 Supervised learning versus unsupervised
learning models

We live in a 3D world, but our observations are
usually in a form of 2D projections captured by eyes
or cameras. A key goal of computer vision is to re-
store 3D shapes from these 2D observations. A lot of
attempts have been made to infer 3D shapes from
images. Currently, supervised 3D reconstruction
methods have witnessed significant progress. How-
ever, these methods require large-scale annotation
of 2D/3D data. Actually, complete 3D shapes are
difficult to obtain and are often unknown in reality,
resulting in a severe imbalance between the available
number of images and the corresponding 3D shapes.
Therefore, supervised reconstruction methods can-
not achieve satisfactory results because of the lack of
data during training.

A few researchers have studied weakly super-
vised 3D reconstruction. Rezende et al. (2016) mini-
mized the loss between projected images of predicted
3D shapes and input images for reconstructing 3D
shapes from images. Yan et al. (2016) introduced
a 2D silhouette loss function based on perspective
transformations for reconstructing 3D shapes from
images. Gwak et al. (2017) used a 2D contour loss
defined by a perspective ray tracing pooling layer
for reconstructing 3D shapes from images, which has
better generalization ability than the one Yan et al.
(2016) designed. These methods prove the feasibil-
ity of inferring 3D representation from images in a
weakly unsupervised way without ground-truth 3D
shapes. However, Wang LJ and Fang (2017) pro-
posed U3DRec, which is a purely unsupervised net-
work. Specifically, U3DRec learns features of synthe-
sized images from 3D shapes similar to ground-truth
3D shapes, and uses the similar features to predict
target 3D shapes. U3DRec optimizes the distance
between predicted 3D shapes and similar 3D shapes,
and produces results close to those of the supervised
method (Choy et al., 2016) on the vehicle and chair
images from PASCAL3D+.

At present, most deep 3D reconstruction meth-
ods are still supervised. Through the above analy-
sis, it can be seen that the weakly supervised and
unsupervised 3D reconstructions are feasible. Al-
though they currently have lower performance than
supervised methods, this is a direction worth study-
ing for practical applications.
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5.2 Matrix neural networks versus non-
matrix neural networks

Deep learning models have achieved significant
breakthroughs in the hierarchical representation of
images. CNN has become an alternative method
for learning the representation of 2D planar images.
However, CNN exhibits the invariance of translation
and rotation for image representation, which leads to
the position information loss of image features and
hence affects the 3D reconstruction effect. A few
researchers proposed non-matrix networks, such as
group equivariant convolutional neural network (G-
CNN) and GCN, which are expected to be applied to
3D reconstruction for solving the problem of feature
information loss.

Cohen and Welling (2016) introduced G-CNN,
which uses G-convolution layers to extract image fea-
tures. It is proved that image features learned by
G-CNN on CIFAR10 and rotating MNIST are more
accurate and more reliable than those captured by
CNN. This is because G-CNN has a higher degree
of weight sharing, which enhances the expressive
power of a network without increasing the number
of parameters. In addition, G-CNN is equivariant
to translations and transformations of feature maps,
which enables the network to preserve the position
information of image features. Therefore, G-CNN is
conducive to reconstructing 3D shapes from images.

Cohen et al. (2018) proposed a spherical CNN,
which is used to deal with the classification problem
of spherical signals. It is demonstrated that spherical
CNN produces better computational efficiency, nu-
merical accuracy, and effectiveness than CNN. This
is because the spherical cross-correlation in spherical
CNN satisfies a generalized Fourier theorem, which
computes the network efficiently using a generalized
fast Fourier transform algorithm. Therefore, it is
reasonably expected that a spherical CNN can cap-
ture the details of spherical 3D shapes well, and be
applied to 3D reconstruction from images.

Inspired by the work of GCN (Bruna et al.,
2013), Kipf and Welling (2017) proposed a deep
model based on GCN to classify graph data, and
achieved good accuracy. This demonstrates that
GCN can learn features of graph data. Wang NY
et al. (2018) represented a 3D shape as a graph inter-
connecting part and used GCN to capture different
levels of attributes of a 3D shape for reconstructing

3D meshes from images. This method ensures visu-
ally appealing and physically accurate 3D geometry
information, and has better performance than CNN-
based reconstruction methods (Choy et al., 2016; Fan
et al., 2017).

Therefore, many reconstruction methods recon-
struct 3D shapes with important surface detail lost,
which contributes to a common challenge of these
methods. The reason is that these methods are in-
sufficiently powerful to represent the features of 3D
shapes. A few researchers have proposed novel net-
works for learning complex 3D data. Therefore, to
improve the reconstruction accuracy, the application
of these novel networks to 3D reconstruction is worth
exploring.

5.3 Low-resolution versus high-resolution
outputs

A common limitation of the works of Calakli
and Taubin (2011), Choy et al. (2016), Girdhar et al.
(2016), Rezende et al. (2016), Yan et al. (2016),
and Gadelha et al. (2017) is that they can predict
only coarse voxel grids (e.g., 32 × 32 × 32 resolu-
tion) of 3D shapes. It is observed that predicting
high-resolution 3D shapes becomes computationally
infeasible. However, a few researchers have devoted
to high-resolution reconstruction of 3D shapes from
images.

Inspired by the sparse convolutional networks
(Graham, 2014, 2015), Tatarchenko et al. (2017)
proposed octree generating networks (OGNs), which
store sparse non-trivial feature sets rather than dense
feature maps for efficient 3D shape analysis, thus
reducing computational cost. In particular, OGN
gradually refines an estimated rough low-resolution
structure to a desired high-resolution one and pre-
dicts only a sparse set of spatial locations at each
level. The OGN represents its volumetric output as
an octree. The representation is significantly more
efficient than a dense voxel grid and allows generat-
ing volumes as large as 512 × 512 × 512 voxels on
a modern GPU in a single forward pass. In addi-
tion, Dai et al. (2017), Häne et al. (2017), and Cao
et al. (2018) predicted high-resolution meshes in a
progressive, coarse-to-fine manner.

Currently, most deep 3D reconstruction meth-
ods can predict only low-resolution voxel grids of 3D
shapes. However, as we all know, the need for high-
resolution shapes is becoming more and more urgent
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in real applications. Therefore, generating high-
resolution 3D shapes with surface details is worth
studying.

6 Conclusions

Through the comparison and analysis of the
deep 3D reconstruction methods on databases, the
following conclusions can be drawn:

1. More knowledge should be mined from ex-
isting data by deep networks to improve 3D recon-
struction accuracy, which stems from three phenom-
ena: (1) deep 3D reconstruction methods trained on
datasets with large capacity and many labels per-
form better than the ones trained on datasets with
small capacity and few labels; (2) supervised deep
3D reconstruction methods obtain higher accuracy
and generate higher-quality 3D shapes than unsu-
pervised or weakly supervised reconstruction meth-
ods; (3) multi-view deep 3D reconstruction methods
learn the mapping between images and 3D shapes
better than single-view reconstruction methods.

2. Generative models are more conducive to
reconstruction than non-generative models because
of inherent architectures. Specifically, fusion GAN
based reconstruction methods perform the best for
3D reconstruction, and representing 3D shapes with
meshes is desirable for many real applications in the
future.

3. The research trend of 3D reconstruction is
diversification with regard to network architectures
and applications. The reason is twofold: for one
thing, the research with emphasis on feature extrac-
tion, encoding, and decoding can improve perfor-
mance of networks and reconstruction accuracy; for
the other, different application backgrounds give rise
to the needs of diverse 3D reconstruction, resulting
in a variety of network architectures.

In this study, we attempt to reveal the essence of
deep 3D reconstruction methods, classify them, and
compare their performances from the methodologi-
cal sense, 3D shape representation, and databases.
This work will help researchers better understand
and improve the methods.
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