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Abstract: The demise of Dennard’s scaling has created both power and utilization wall challenges for computer systems. As 
transistors operating in the near-threshold region are able to obtain flexible trade-offs between power and performance, it is re-
garded as an alternative solution to the scaling challenge. A reduction in supply voltage will nevertheless generate significant 
reliability challenges, while maintaining an error-free system that generates high costs in both performance and energy con-
sumption. The main purpose of research on computer architecture has therefore shifted from performance improvement  to com-
plex multi-objective optimization. In this paper, we propose a three-dimensional optimization approach which can effectively 
identify the best system configuration to establish a balance among performance, energy, and reliability. We use a dynamic pro-
gramming algorithm to determine the proper voltage and approximate level based on three predictors: system performance, energy 
consumption, and output quality. We propose an output quality predictor which uses a hardware/software co-design fault injection 
platform to evaluate the impact of the error on output quality under near-threshold computing (NTC). Evaluation results demon-
strate that our approach can lead to a 28% improvement in output quality with a 10% drop in overall energy efficiency; this 
translates to an approximately 20% average improvement in accuracy, power, and performance. 
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1  Introduction 
 

The “power wall” challenge has impeded the 
development of computer systems. As near- 
threshold-voltage computing (NTC) techniques (Kaul 
et al., 2012; Kozhikkottu et al., 2014) which make 
transistors operate in the near-threshold region can 
lead to a considerable flexible trade-off between 

power and performance, developments in this area 
provide a new approach for solving the power wall 
problem. In the case of NTC, 50% of relative energy- 
saving is obtained at the cost of 20% performance loss; 
compared with super-threshold computing, the same 
gain incurs an immense 50% or a higher delay over-
head. Although NTC has been a promising and  
energy-efficient solution for power-constrained en-
vironments, earlier research has nevertheless shown 
that this approach also encompasses significant reli-
ability issues, including increased susceptibility to 
process variation. As supply voltage drops, the num-
ber of failure cells increases drastically. In particular, 
NTC exacerbates the sensitivity of minimum supply 
voltage to process variation, leading to a high error 
rate. Several techniques have been proposed to deal 
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with increasing NTC errors, including new types of 
correction codes, reconfiguration, and hardware re-
dundancies. These techniques still require near- 
perfect executions to guarantee correctness, and im-
ply a high design cost at both device and microar-
chitecture levels. 

Relaxing these requirements will enable signif-
icant savings; approximate computing technologies 
leverage error-tolerance properties of applications 
and the perceptual limitations of humans to trade off 
computation quality (e.g., accuracy) against compu-
tational effort (e.g., energy) in error-tolerant applica-
tions such as media processing and the emerging 
recognition, mining, and synthesis (RMS) applica-
tions (Reagen et al., 2018). These applications gen-
erally process inexact inputs obtained from non- 
traditional sources such as sensors, and the associated 
algorithms are often stochastic in nature; thus, these 
applications generally require only acceptable results 
instead of precise outputs. 

There are opportunities to improve the perfor-
mance and efficiency if requirements for absolute 
correctness can be relaxed. Thus, at the architectural 
level, conventional devices can be pushed to their 
operational limits by reducing voltage scaling Vdd. As 
an approximate method, this approach can provide 
levers that trade off quality for efficiency. A processor 
is able to invest more energy when accurate data 
processing is required, but it can save energy when 
less accurate processing is permitted. This effectively 
reduces the average energy consumption and creates 
an extra degree of freedom for system-level power 
management. At the same time, researchers have 
proposed numerous strategies for use in the approx-
imate approach, including precision scaling (Tian  
et al., 2015), loop perforation (Sidiroglou-Douskos  
et al., 2011), load value approximation (Sutherland  
et al., 2015), skipping tasks, multiple inexact program 
versions, inexact faulty hardware, and neural network 
(NN) based accelerators. In this context, NNs exhibit 
significant parallelism and can be accelerated effi-
ciently by dedicated hardware to enable performance 
and energy benefits. In one earlier study, Esmaeilza-
deh et al. (2012) proposed the approximate computing 
technique that works by training an NN to mimic 
approximate code regions and replace the original 
code with an invocation of a new low-power process 
unit. This technique avoids changes to the instruction 

set architecture (ISA) of the processor, enables the use 
of neural acceleration in devices that are already 
available commercially, and accelerates a broad range 
of applications. 

We simultaneously apply an NN-based ap-
proximation at the software level with a voltage- 
scaled implementation of computation in this study. 
The NN-based approximation will transform the ap-
proximate code region into a neural representation. 
The approximate code region is therefore a hot spot 
and is able to tolerate imprecision in operations and 
data. To combine NN-based approximation with 
voltage scaling, we leverage NN inherent fault- 
tolerance characteristics to determine the faults in-
duced by a near-threshold voltage (NTV). An accu-
racy requirement limits the topology complexity of 
NN, while an aggressive reduction in complexity also 
has a negative effect on the output quality. As net-
work complexity is reduced to the lower threshold 
limits, high energy efficiency of NTC provides an 
opportunity for further energy saving. However, it is 
extremely difficult, if not impossible, to develop a 
general approximate computing framework with 
guaranteed quality, which is applicable to all types of 
error-tolerant applications. We therefore study  
particular types of approximate strategy, and develop 
a specific quality-guaranteed dynamic system  
configuration. 

The fault-tolerant capability of an NN will in-
crease in concert with the topology complexity. This 
means that an adjustment in NN complexity provides 
an opportunity for voltage scaling. A more compli-
cated NN will lead to more multiplications and add 
operations, resulting in energy and performance 
overheads. The challenge in this area is then to choose 
a proper voltage level and NN complication to obtain 
an optimal trade-off among output quality, energy, 
and performance. A multi-dimensional optimization 
mechanism is necessary for reaching multi-objective 
goals. The combined technique system used here is 
shown in Fig. 1. Our approach encompasses the fol-
lowing four steps: 

1. We propose a multi-dimensional optimization 
approach for approximate computing. This approach 
simultaneously applies NTC with an NN-based ap-
proximate strategy. This enables us to take advantage 
of NTC energy efficiency, and to leverage NN’s fea-
tures to accelerate the excution and tolerate NTC- 
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induced faults. 
2. We design a framework to forecast the per-

formance, output quality, and energy of an NN–NTC 
combined approximate system. An optimization al-
gorithm is used to obtain proper voltage and NN 
complication based on predicted performance, energy, 
and output quality.  

3. We propose an output quality predictor to 
evaluate the quality of a system. Via error injection 
and propagation analysis, we determine the output 
quality of each instruction group at a given voltage 
level and network topology. The quality bucket of 
each group at distinct approximate levels is then es-
tablished. Output quality can be acquired according to 
the “quality bucket” distribution of an application. 

4. We model power as a function of voltage level 
and NN complexity. This means that NN complexity 
can be quantified by the time of computation and 
memory access. We therefore design an NN model 
parser, which can compute the amount of arithmetic 
computation and memory access times given the 
model description and input data size. 

We evaluate the energy, performance, and output 
quality of our approach. Results show that our opti-
mization framework is aware of application features 
to tune the energy and performance breakdown of 
each benchmark to obtain the best trade-off among 
performance, energy, and output quality. 

2  Multi-dimensional optimization framework 
 

We illustrate the framework of our multi- 
dimensional optimization approach in Fig. 2. This 
framework takes a default approximate level, in-
cluding voltage level and the complication of neural 
network architecture. We also incorporate a specific 
usage scenario (i.e., a platform and resource budget 
including energy, accuracy, and performance) that 
includes inputs and generates an adapted voltage and 
an NN architecture as outputs. The choice of voltage 
and NN depends on constraints of energy, accuracy, 
and performance. However, extracting these metrics 
through network training and direct hardware meas-
urements is excessively time-consuming. Thus, to 
speed up this process, we bypass training and meas-
urement processes by leveraging accuracy, latency, 
and energy predictors (Fig. 2). This framework con-
tains three predictors: a performance predictor to 
predict system delay, an energy predictor to provide 
the system’s total power consumption, and an output 
quality loss predictor (Fig. 3). Voltage and NN to-
pology can be tuned to satisfy the requirement in 
performance/energy/quality budget or target. This 
means that voltage and NN topology are input varia-
bles, and performance, energy, and quality are func-
tions of these two variables. Based on our framework, 
given the performance or energy target, a simulated 

  
Fig. 1  An NN–NTC combined approximate approach 

NN: neural network; NTC: near-threshold computing; FIFO: first input first output; CPU: central processing unit; NPU: neural-network pro-
cessing unit; GPU: graphics processing unit 
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Fig. 2  Overview of the framework design (SA: simulated annealing; NN: neural network) 
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annealing (SA) optimization algorithm can be used to 
determine a suitable voltage level and the NN topol-
ogy configuration. This can then be used to obtain the 
best performance, energy, and output quality 
trade-off. 

2.1  Output quality predictor 

An output quality predictor processes applica-
tion outputs, and evaluates quality as a set of numer-
ical values. As different applications have diverging 
characteristics, it is difficult for a single NN archi-
tecture to run optimally on all different platforms. The 
quality predictor must therefore be application- 
specific although the framework itself is general. The 
predictor developed here can be used to assess the 
impact of an instruction-level error on the output 
quality. We develop this approach based on Approx-
ilyzer’s (Venkatagiri et al., 2016) main insight that 
errors propagate “similarly” through the control and 
data flow paths in the program. These are then likely 
to generate program outputs of similar quality. Thus, 
instructions that can be approximated can be divided 
into a series of groups. To analyze the impact of errors 
on output quality, we design a fault injection platform 
and inject errors on representative approximated in-
structions from each group. The errors introduced into 
the application are derived from observations of ef-
fects of various approximate computing techniques, 
including the error probability, magnitude, and  

predictability. We also assess the impact of a single or 
a class of approximate computing techniques on ap-
plication output quality. Fault injection based on the 
error probability, magnitude, and predictability gen-
erates a quality profile for the application as well as 
insight into its resilience. 

2.1.1  Output quality analysis 

The approximate technique presented here 
should work on code regions that can be approxi-
mated. If this is not the case, then approximation at 
any place could lead to catastrophic failures including 
out-of-bound memory accesses. In other words, ap-
proximation should never affect critical data and op-
erations. Approximate computing techniques should 
therefore be targeted towards resilient computations 
while avoiding sensitive ones. We identify potentially 
resilient computations using software ACCEPT 
(Sampson et al., 2015). Instructions that can be ap-
proximated are classified into two categories, the first 
of which has no influence on the output. This category 
includes four instruction types: (1) “no operation” 
(NOP) instructions which have no influence on the 
architectural state; (2) performance enhancing in-
structions such as prefetch and branch, which predict 
hint instructions (the invalid execution of these, in-
cluding prefetching, does not change program se-
mantics); (3) predicated-false instructions, which 
discard results so that incorrect ones will not have 

 
Fig. 3  Output quality predictor design (NOP: no operation; OQC: output quality class) 
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impact on the program output; (4) dynamically dead 
instructions (the destination registers of these remain 
unused and they can therefore be considered dynam-
ically dead). 

The second category of instructions encapsulates 
data that are safe to approximate because of an ap-
plication’s fault tolerance capability. In other words, 
when adopting different approximate techniques or 
degrees, this category of instructions might lead to 
different impacts on outputs within an acceptable 
range of output quality. In multimedia applications, 
for example, data types like pixels and filter coeffi-
cients can be relaxed due to the perceptual limitations 
of users. In the Sobel edge detection algorithm, for 
example, instructions holding data about the filter and 
pixels can also be approximated (Sampson et al., 
2015). 

Tuning voltage requires a regulator. This means 
that voltage scaling is limited due to the area overhead, 
while changing levels is not continuous. The choice 
of voltage level can therefore be considered as nu-
merable; the number of unique network topologies 
within a search space can still be large; however, 
considering the trade-off between topology complex-
ity and accuracy, NN topology choices are therefore 
also numerable. If a system trades off 10% complex-
ity for only 1% output accuracy, for example, the 
energy and performance overhead will overwhelm the 
accuracy gain. We use efficient sample generation 
here in combination with a predictor training method 
(Chippa et al., 2013). This enables us to select sample 
architectures from across the overall space and en-
compass high sampling density in the area of “sam-
ples of interest.” The numbers of voltage levels and 
NN approximate degrees are limited, however, and 
thus it is reasonable to obtain the output quality at a 
possible voltage level and NN topology through error 
injection and propagation analysis. To simulate faults 
at a certain voltage level and an approximate degree, 
errors should be injected based on representative 
approximated instructions from each group. 

The nature of output from an application varies 
from one to another. This means, for example, that a 
sobel output is an image, while one from jmeint is a 
boolean. It is therefore necessary to have an  
application-specific quality metric to effectively as-
sess the quality loss of each application output. To 
quantify the output quality, three quality metrics are 

applied to different types of applications. The first of 
these is max-abs-diff, which gives the maximum 
absolute difference between golden and fault outputs. 
The second is max-rel-err, which calculates the 
maximum relative error between the golden and 
faulty outputs. The third is rel-l2-norm, a metric 
which directly compares two others (Yazdanbakhsh  
et al., 2017). 

These metrics are used to quantify the effect on 
output quality (Fig. 3); they divide the output quality 
into a series of “quality buckets.” In terms of each 
combination of approximate voltages at the hardware 
level and the NN architecture at an application level, 
we collect quality errors across all samples in the 
representative workload. We then take the average 
value of these quality metrics as the trained impact. 

2.1.2  Fault injection platform 

Scaling down voltage saves energy but also 
causes small issues and impacts output accuracy. 
Indeed, at a given voltage operating point, it is the 
case that each bit-cell exhibits a normal distribution 
and a random occurrence error rate, ranging between 
1 and 0. Traditional fault injection frameworks based 
on dynamic instrumentation can experience kernel 
slowdowns, making them prohibitively slow to sweep 
many fault patterns across a range of fault rates that 
vary by orders of magnitude. Current software- 
based models also tune voltage at a coarse-grained 
level, and consider hardware as a whole; our method 
is distinct as voltage can be tuned at a fine-grained 
level. We therefore propose a fault injection platform 
based on a simulation backend to evaluate the relia-
bility of our method (Fig. 4). The framework injects 
fault and tuning voltage on real hardware design in 
the EDA tool, and runs popular benchmarks written 
by C program language. This framework injects er-
rors based on prior research into the relationship 
between voltage and the single-bit error rate 
(Karpuzcu et al., 2012), and can guide lower-level 
tools regarding where to conduct a detailed micro- 
architectural fault analysis. The hardware we simulate 
is a multi-core system; this encompasses a standard 
peripheral component interconnect (PCI), a network, 
and debug support unit (DSU) devices. This workload 
communicates with hardware through PCI and net-
work interface, while our fault injection software 
communicates with hardware through DSU. 
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The simulation backend comprises a connection 
between the hardware simulator and software system. 
This is implemented via a foreign language interface 
(FLI) within the EDA tool. Indeed, via the simulation 
backend, this software generates signal stimulus in-
puts, and an injected value is assigned to the signal 
logic of the target processor or accelerator in the 
hardware emulation environment, and receives the 
system status for debugging. The runtime software, 
including the application benchmark and the system 
software, interacts with end users via the graphical 
interface or command line. The runtime software then 
communicates with the underlying hardware through 
a network or a serial device. The fault injection 
software receives related parameters, including fault 
time and location through the user-controlled inter-
face. This software also obtains a list of signals from 
hardware through a simulation backend. A depth-first 
search method that iterates over the list is used to 
identify and record signals hierarchically. Establish-
ing a hierarchical resource pool can help users di-
rectly find the location of the fault. This software 
generates a fault time and location for the hardware 
signal. Generated fault and simulation information 
will be sent to the target processor. This fault injection 
software receives the state of the processor through 
the simulation backend after a fault is injected. The 
hardware receives software commands, and sends 
execution status through an internal DSU via a trace 
cache. This simulation backend has a virtual network 

card and a serial interface. The simulation backend 
can send the control command and fault injection 
information to the DSU; this then returns information 
to different destinations according to the content of 
the information. Data transmission and command 
scheduling are achieved through correct information 
distribution, while the information on this application 
is sent to the runtime software; fault injection infor-
mation is sent to the software. In the case of voltage 
point, we run the entire test set on sample network 
architectures to obtain the classification error along 
with the bit error rate modeled using the software 
Varius-NTV (Karpuzcu et al., 2012). 

2.2  Energy predictor design 

We model power as a function of supply voltage 
and NN complexity. Extracting energy and latency of 
an NN architecture through direct measurement, 
however, remains very challenging. Platform-specific 
latency measurements can be slow and difficult to 
parallelize, particularly when the number of available 
devices is limited. Large-scale latency measurements 
might therefore prove expensive and lead to a com-
putational bottleneck. To speed up this process, we 
construct a predictor for energy and latency on the 
target device to enable fast and reliable energy and 
lantency estimations for the NN candidates based on 
the complexity of NN, a quantification of the amount 
of computation and memory access times. We design 
an NN model parser based on the observation that the 

Fig. 4  Fault injection platform framework 
PCI: peripheral component interconnect; RAM: random access memory; DRAM: dynamic RAM; MMU: memory management unit; DSU: 
debug support unit 
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types of operators involved in the networks are  
limited; thus, the amount of computation and the 
memory access times can be formulated. 

2.2.1  Power model 

Energy is a key challenge for the development of 
the computer industry. We need to establish an energy 
predictor to guide multi-dimensional optimization in 
the NTC system. The power consumption of pro-
cessing NNs includes computation cost Pc and 
memory access cost Pm (Wang et al., 2014). Pc can be 
formulated as the total power cost of multiply/add 
operations per clock cycle, as Pc=μaddCadd+μmulCmul. 
In this expression, μadd (μmul) and Cadd (Cmul) denote 
the power cost per add operation (multiply operation) 
and the total number of add operations (multiply op-
erations), respectively. Similarly, Pm depends on the 
storage scheme. The total power consumption per 
clock cycle, P, can be modeled as 
 

c m add add mul mul mem mem ,P P P C C C        (1) 
 
where μmem and Cmem denote the power cost per bit 
when accessing memory and the total number of bits, 
respectively. The power cost of one neuron, μi (i=1, 
2, …), is considered to be a function of supply voltage 
vi: 2

i i iv  , where βi is a hardware-specific constant. 
We therefore use the linear approximation method 
(Tavakkoli-Moghaddam et al., 2008) to obtain the 
value of βi, including βadd, βmul, and βmem of the adder, 
multiplier, and memory, respectively. Moreover, after 
neuron-level voltage scaling, the voltages of the adder, 
multiplier, and memory are different per operation. 
We therefore extend Eq. (1) to 
 

 2
add add mul mul

mem m me mm e ,
jjjP v C C

v C

 



   

 




     (2) 

 
where vj denotes the number of different voltages 
allocated on the jth neuron (j=1, 2, …) and vmem is the 
voltage of the memory system, unified for all neurons. 
The numbers of add and multiply operations are cal-
culated based on the analysis of network models. 

2.2.2  Neural network parser 

Modeling of power reveals that this variable is a 
function of the supply voltage and complexity of the 

NN. In other words, prediction of power depends on 
the estimation of NN computation and memory ac-
cess analyses. Although deep NNs (DNNs) can derive 
different network models by changing their hierar-
chical structures as well as the number of and con-
nections between neurons, types of operators (layers) 
involved in the networks are limited, and generally 
include convolution, full connection, and pooling. 
Thus, the computation of each layer is determined 
regardless of how the input data change, and compu-
tation and memory access can be formulated. We 
propose an NN model parser; given a model descrip-
tion, this parser can compute the amount of arithmetic 
computation and memory access times. 

The NN model consists of operators with dif-
ferent functions. The arithmetic computation type, 
computation amount, and memory access are differ-
ent for each type of operator. We analyze six classical 
NNs, including Alexnet, Inception, VGG19, VGGish, 
single shot multibox detector (SSD), and Attention, 
and find 10 typical operators. As previously men-
tioned, the operator computation features and 
memory access features are fixed for each layer in 
DNN. We formulate the numbers of architecture op-
erations and memory access times for each layer; this 
formulation is a function of input data size and oper-
ator parameters such as the size of the convolution 
kernel and stride of the two-dimensional convolution 
layer. We save the formulation of each operator in a 
feature description file. 

The model parser we present analyzes the 
number of layers and the execution order. A text file 
description of the NN model is then converted into a 
representation of the general model through the 
TensorBoard visualization component embedded in 
TensorFlow. This general model representation con-
tains operator types, number of operators, and their 
order. In this context, each layer is regarded as one 
node, and the input and output between them are 
regarded as the directed edge; thus, the network 
model transforms to a directed acyclic graph (DAG). 

The second step is NN computation and memory 
access feature extraction. We use the graph search 
algorithm to traverse DAG and calculate the amount 
of computation and memory access times of each 
node based on the formulations in the feature de-
scription file. The operator feature extraction process 
is as follows. First, we determine whether the operator 
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is defined in the feature description file. In this case, it 
has been loaded and we calculate the number of basic 
operations such as multiplication and addition using 
the input data size and the formula definition of the 
operator in the feature description file. The second 
step is to detecte whether there is a built-in feature 
analysis method inside the system; if so, call the ex-
traction function to parse the operator; otherwise, the 
null feature is output. Finally, the parser gives the 
amount of arithmetic computation and memory ac-
cess times, which can be used to predict the power of 
the approximate system. 

2.3  Performance predictor 

We use the minimum delay of NN to represent 
performance. In general, the reduction in voltage can 
adversely affect the system performance due to the 
increasing time to complete a task. Moreover, the 
delay of execution depends on the hardware mapping 
scheme of neurons. As the structure of NN becomes 
increasingly complex, it is difficult for all neurons to 
execute in parallel for a layer at the same time. The 
fixed dimensions of the computational grid may need 
some layers to be partitioned, as the dimensions of the 
layer may be smaller than, match, or exceed the size 
of hardware. In cases where the layers’ dimensions 
exceed the function unit size, the function units must 
be used iteratively to compute different parts of these 
layers, and we call each use of all on-chip function 
units a “run.” Then, the final computational delay is 
the sum of all runs. For each run, the lowest voltage of 
the neurons in the workload will determine the 
maximum delay, represented by the delay at normal 
supply voltage Di multiplied by the magnification of 
the delay under a low voltage. Hence, the delay of the 
ith layer is the sum of the maximum delays for j exe-
cution runs of this layer, as 

 
 

 1 1 2 2

perlayer _ max

max , , , .
i

j j

D

D G D G D G   
        (3) 

 
Finally, the maximum delay of NN, which has n 

layers, is the accumulation of each layer’s delay, and 
can be formulated as 

 

 
=1

NN _ Delay perlayer _ max .
n

i
i

D         (4) 

In particular, the delay of each layer can be de-
composed into computation delay Dc and memory 
access delay Dm. Then, Dm can be classified into two 
categories, buffer access delay Db and main memory 
access on buffer misses Dmiss. The first part of data 
access latency Db may overlap with Dc. Owing to the 
limited space of weight and data cache, Dmiss cannot 
be hidden by Dc. Therefore, the maximum delay of 
each layer is expressed as 

 

      c b missmax , ,i i i i
D D D D              (5) 

 
where i denotes the ith layer in the NN. The calcula-
tion of delay is based on a single delay model of the 
logic gate using NN, which comprehensively captures 
the process, voltage, and temperature variation along 
with the input slew and output load. As the memory 
access pattern on a specific hardware platform is fixed 
and the miss rate can be predicted before the inference 
process, we can calculate Dmiss. 

 
 

3  Optimization 
 

Real-world applications face very different con-
straints. In one example, real-time video frame anal-
ysis may have a very strict latency constraint, whereas 
Internet-of-Things (IoT) edge device designers may 
care more about runtime energy consumption for a 
longer battery life. It is infeasible to have one ap-
proximate degree that meets all these constraints. This 
makes it necessary to adapt the approximate degree to 
the specific use scenarios before deployment. Our 
optimization is targeted to find the best selection of 
voltage levels and the NN topology for applications to 
obtain the best three-dimensional (3D) trade-off. 

We adopt two case studies as examples in this 
approach. In the first case, we minimize delay given 
accuracy, performance, and power constraints. In this 
case, P–E-R means that performance is the objective 
function while energy and output quality are con-
straint conditions, and P–E means that performance is 
the objection while energy is the constraint. This is 
consistent with previous work but without consider-
ing output quality (Azizi et al., 2010). Secondly, we 
maximize the power saving given accuracy and per-
formance constraints. E–P-R represents the fact that 
while energy is the objective function, performance 
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and output quality are constraints. E–P represents the 
fact that energy is the objective function while per-
formance is the constraint. E–P does not consider 
output quality though. 

Taking P–E-R as an example, the optimization 
problem can be solved using the SA algorithm, which 
is a stochastic optimization approach based on the 
Monte-Carlo iterative solution strategy. SA simulates 
the optimization problem as an annealing process of 
solid matter in physics. This finds the global optimal 
solution of the objective function as temperature de-
creases. The greatest advantage of SA is that it can 
jump out of the local optimal solutions and tends 
ultimately to the global optimal solution. The opti-
mization problem is converted into exploring the 
solution space, and then finding the best approximate 
degree by a range of moves. Algorithm 1 shows the 
process of solving the P–E-R case. We initialize the 
system with a series of configurations C={c1, c2, …, 
cn}, where ci (i=1, 2, …, n) is a combination of the 
voltage level and the NN topology.  

 
Algorithm 1    Approximate degree selection 
Initialize:  C←C0; T←T0. 

1    Calculate IPS←IPS_PREDICTOR(C); 
2    while T>ε do 
3        while the number of moves<M do 
4           Cnew=ANNEAL_MOVE(C); 
5           Performancenew←IPS_PREDICTOR(Cnew); 
6           ENERGYnew←ENERGY_PREDICTOR(Cnew); 
7           OQ LOSSnew←OQ_PREDICTOR(Cnew); 
8              if (Performancenew>Performance)(Energynew 

<Energybudget)(OQLOSSnew< 
OQLOSSthreshold)(IPSnew reduces with  
a certain probability) then 

9                   C←Cnew; Performance←Performancenew; 
10            end if 
11      end while 
12      T←αT; 
13  end while 

 
The algorithm maximizes Performance through 

annealing moves ANNEAL_MOVE(), which can 
verify whether Performancenew is better than the old 
Performance, whether Energynew is lower than Ener-
gybudget, and whether OQLOSSnew is lower than 
OQLOSSthreshold. Thus, if Performancenew is worse, 
the algorithm decreases the annealing temperature. 
This can also make occasional uphill moves to better 
explore the solution space. The algorithm can finally 

generate a configuration which can maximize the 
performance and guarantee the energy budget and 
quality threshold at the same time. 

 
 

4  Evaluation 

4.1  Experiment setup and metrics 

We evaluate our optimization framework by 
running the Axbench benchmark, which covers a 
diverse set of domains such as machine learning, 
scientific computation, signal processing, image 
processing, robotics, and compression. AxBench 
comes with the necessary annotations to mark the 
approximate region of the code and the application- 
specific quality metric to assess the output quality of 
each application. Conventional voltage scaling sets 
normal voltage to 1.1 V and 810 mV for low-voltage 
environments. We further scale the voltage down to 
the threshold voltage, which is set based on two 
principles: first, Vdd should stop scaling before tran-
sistors encounter the first uncorrectable error; second, 
Vdd should support the minimum frequency to ensure 
that the application performance in terms of 
throughput is not reduced significantly when the 
voltage decreases from super-threshold computing 
(STC) to NTC. Silvano et al. (2014) conducted ex-
periments considering the effect of variation of 
threshold voltage on transistor delay, and mentioned 
that the minimum frequency is 400 MHz to guarantee 
performance. Thus, in our detailed evaluation, we 
perform the evaluation in a 22-nm technology with 
the lowest Vdd as 600 mV, and the minimum fre-
quency of 400 MHz at NTV. We use the Sniper sim-
ulator (Carlson et al., 2011) to evaluate the perfor-
mance. Sniper is a parallel, high-speed, and accurate 
simulator. It allows fast and accurate simulation and 
trading off simulation speed for accuracy to allow a 
range of flexible simulation options when exploring 
different homogeneous and heterogeneous multi-core 
architectures. We employ HSIM-VCS co-simulation, 
which contains the fault injection module, to verify 
the voltage tuning effect on power and reliability. In 
this study, we use Varius-NTV to model the reliabil-
ity under NTC. Varius-NTV is a microarchitecture- 
level model to study the failure modes at NTC  
with the impact of process variation. Moreover, to  
quantify the trade-off among accuracy, power, and  
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performance, we define a metric EEPI to select the 
optimal solution to achieve a high accuracy with low 
power consumption and delay: 
 

EEPI Error Energy Performance.           (6) 

4.2  Application resilience and energy-efficiency 
analysis 

Each application has its unique error-resilient 
behavior, and we try to capture those features that 
differentiate an application from others. This is 
achieved by analyzing the application sensitivity at 
the approximate level from the accuracy and energy 
efficiency perspectives. EPI is a metric expressing the 
energy efficiency, and it can be obtained through the 
consumption of energy divided by performance re-
quest (IPS). The error expresses the output quality 
loss rate. We use MSE to quantize the NN complexity. 
Fig. 5 demonstrates the change in EPI. As we can 
observe, the EPIs of fft and jpeg change dramatically, 
indicating that they are sensitive to the approximate 
degree from the perspective of energy efficiency.  
Fig. 6 demonstrates how the approximate degree 
impacts the accuracy. jeint and jpeg are flat; therefore, 
they are not sensitive to the change in approximate 
degree. fft, inversek2j, and blackscholes are sensitive 

to the change in approximate degree. 
To summarize, a four-quadrant figure (Fig. 7) 

illustrates that a different benchmark shaves a dif-
ferent susceptibility to the change in approximate 
degree from the accuracy and energy efficiency per-
spectives. The high degree of resilience existing in 
jpeg and jmeint applications emphasizes the scope 
and potential of approximate computing. 

4.3  Optimization results and analysis 

To examine the effectiveness of our strategy, we 
evaluate two cases, the low-power case and high- 
performance case. To analyze the potential of our 
strategy under different workloads, we run three 
combinations of workloads: (1) error-susceptible- 
dominant workloads, which are composed mainly of 
error-sensitive applications, such as fft; (2) error- 
non-susceptible-dominant workloads, which are 
composed mainly of error-insensitive workloads, 
such as jpeg; (3) balanced workloads, where the 
numbers of error-sensitive workloads and error- 
insensitive workloads are equal. 

4.3.1  Low-power case study 

In this subsection, we evaluate the output quality 
and EEPI under different performance thresholds. In  
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Fig. 5  The degree of approximation and voltage level influence on EPI: (a) blackscholes; (b) fft; (c) inversek2j; (d) jpeg; 
(e) jmeint 
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Fig. 8, the x axis represents the performance request, 
ERROR represents the output quality, and EEPI rep-
resents the trade-off among energy, performance, and 
output quality. As we can observe, when running 
“balanced workload,” our method can obtain a 30% 
improvement in output quality with a 10% drop in 
overall energy efficiency, compared with the 
E–P-baseline, and the EEPI for “balanced workload” 
can improve by 20% on average. When running  
“error-susceptible-dominant workload,” our method 
can obtain a 33% improvement in output quality, with 
a 6% drop in overall energy efficiency, and EEPI can 
improve by 25% on average. The above experiment 

results show that our 3D optimization can obtain 
significant improvement in output quality with a little 
energy/performance overhead. 

4.3.2  High performance case study 

As illustrated in Fig. 9, we estimate the output 
quality loss and EEPI for all the workloads under 
different power budgets, adopting case 2 optimization 
schemes in Table 1. As we can observe, when running 
the “balanced workload,” our method can obtain a 
28% improvement in output quality with an 11% drop 
of overall energy efficiency compared with the 
P–E-baseline. The EEPI for “balanced workload” can 
improve by 19% on average. When running “error- 
susceptible-dominant workload,” our method can 
obtain a 30% improvement in output quality with a 
7% drop of overall energy efficiency, and the EEPI 
for “error-susceptible-dominant workload” can im-
prove by an average of 23%. When running “error- 
non-susceptible-dominant workload,” our method can 
obtain a 25% improvement in output quality with a 
12% drop in overall energy efficiency. The EEPI for 
“error-non-susceptible-dominant workload” can im-
prove by 16% on average. The above experiment 
results show that our 3D optimization can achieve 
better performance, energy, and output quality 
trade-off. 
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Fig. 6  The degree of approximation and the voltage level influence on the error: (a) blackscholes; (b) fft; (c) inversek2j; 
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Fig. 7  Susceptibility to EPI and ERROR 
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Fig. 8  Energy efficiency, reliability, and EEPI of each workload adopting the E–P-R or E–P optimization scheme  under 
different performance requests: (a) ERROR for balanced workload; (b) ERROR for error-susceptible-dominant work-
load; (c) ERROR for error-non-susceptible-dominant workload; (d) EEPI for balanced workload; (e) EEPI for 
error-susceptible-dominant workload; (f) EEPI for error-non-susceptible-dominant workload 
 
 
 

E
R

R
O

R

E
R

R
O

R

E
R

R
O

R

E
E

P
I

E
E

P
I

E
E

P
I

Fig. 9  Energy efficiency, reliability, and EEPI of each workload adopting the P–E-R or P–E optimization scheme under 
different power budgets: (a) ERROR for balanced workload; (b) ERROR for error-susceptible-dominant workload; (c) 
ERROR for error-non-susceptible-dominant workload; (d) EEPI for balanced workload; (e) EEPI for error-
susceptible-dominant workload; (f) EEPI for error-non-susceptible-dominant workload 



Wang et al. / Front Inform Technol Electron Eng   2020 21(10):1426-1441 1438

 
 
 
 
 
 
 

4.3.3  Power breakdown analysis 

We evaluate the energy breakdown of each 
benchmark with different performance budgets to 
analyze why E–P-R can obtain a better trade-off 
compared with the E–P-baseline. The results are 
shown in Fig. 10. The energy consumption of the 
error-sensitive application should not decrease; oth-
erwise, the user experience will become worse be-
cause of the loss of accuracy. Compared with the E–P- 
baseline, the energy consumed by jpeg increases by 
24% on average, while the energy consumed by 
jmeint decreases by 16% on average. From the ap-
plication characteristic analysis, jpeg and jmeint are 
both error-insensitive, while jpeg is EPI-sensitive and 
jmeint is EPI-insensitive; i.e., when we adopt the 
same approximate level, jpeg has a larger potential for 
energy reduction than jmeint; thus, by the optimiza-
tion mechanism more energy is distributed to jpeg to 

achieve a better trade-off. We can conclude that our 
framework can selectively adjust the optimization 
effect when more difficult or precise application 
computations are needed. 

 
 

5  Related work 
 

The challenge of the “power wall” has impeded 
the development of computer systems. The NTC 
technique is developed as a new direction to solve the 
problem. To obtain a better trade-off between per-
formance and energy consumption in the NTC system, 
Teodorescu and Torrellas (2008) proposed varia-
tion-aware algorithms for application scheduling and 
power management. They used linear programing to 
find the best voltage and frequency levels for each 
core by maximizing the performance at a given power 
budget. Azizi et al. (2010) gave an architecture-circuit 
framework to obtain energy-performance trade- 
off. Santriaji and Hoffmann (2016) proposed a 
hard-ware control system for GPU to minimize  
the energy consumption while guaranteeing the  
performance. 

However, NTC faces new challenges of relia-
bility. To address the reliability problem, software- 

Table 1  Schemes to minimize energy consumption or 
maximize performance 

Case Target Constraint Strategy
1 Performance Energy and reliability P–E-R 

Energy P–E 
2 Energy Performance and reliability E–P-R 

Performance E–P 
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Fig. 10  The energy breakdown of each workload: (a) E–P-R for balanced workload; (b) E–P-R for error-
susceptible-dominant workload; (c) E–P-R for error-non-susceptible-dominant workload; (d) E–P for balanced work-
load; (e) E–P for error-susceptible-dominant workload; (f) E–P for error-non-susceptible-dominant workload (Refer-
ences to color refer to the online version of this figure)  
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level (Huang and Abraham, 1984), architecture-level 
(Tavakkoli-Moghaddam et al., 2008), process-level 
redundancy (Shye et al., 2007; Ferreira et al., 2011), 
and circuit- or logic-level (Das et al., 2009) tech-
niques have been proposed. Zhang and Chakrabarty 
(2006) achieved fault tolerance by check pointing, 
and obtained energy saving by dynamic voltage 
scaling. Zhao et al. (2008) proposed on-line (dynamic) 
algorithms that detect early completions and adjust 
the task frequencies at runtime to improve the overall 
reliability. PEARL is a novel modeling framework 
which investigates the problem of assigning optimal 
voltage-frequency settings to individual segments 
within example workflows (Wang et al., 2015). Song 
et al. (2015b) presented two variance reduction tech-
niques for proactive reliability management: propor-
tional dynamic voltage-frequency scaling (DVFS) 
and coordinated thread swapping. Dynamic reliability 
variance management (DRVM) (Song et al., 2015a) 
was proposed to obtain the trade-offs among energy, 
performance, and reliability. 

The target of previous methods is to keep the 
system error free. This will incur high costs on both 
performance and energy consumption. Nowadays, 
many researchers have proposed approximate com-
puting to relax the effort to guarantee reliability (Liu 
et al., 2011; Grigorian et al., 2015; Zhong, 2015; 
Wunderlich et al., 2016). These approximate tech-
niques can also obtain energy-performance trade-off. 
The research on approximate techniques can be clas-
sified into three categories: circuit level, architectural 
level, and algorithmic level. IMPACT (Gupta et al., 
2011) was designed for approximate computing at the 
circuit level. Esmaeilzadeh et al. (2012) selected and 
trained an NN to mimic a region of imperative code. 
They designed an NPU to accelerate the execution of 
the offloading approximate code region at the archi-
tecture level. At the algorithmic level, Paraprox can 
make different data patterns adopt different approx-
imation methods through looking up the table (Sa-
madi et al., 2014).  

The above optimization methods focus on volt-
age scaling, but do not take the approximate tech-
nique into account to reduce the overhead. To guar-
antee the output quality, the approximate technique 
tunes only the approximate degree, but does not  
consider voltage scaling. We propose a multi- 
dimensional optimization mechanism to tune the 
approximate degree and voltage scaling together to 

obtain a better trade-off among energy, performance, 
and output quality. 
 
 
6  Conclusions 
 

We proposed a multi-dimensional optimization 
approach for approximate computing to reduce the 
fault-tolerant overhead in an NTC system. This ap-
proach combines the NTC- and NN-based approxi-
mate strategies. We took advantage of the energy 
efficiency of NTC, and leveraged the features of NN 
to accelerate the execution and tolerate the NTC- 
induced faults. We designed a framework to forecast 
the performance, output quality, and energy of this 
NN–NTC combined approximate system. Then, an 
optimization algorithm was used to obtain the proper 
voltage and NN complication based on the predicted 
performance, energy, and output quality. The pro-
posed output quality predictor determines the output 
quality of each instruction group at a given voltage 
level and network topology through error injection 
and propagation analysis. We modeled the power as a 
function of the voltage level and NN complexity. The 
complexity of NN was quantified by the amount of 
computation and memory access times, which was 
obtained by an NN model parser. The evaluation re-
sults showed that these two approximation techniques 
can be employed in a synergistic manner; our opti-
mization framework can be aware of the features of 
different applications and tune the energy and per-
formance allocation of each benchmark to obtain the 
best trade-off. 
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