
Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1426

Multi-dimensional optimization for approximate

near-threshold computing*

Jing WANG†1, Wei-wei LIANG1, Yue-hua NIU2, Lan GAO1, Wei-gong ZHANG†‡3
1College of Information Engineering, Capital Normal University, Beijing 100056, China

2Institution of Spacecraft System Engineering China Academy of Space Technology, Beijing 100094, China
3Beijing Advanced Innovation Center for Imaging Theory and Technology, Beijing 100048, China

†E-mail: jwang@cnu.edu.cn; zwg771@cnu.edu.cn
Received Feb. 26, 2020; Revision accepted May 13, 2020; Crosschecked Sept. 29, 2020

Abstract: The demise of Dennard’s scaling has created both power and utilization wall challenges for computer systems. As
transistors operating in the near-threshold region are able to obtain flexible trade-offs between power and performance, it is re-
garded as an alternative solution to the scaling challenge. A reduction in supply voltage will nevertheless generate significant
reliability challenges, while maintaining an error-free system that generates high costs in both performance and energy con-
sumption. The main purpose of research on computer architecture has therefore shifted from performance improvement to com-
plex multi-objective optimization. In this paper, we propose a three-dimensional optimization approach which can effectively
identify the best system configuration to establish a balance among performance, energy, and reliability. We use a dynamic pro-
gramming algorithm to determine the proper voltage and approximate level based on three predictors: system performance, energy
consumption, and output quality. We propose an output quality predictor which uses a hardware/software co-design fault injection
platform to evaluate the impact of the error on output quality under near-threshold computing (NTC). Evaluation results demon-
strate that our approach can lead to a 28% improvement in output quality with a 10% drop in overall energy efficiency; this
translates to an approximately 20% average improvement in accuracy, power, and performance.

Key words: Approximate computing; Near-threshold computing; Output quality predictor; Energy; Performance
https://doi.org/10.1631/FITEE.2000089 CLC number: TP302.1

1 Introduction

The “power wall” challenge has impeded the
development of computer systems. As near-
threshold-voltage computing (NTC) techniques (Kaul
et al., 2012; Kozhikkottu et al., 2014) which make
transistors operate in the near-threshold region can
lead to a considerable flexible trade-off between

power and performance, developments in this area
provide a new approach for solving the power wall
problem. In the case of NTC, 50% of relative energy-
saving is obtained at the cost of 20% performance loss;
compared with super-threshold computing, the same
gain incurs an immense 50% or a higher delay over-
head. Although NTC has been a promising and
energy-efficient solution for power-constrained en-
vironments, earlier research has nevertheless shown
that this approach also encompasses significant reli-
ability issues, including increased susceptibility to
process variation. As supply voltage drops, the num-
ber of failure cells increases drastically. In particular,
NTC exacerbates the sensitivity of minimum supply
voltage to process variation, leading to a high error
rate. Several techniques have been proposed to deal

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 62076168 and 61772350), Beijing Nova Program
(No. Z181100006218093), and the Research Fund from Beijing
Innovation Center for Future Chips (No. KYJJ2018008)

 ORCID: Jing WANG, https://orcid.org/0000-0003-3653-7013;
Wei-gong ZHANG, https://orcid.org/0000-0003-3969-5607
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2020

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.2000089&domain=pdf

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1427

with increasing NTC errors, including new types of
correction codes, reconfiguration, and hardware re-
dundancies. These techniques still require near-
perfect executions to guarantee correctness, and im-
ply a high design cost at both device and microar-
chitecture levels.

Relaxing these requirements will enable signif-
icant savings; approximate computing technologies
leverage error-tolerance properties of applications
and the perceptual limitations of humans to trade off
computation quality (e.g., accuracy) against compu-
tational effort (e.g., energy) in error-tolerant applica-
tions such as media processing and the emerging
recognition, mining, and synthesis (RMS) applica-
tions (Reagen et al., 2018). These applications gen-
erally process inexact inputs obtained from non-
traditional sources such as sensors, and the associated
algorithms are often stochastic in nature; thus, these
applications generally require only acceptable results
instead of precise outputs.

There are opportunities to improve the perfor-
mance and efficiency if requirements for absolute
correctness can be relaxed. Thus, at the architectural
level, conventional devices can be pushed to their
operational limits by reducing voltage scaling Vdd. As
an approximate method, this approach can provide
levers that trade off quality for efficiency. A processor
is able to invest more energy when accurate data
processing is required, but it can save energy when
less accurate processing is permitted. This effectively
reduces the average energy consumption and creates
an extra degree of freedom for system-level power
management. At the same time, researchers have
proposed numerous strategies for use in the approx-
imate approach, including precision scaling (Tian
et al., 2015), loop perforation (Sidiroglou-Douskos
et al., 2011), load value approximation (Sutherland
et al., 2015), skipping tasks, multiple inexact program
versions, inexact faulty hardware, and neural network
(NN) based accelerators. In this context, NNs exhibit
significant parallelism and can be accelerated effi-
ciently by dedicated hardware to enable performance
and energy benefits. In one earlier study, Esmaeilza-
deh et al. (2012) proposed the approximate computing
technique that works by training an NN to mimic
approximate code regions and replace the original
code with an invocation of a new low-power process
unit. This technique avoids changes to the instruction

set architecture (ISA) of the processor, enables the use
of neural acceleration in devices that are already
available commercially, and accelerates a broad range
of applications.

We simultaneously apply an NN-based ap-
proximation at the software level with a voltage-
scaled implementation of computation in this study.
The NN-based approximation will transform the ap-
proximate code region into a neural representation.
The approximate code region is therefore a hot spot
and is able to tolerate imprecision in operations and
data. To combine NN-based approximation with
voltage scaling, we leverage NN inherent fault-
tolerance characteristics to determine the faults in-
duced by a near-threshold voltage (NTV). An accu-
racy requirement limits the topology complexity of
NN, while an aggressive reduction in complexity also
has a negative effect on the output quality. As net-
work complexity is reduced to the lower threshold
limits, high energy efficiency of NTC provides an
opportunity for further energy saving. However, it is
extremely difficult, if not impossible, to develop a
general approximate computing framework with
guaranteed quality, which is applicable to all types of
error-tolerant applications. We therefore study
particular types of approximate strategy, and develop
a specific quality-guaranteed dynamic system
configuration.

The fault-tolerant capability of an NN will in-
crease in concert with the topology complexity. This
means that an adjustment in NN complexity provides
an opportunity for voltage scaling. A more compli-
cated NN will lead to more multiplications and add
operations, resulting in energy and performance
overheads. The challenge in this area is then to choose
a proper voltage level and NN complication to obtain
an optimal trade-off among output quality, energy,
and performance. A multi-dimensional optimization
mechanism is necessary for reaching multi-objective
goals. The combined technique system used here is
shown in Fig. 1. Our approach encompasses the fol-
lowing four steps:

1. We propose a multi-dimensional optimization
approach for approximate computing. This approach
simultaneously applies NTC with an NN-based ap-
proximate strategy. This enables us to take advantage
of NTC energy efficiency, and to leverage NN’s fea-
tures to accelerate the excution and tolerate NTC-

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1428

induced faults.
2. We design a framework to forecast the per-

formance, output quality, and energy of an NN–NTC
combined approximate system. An optimization al-
gorithm is used to obtain proper voltage and NN
complication based on predicted performance, energy,
and output quality.

3. We propose an output quality predictor to
evaluate the quality of a system. Via error injection
and propagation analysis, we determine the output
quality of each instruction group at a given voltage
level and network topology. The quality bucket of
each group at distinct approximate levels is then es-
tablished. Output quality can be acquired according to
the “quality bucket” distribution of an application.

4. We model power as a function of voltage level
and NN complexity. This means that NN complexity
can be quantified by the time of computation and
memory access. We therefore design an NN model
parser, which can compute the amount of arithmetic
computation and memory access times given the
model description and input data size.

We evaluate the energy, performance, and output
quality of our approach. Results show that our opti-
mization framework is aware of application features
to tune the energy and performance breakdown of
each benchmark to obtain the best trade-off among
performance, energy, and output quality.

2 Multi-dimensional optimization framework

We illustrate the framework of our multi-
dimensional optimization approach in Fig. 2. This
framework takes a default approximate level, in-
cluding voltage level and the complication of neural
network architecture. We also incorporate a specific
usage scenario (i.e., a platform and resource budget
including energy, accuracy, and performance) that
includes inputs and generates an adapted voltage and
an NN architecture as outputs. The choice of voltage
and NN depends on constraints of energy, accuracy,
and performance. However, extracting these metrics
through network training and direct hardware meas-
urements is excessively time-consuming. Thus, to
speed up this process, we bypass training and meas-
urement processes by leveraging accuracy, latency,
and energy predictors (Fig. 2). This framework con-
tains three predictors: a performance predictor to
predict system delay, an energy predictor to provide
the system’s total power consumption, and an output
quality loss predictor (Fig. 3). Voltage and NN to-
pology can be tuned to satisfy the requirement in
performance/energy/quality budget or target. This
means that voltage and NN topology are input varia-
bles, and performance, energy, and quality are func-
tions of these two variables. Based on our framework,
given the performance or energy target, a simulated

Fig. 1 An NN–NTC combined approximate approach

NN: neural network; NTC: near-threshold computing; FIFO: first input first output; CPU: central processing unit; NPU: neural-network pro-
cessing unit; GPU: graphics processing unit

Input-constant

Energy budget
Output quality threshold

Performance target

Input-variable

Voltage
NN complication

NN model
analysis:

(1) computation,
(2) memory cost

Fault injection
platform

Energy predictor

Performance
predictor

Quality predictor

SA Optimization

Voltage
configuration

NN topology
configuration

Output

Fig. 2 Overview of the framework design (SA: simulated annealing; NN: neural network)

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1429

annealing (SA) optimization algorithm can be used to
determine a suitable voltage level and the NN topol-
ogy configuration. This can then be used to obtain the
best performance, energy, and output quality
trade-off.

2.1 Output quality predictor

An output quality predictor processes applica-
tion outputs, and evaluates quality as a set of numer-
ical values. As different applications have diverging
characteristics, it is difficult for a single NN archi-
tecture to run optimally on all different platforms. The
quality predictor must therefore be application-
specific although the framework itself is general. The
predictor developed here can be used to assess the
impact of an instruction-level error on the output
quality. We develop this approach based on Approx-
ilyzer’s (Venkatagiri et al., 2016) main insight that
errors propagate “similarly” through the control and
data flow paths in the program. These are then likely
to generate program outputs of similar quality. Thus,
instructions that can be approximated can be divided
into a series of groups. To analyze the impact of errors
on output quality, we design a fault injection platform
and inject errors on representative approximated in-
structions from each group. The errors introduced into
the application are derived from observations of ef-
fects of various approximate computing techniques,
including the error probability, magnitude, and

predictability. We also assess the impact of a single or
a class of approximate computing techniques on ap-
plication output quality. Fault injection based on the
error probability, magnitude, and predictability gen-
erates a quality profile for the application as well as
insight into its resilience.

2.1.1 Output quality analysis

The approximate technique presented here
should work on code regions that can be approxi-
mated. If this is not the case, then approximation at
any place could lead to catastrophic failures including
out-of-bound memory accesses. In other words, ap-
proximation should never affect critical data and op-
erations. Approximate computing techniques should
therefore be targeted towards resilient computations
while avoiding sensitive ones. We identify potentially
resilient computations using software ACCEPT
(Sampson et al., 2015). Instructions that can be ap-
proximated are classified into two categories, the first
of which has no influence on the output. This category
includes four instruction types: (1) “no operation”
(NOP) instructions which have no influence on the
architectural state; (2) performance enhancing in-
structions such as prefetch and branch, which predict
hint instructions (the invalid execution of these, in-
cluding prefetching, does not change program se-
mantics); (3) predicated-false instructions, which
discard results so that incorrect ones will not have

Fig. 3 Output quality predictor design (NOP: no operation; OQC: output quality class)

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1430

impact on the program output; (4) dynamically dead
instructions (the destination registers of these remain
unused and they can therefore be considered dynam-
ically dead).

The second category of instructions encapsulates
data that are safe to approximate because of an ap-
plication’s fault tolerance capability. In other words,
when adopting different approximate techniques or
degrees, this category of instructions might lead to
different impacts on outputs within an acceptable
range of output quality. In multimedia applications,
for example, data types like pixels and filter coeffi-
cients can be relaxed due to the perceptual limitations
of users. In the Sobel edge detection algorithm, for
example, instructions holding data about the filter and
pixels can also be approximated (Sampson et al.,
2015).

Tuning voltage requires a regulator. This means
that voltage scaling is limited due to the area overhead,
while changing levels is not continuous. The choice
of voltage level can therefore be considered as nu-
merable; the number of unique network topologies
within a search space can still be large; however,
considering the trade-off between topology complex-
ity and accuracy, NN topology choices are therefore
also numerable. If a system trades off 10% complex-
ity for only 1% output accuracy, for example, the
energy and performance overhead will overwhelm the
accuracy gain. We use efficient sample generation
here in combination with a predictor training method
(Chippa et al., 2013). This enables us to select sample
architectures from across the overall space and en-
compass high sampling density in the area of “sam-
ples of interest.” The numbers of voltage levels and
NN approximate degrees are limited, however, and
thus it is reasonable to obtain the output quality at a
possible voltage level and NN topology through error
injection and propagation analysis. To simulate faults
at a certain voltage level and an approximate degree,
errors should be injected based on representative
approximated instructions from each group.

The nature of output from an application varies
from one to another. This means, for example, that a
sobel output is an image, while one from jmeint is a
boolean. It is therefore necessary to have an
application-specific quality metric to effectively as-
sess the quality loss of each application output. To
quantify the output quality, three quality metrics are

applied to different types of applications. The first of
these is max-abs-diff, which gives the maximum
absolute difference between golden and fault outputs.
The second is max-rel-err, which calculates the
maximum relative error between the golden and
faulty outputs. The third is rel-l2-norm, a metric
which directly compares two others (Yazdanbakhsh
et al., 2017).

These metrics are used to quantify the effect on
output quality (Fig. 3); they divide the output quality
into a series of “quality buckets.” In terms of each
combination of approximate voltages at the hardware
level and the NN architecture at an application level,
we collect quality errors across all samples in the
representative workload. We then take the average
value of these quality metrics as the trained impact.

2.1.2 Fault injection platform

Scaling down voltage saves energy but also
causes small issues and impacts output accuracy.
Indeed, at a given voltage operating point, it is the
case that each bit-cell exhibits a normal distribution
and a random occurrence error rate, ranging between
1 and 0. Traditional fault injection frameworks based
on dynamic instrumentation can experience kernel
slowdowns, making them prohibitively slow to sweep
many fault patterns across a range of fault rates that
vary by orders of magnitude. Current software-
based models also tune voltage at a coarse-grained
level, and consider hardware as a whole; our method
is distinct as voltage can be tuned at a fine-grained
level. We therefore propose a fault injection platform
based on a simulation backend to evaluate the relia-
bility of our method (Fig. 4). The framework injects
fault and tuning voltage on real hardware design in
the EDA tool, and runs popular benchmarks written
by C program language. This framework injects er-
rors based on prior research into the relationship
between voltage and the single-bit error rate
(Karpuzcu et al., 2012), and can guide lower-level
tools regarding where to conduct a detailed micro-
architectural fault analysis. The hardware we simulate
is a multi-core system; this encompasses a standard
peripheral component interconnect (PCI), a network,
and debug support unit (DSU) devices. This workload
communicates with hardware through PCI and net-
work interface, while our fault injection software
communicates with hardware through DSU.

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1431

The simulation backend comprises a connection
between the hardware simulator and software system.
This is implemented via a foreign language interface
(FLI) within the EDA tool. Indeed, via the simulation
backend, this software generates signal stimulus in-
puts, and an injected value is assigned to the signal
logic of the target processor or accelerator in the
hardware emulation environment, and receives the
system status for debugging. The runtime software,
including the application benchmark and the system
software, interacts with end users via the graphical
interface or command line. The runtime software then
communicates with the underlying hardware through
a network or a serial device. The fault injection
software receives related parameters, including fault
time and location through the user-controlled inter-
face. This software also obtains a list of signals from
hardware through a simulation backend. A depth-first
search method that iterates over the list is used to
identify and record signals hierarchically. Establish-
ing a hierarchical resource pool can help users di-
rectly find the location of the fault. This software
generates a fault time and location for the hardware
signal. Generated fault and simulation information
will be sent to the target processor. This fault injection
software receives the state of the processor through
the simulation backend after a fault is injected. The
hardware receives software commands, and sends
execution status through an internal DSU via a trace
cache. This simulation backend has a virtual network

card and a serial interface. The simulation backend
can send the control command and fault injection
information to the DSU; this then returns information
to different destinations according to the content of
the information. Data transmission and command
scheduling are achieved through correct information
distribution, while the information on this application
is sent to the runtime software; fault injection infor-
mation is sent to the software. In the case of voltage
point, we run the entire test set on sample network
architectures to obtain the classification error along
with the bit error rate modeled using the software
Varius-NTV (Karpuzcu et al., 2012).

2.2 Energy predictor design

We model power as a function of supply voltage
and NN complexity. Extracting energy and latency of
an NN architecture through direct measurement,
however, remains very challenging. Platform-specific
latency measurements can be slow and difficult to
parallelize, particularly when the number of available
devices is limited. Large-scale latency measurements
might therefore prove expensive and lead to a com-
putational bottleneck. To speed up this process, we
construct a predictor for energy and latency on the
target device to enable fast and reliable energy and
lantency estimations for the NN candidates based on
the complexity of NN, a quantification of the amount
of computation and memory access times. We design
an NN model parser based on the observation that the

Fig. 4 Fault injection platform framework
PCI: peripheral component interconnect; RAM: random access memory; DRAM: dynamic RAM; MMU: memory management unit; DSU:
debug support unit

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1432

types of operators involved in the networks are
limited; thus, the amount of computation and the
memory access times can be formulated.

2.2.1 Power model

Energy is a key challenge for the development of
the computer industry. We need to establish an energy
predictor to guide multi-dimensional optimization in
the NTC system. The power consumption of pro-
cessing NNs includes computation cost Pc and
memory access cost Pm (Wang et al., 2014). Pc can be
formulated as the total power cost of multiply/add
operations per clock cycle, as Pc=μaddCadd+μmulCmul.
In this expression, μadd (μmul) and Cadd (Cmul) denote
the power cost per add operation (multiply operation)
and the total number of add operations (multiply op-
erations), respectively. Similarly, Pm depends on the
storage scheme. The total power consumption per
clock cycle, P, can be modeled as

c m add add mul mul mem mem ,P P P C C C (1)

where μmem and Cmem denote the power cost per bit
when accessing memory and the total number of bits,
respectively. The power cost of one neuron, μi (i=1,
2, …), is considered to be a function of supply voltage
vi: 2

i i iv , where βi is a hardware-specific constant.
We therefore use the linear approximation method
(Tavakkoli-Moghaddam et al., 2008) to obtain the
value of βi, including βadd, βmul, and βmem of the adder,
multiplier, and memory, respectively. Moreover, after
neuron-level voltage scaling, the voltages of the adder,
multiplier, and memory are different per operation.
We therefore extend Eq. (1) to

 2
add add mul mul

mem m me mm e ,
jjjP v C C

v C

 (2)

where vj denotes the number of different voltages
allocated on the jth neuron (j=1, 2, …) and vmem is the
voltage of the memory system, unified for all neurons.
The numbers of add and multiply operations are cal-
culated based on the analysis of network models.

2.2.2 Neural network parser

Modeling of power reveals that this variable is a
function of the supply voltage and complexity of the

NN. In other words, prediction of power depends on
the estimation of NN computation and memory ac-
cess analyses. Although deep NNs (DNNs) can derive
different network models by changing their hierar-
chical structures as well as the number of and con-
nections between neurons, types of operators (layers)
involved in the networks are limited, and generally
include convolution, full connection, and pooling.
Thus, the computation of each layer is determined
regardless of how the input data change, and compu-
tation and memory access can be formulated. We
propose an NN model parser; given a model descrip-
tion, this parser can compute the amount of arithmetic
computation and memory access times.

The NN model consists of operators with dif-
ferent functions. The arithmetic computation type,
computation amount, and memory access are differ-
ent for each type of operator. We analyze six classical
NNs, including Alexnet, Inception, VGG19, VGGish,
single shot multibox detector (SSD), and Attention,
and find 10 typical operators. As previously men-
tioned, the operator computation features and
memory access features are fixed for each layer in
DNN. We formulate the numbers of architecture op-
erations and memory access times for each layer; this
formulation is a function of input data size and oper-
ator parameters such as the size of the convolution
kernel and stride of the two-dimensional convolution
layer. We save the formulation of each operator in a
feature description file.

The model parser we present analyzes the
number of layers and the execution order. A text file
description of the NN model is then converted into a
representation of the general model through the
TensorBoard visualization component embedded in
TensorFlow. This general model representation con-
tains operator types, number of operators, and their
order. In this context, each layer is regarded as one
node, and the input and output between them are
regarded as the directed edge; thus, the network
model transforms to a directed acyclic graph (DAG).

The second step is NN computation and memory
access feature extraction. We use the graph search
algorithm to traverse DAG and calculate the amount
of computation and memory access times of each
node based on the formulations in the feature de-
scription file. The operator feature extraction process
is as follows. First, we determine whether the operator

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1433

is defined in the feature description file. In this case, it
has been loaded and we calculate the number of basic
operations such as multiplication and addition using
the input data size and the formula definition of the
operator in the feature description file. The second
step is to detecte whether there is a built-in feature
analysis method inside the system; if so, call the ex-
traction function to parse the operator; otherwise, the
null feature is output. Finally, the parser gives the
amount of arithmetic computation and memory ac-
cess times, which can be used to predict the power of
the approximate system.

2.3 Performance predictor

We use the minimum delay of NN to represent
performance. In general, the reduction in voltage can
adversely affect the system performance due to the
increasing time to complete a task. Moreover, the
delay of execution depends on the hardware mapping
scheme of neurons. As the structure of NN becomes
increasingly complex, it is difficult for all neurons to
execute in parallel for a layer at the same time. The
fixed dimensions of the computational grid may need
some layers to be partitioned, as the dimensions of the
layer may be smaller than, match, or exceed the size
of hardware. In cases where the layers’ dimensions
exceed the function unit size, the function units must
be used iteratively to compute different parts of these
layers, and we call each use of all on-chip function
units a “run.” Then, the final computational delay is
the sum of all runs. For each run, the lowest voltage of
the neurons in the workload will determine the
maximum delay, represented by the delay at normal
supply voltage Di multiplied by the magnification of
the delay under a low voltage. Hence, the delay of the
ith layer is the sum of the maximum delays for j exe-
cution runs of this layer, as

 1 1 2 2

perlayer _ max

max , , , .
i

j j

D

D G D G D G
 (3)

Finally, the maximum delay of NN, which has n

layers, is the accumulation of each layer’s delay, and
can be formulated as

=1

NN _ Delay perlayer _ max .
n

i
i

D (4)

In particular, the delay of each layer can be de-
composed into computation delay Dc and memory
access delay Dm. Then, Dm can be classified into two
categories, buffer access delay Db and main memory
access on buffer misses Dmiss. The first part of data
access latency Db may overlap with Dc. Owing to the
limited space of weight and data cache, Dmiss cannot
be hidden by Dc. Therefore, the maximum delay of
each layer is expressed as

 c b missmax , ,i i i i
D D D D (5)

where i denotes the ith layer in the NN. The calcula-
tion of delay is based on a single delay model of the
logic gate using NN, which comprehensively captures
the process, voltage, and temperature variation along
with the input slew and output load. As the memory
access pattern on a specific hardware platform is fixed
and the miss rate can be predicted before the inference
process, we can calculate Dmiss.

3 Optimization

Real-world applications face very different con-
straints. In one example, real-time video frame anal-
ysis may have a very strict latency constraint, whereas
Internet-of-Things (IoT) edge device designers may
care more about runtime energy consumption for a
longer battery life. It is infeasible to have one ap-
proximate degree that meets all these constraints. This
makes it necessary to adapt the approximate degree to
the specific use scenarios before deployment. Our
optimization is targeted to find the best selection of
voltage levels and the NN topology for applications to
obtain the best three-dimensional (3D) trade-off.

We adopt two case studies as examples in this
approach. In the first case, we minimize delay given
accuracy, performance, and power constraints. In this
case, P–E-R means that performance is the objective
function while energy and output quality are con-
straint conditions, and P–E means that performance is
the objection while energy is the constraint. This is
consistent with previous work but without consider-
ing output quality (Azizi et al., 2010). Secondly, we
maximize the power saving given accuracy and per-
formance constraints. E–P-R represents the fact that
while energy is the objective function, performance

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1434

and output quality are constraints. E–P represents the
fact that energy is the objective function while per-
formance is the constraint. E–P does not consider
output quality though.

Taking P–E-R as an example, the optimization
problem can be solved using the SA algorithm, which
is a stochastic optimization approach based on the
Monte-Carlo iterative solution strategy. SA simulates
the optimization problem as an annealing process of
solid matter in physics. This finds the global optimal
solution of the objective function as temperature de-
creases. The greatest advantage of SA is that it can
jump out of the local optimal solutions and tends
ultimately to the global optimal solution. The opti-
mization problem is converted into exploring the
solution space, and then finding the best approximate
degree by a range of moves. Algorithm 1 shows the
process of solving the P–E-R case. We initialize the
system with a series of configurations C={c1, c2, …,
cn}, where ci (i=1, 2, …, n) is a combination of the
voltage level and the NN topology.

Algorithm 1 Approximate degree selection
Initialize: C←C0; T←T0.

1 Calculate IPS←IPS_PREDICTOR(C);
2 while T>ε do
3 while the number of moves<M do
4 Cnew=ANNEAL_MOVE(C);
5 Performancenew←IPS_PREDICTOR(Cnew);
6 ENERGYnew←ENERGY_PREDICTOR(Cnew);
7 OQ LOSSnew←OQ_PREDICTOR(Cnew);
8 if (Performancenew>Performance)(Energynew

<Energybudget)(OQLOSSnew<
OQLOSSthreshold)(IPSnew reduces with
a certain probability) then

9 C←Cnew; Performance←Performancenew;
10 end if
11 end while
12 T←αT;
13 end while

The algorithm maximizes Performance through

annealing moves ANNEAL_MOVE(), which can
verify whether Performancenew is better than the old
Performance, whether Energynew is lower than Ener-
gybudget, and whether OQLOSSnew is lower than
OQLOSSthreshold. Thus, if Performancenew is worse,
the algorithm decreases the annealing temperature.
This can also make occasional uphill moves to better
explore the solution space. The algorithm can finally

generate a configuration which can maximize the
performance and guarantee the energy budget and
quality threshold at the same time.

4 Evaluation

4.1 Experiment setup and metrics

We evaluate our optimization framework by
running the Axbench benchmark, which covers a
diverse set of domains such as machine learning,
scientific computation, signal processing, image
processing, robotics, and compression. AxBench
comes with the necessary annotations to mark the
approximate region of the code and the application-
specific quality metric to assess the output quality of
each application. Conventional voltage scaling sets
normal voltage to 1.1 V and 810 mV for low-voltage
environments. We further scale the voltage down to
the threshold voltage, which is set based on two
principles: first, Vdd should stop scaling before tran-
sistors encounter the first uncorrectable error; second,
Vdd should support the minimum frequency to ensure
that the application performance in terms of
throughput is not reduced significantly when the
voltage decreases from super-threshold computing
(STC) to NTC. Silvano et al. (2014) conducted ex-
periments considering the effect of variation of
threshold voltage on transistor delay, and mentioned
that the minimum frequency is 400 MHz to guarantee
performance. Thus, in our detailed evaluation, we
perform the evaluation in a 22-nm technology with
the lowest Vdd as 600 mV, and the minimum fre-
quency of 400 MHz at NTV. We use the Sniper sim-
ulator (Carlson et al., 2011) to evaluate the perfor-
mance. Sniper is a parallel, high-speed, and accurate
simulator. It allows fast and accurate simulation and
trading off simulation speed for accuracy to allow a
range of flexible simulation options when exploring
different homogeneous and heterogeneous multi-core
architectures. We employ HSIM-VCS co-simulation,
which contains the fault injection module, to verify
the voltage tuning effect on power and reliability. In
this study, we use Varius-NTV to model the reliabil-
ity under NTC. Varius-NTV is a microarchitecture-
level model to study the failure modes at NTC
with the impact of process variation. Moreover, to
quantify the trade-off among accuracy, power, and

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1435

performance, we define a metric EEPI to select the
optimal solution to achieve a high accuracy with low
power consumption and delay:

EEPI Error Energy Performance. (6)

4.2 Application resilience and energy-efficiency
analysis

Each application has its unique error-resilient
behavior, and we try to capture those features that
differentiate an application from others. This is
achieved by analyzing the application sensitivity at
the approximate level from the accuracy and energy
efficiency perspectives. EPI is a metric expressing the
energy efficiency, and it can be obtained through the
consumption of energy divided by performance re-
quest (IPS). The error expresses the output quality
loss rate. We use MSE to quantize the NN complexity.
Fig. 5 demonstrates the change in EPI. As we can
observe, the EPIs of fft and jpeg change dramatically,
indicating that they are sensitive to the approximate
degree from the perspective of energy efficiency.
Fig. 6 demonstrates how the approximate degree
impacts the accuracy. jeint and jpeg are flat; therefore,
they are not sensitive to the change in approximate
degree. fft, inversek2j, and blackscholes are sensitive

to the change in approximate degree.
To summarize, a four-quadrant figure (Fig. 7)

illustrates that a different benchmark shaves a dif-
ferent susceptibility to the change in approximate
degree from the accuracy and energy efficiency per-
spectives. The high degree of resilience existing in
jpeg and jmeint applications emphasizes the scope
and potential of approximate computing.

4.3 Optimization results and analysis

To examine the effectiveness of our strategy, we
evaluate two cases, the low-power case and high-
performance case. To analyze the potential of our
strategy under different workloads, we run three
combinations of workloads: (1) error-susceptible-
dominant workloads, which are composed mainly of
error-sensitive applications, such as fft; (2) error-
non-susceptible-dominant workloads, which are
composed mainly of error-insensitive workloads,
such as jpeg; (3) balanced workloads, where the
numbers of error-sensitive workloads and error-
insensitive workloads are equal.

4.3.1 Low-power case study

In this subsection, we evaluate the output quality
and EEPI under different performance thresholds. In

0.8
0.9

1.0
1.

1
1.

2
1.

3

1.00.80.60.40.20.0 MSEV

E
P

I

0.8
0.9

1.0
1.

1
1.

2
1.

3

1.00.80.60.40.20.0 MSEV

E
P

I

2.
01.
8

1.0
1.

41.
2

1.
6 2.0

2.51.51.00.50.0 MSEV

E
P

I

3.0
3.5

2.
2

2.
4
2.

6
2.

8

0.8
0.9

1.0
1.

1
1.

2
1.

3

1.00.80.6
0.4

0.7
0.5 MSE

V

E
P

I

0.9 0.8
0.9

1.0
1.

1
1.

2
1.

3

1.000.980.960.94

0.970.95
MSEV

E
P

I

0.99

0.93

Fig. 5 The degree of approximation and voltage level influence on EPI: (a) blackscholes; (b) fft; (c) inversek2j; (d) jpeg;
(e) jmeint

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1436

Fig. 8, the x axis represents the performance request,
ERROR represents the output quality, and EEPI rep-
resents the trade-off among energy, performance, and
output quality. As we can observe, when running
“balanced workload,” our method can obtain a 30%
improvement in output quality with a 10% drop in
overall energy efficiency, compared with the
E–P-baseline, and the EEPI for “balanced workload”
can improve by 20% on average. When running
“error-susceptible-dominant workload,” our method
can obtain a 33% improvement in output quality, with
a 6% drop in overall energy efficiency, and EEPI can
improve by 25% on average. The above experiment

results show that our 3D optimization can obtain
significant improvement in output quality with a little
energy/performance overhead.

4.3.2 High performance case study

As illustrated in Fig. 9, we estimate the output
quality loss and EEPI for all the workloads under
different power budgets, adopting case 2 optimization
schemes in Table 1. As we can observe, when running
the “balanced workload,” our method can obtain a
28% improvement in output quality with an 11% drop
of overall energy efficiency compared with the
P–E-baseline. The EEPI for “balanced workload” can
improve by 19% on average. When running “error-
susceptible-dominant workload,” our method can
obtain a 30% improvement in output quality with a
7% drop of overall energy efficiency, and the EEPI
for “error-susceptible-dominant workload” can im-
prove by an average of 23%. When running “error-
non-susceptible-dominant workload,” our method can
obtain a 25% improvement in output quality with a
12% drop in overall energy efficiency. The EEPI for
“error-non-susceptible-dominant workload” can im-
prove by 16% on average. The above experiment
results show that our 3D optimization can achieve
better performance, energy, and output quality
trade-off.

1.
1

1.
2

1.
3

108
6

4
2

01.
1

1.
2

1.
3

1.00.80.60.40.20

1.
1

1.
2

1.
3

1.00.80.60.40.20

0.
4

1.
0
1.

2
1.

41.
1
1.

2
1.

3

1.00.80.60.4
0.5

0.90.7

Fig. 6 The degree of approximation and the voltage level influence on the error: (a) blackscholes; (b) fft; (c) inversek2j;
(d) jpeg; (e) jmeint

Fig. 7 Susceptibility to EPI and ERROR

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1437

E–P-R
E–P-baseline

50 55 60 65 70
IPS

0.20

0.19

0.18

0.17

0.16

0.15

0.14

0.13
E

R
R

O
R

E–P-R
E–P-baseline

16 18 20 22 24 26 28 30 32
IPS

0.22

0.21

0.20

0.19

0.18

0.17

0.16

0.15

0.14

E
R

R
O

R

(a) (b) (c)

(d) (e) (f)

E–P-R
E–P-baseline

58 60 62 64 66 68 70
IPS

0.21

0.20

0.19

0.18

0.17

0.16

0.15

E
R

R
O

R

E–P-R
E–P-baseline

24 25 26 27 28 29 30 31 32 33
IPS

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

E
E

P
I

E–P-R
E–P-baseline

58 60 62 64 66 68 70 72 74 76 78
IPS

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

E
E

P
I

E–P-R
E–P-baseline

60 62 64 66 68 70 72
IPS

2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

E
E

P
I

Fig. 8 Energy efficiency, reliability, and EEPI of each workload adopting the E–P-R or E–P optimization scheme under
different performance requests: (a) ERROR for balanced workload; (b) ERROR for error-susceptible-dominant work-
load; (c) ERROR for error-non-susceptible-dominant workload; (d) EEPI for balanced workload; (e) EEPI for
error-susceptible-dominant workload; (f) EEPI for error-non-susceptible-dominant workload

E
R

R
O

R

E
R

R
O

R

E
R

R
O

R

E
E

P
I

E
E

P
I

E
E

P
I

Fig. 9 Energy efficiency, reliability, and EEPI of each workload adopting the P–E-R or P–E optimization scheme under
different power budgets: (a) ERROR for balanced workload; (b) ERROR for error-susceptible-dominant workload; (c)
ERROR for error-non-susceptible-dominant workload; (d) EEPI for balanced workload; (e) EEPI for error-
susceptible-dominant workload; (f) EEPI for error-non-susceptible-dominant workload

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1438

4.3.3 Power breakdown analysis

We evaluate the energy breakdown of each
benchmark with different performance budgets to
analyze why E–P-R can obtain a better trade-off
compared with the E–P-baseline. The results are
shown in Fig. 10. The energy consumption of the
error-sensitive application should not decrease; oth-
erwise, the user experience will become worse be-
cause of the loss of accuracy. Compared with the E–P-
baseline, the energy consumed by jpeg increases by
24% on average, while the energy consumed by
jmeint decreases by 16% on average. From the ap-
plication characteristic analysis, jpeg and jmeint are
both error-insensitive, while jpeg is EPI-sensitive and
jmeint is EPI-insensitive; i.e., when we adopt the
same approximate level, jpeg has a larger potential for
energy reduction than jmeint; thus, by the optimiza-
tion mechanism more energy is distributed to jpeg to

achieve a better trade-off. We can conclude that our
framework can selectively adjust the optimization
effect when more difficult or precise application
computations are needed.

5 Related work

The challenge of the “power wall” has impeded
the development of computer systems. The NTC
technique is developed as a new direction to solve the
problem. To obtain a better trade-off between per-
formance and energy consumption in the NTC system,
Teodorescu and Torrellas (2008) proposed varia-
tion-aware algorithms for application scheduling and
power management. They used linear programing to
find the best voltage and frequency levels for each
core by maximizing the performance at a given power
budget. Azizi et al. (2010) gave an architecture-circuit
framework to obtain energy-performance trade-
off. Santriaji and Hoffmann (2016) proposed a
hard-ware control system for GPU to minimize
the energy consumption while guaranteeing the
performance.

However, NTC faces new challenges of relia-
bility. To address the reliability problem, software-

Table 1 Schemes to minimize energy consumption or
maximize performance

Case Target Constraint Strategy
1 Performance Energy and reliability P–E-R

Energy P–E
2 Energy Performance and reliability E–P-R

Performance E–P

E
n

e
rg

y
co

n
su

m
p

tio
n

E
n

e
rg

y
co

n
su

m
p

tio
n

E
n

e
rg

y
co

n
su

m
p

tio
n

E
ne

rg
y

co
ns

um
p

tio
n

E
ne

rg
y

co
ns

um
p

tio
n

E
ne

rg
y

co
n

su
m

pt
io

n

Fig. 10 The energy breakdown of each workload: (a) E–P-R for balanced workload; (b) E–P-R for error-
susceptible-dominant workload; (c) E–P-R for error-non-susceptible-dominant workload; (d) E–P for balanced work-
load; (e) E–P for error-susceptible-dominant workload; (f) E–P for error-non-susceptible-dominant workload (Refer-
ences to color refer to the online version of this figure)

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1439

level (Huang and Abraham, 1984), architecture-level
(Tavakkoli-Moghaddam et al., 2008), process-level
redundancy (Shye et al., 2007; Ferreira et al., 2011),
and circuit- or logic-level (Das et al., 2009) tech-
niques have been proposed. Zhang and Chakrabarty
(2006) achieved fault tolerance by check pointing,
and obtained energy saving by dynamic voltage
scaling. Zhao et al. (2008) proposed on-line (dynamic)
algorithms that detect early completions and adjust
the task frequencies at runtime to improve the overall
reliability. PEARL is a novel modeling framework
which investigates the problem of assigning optimal
voltage-frequency settings to individual segments
within example workflows (Wang et al., 2015). Song
et al. (2015b) presented two variance reduction tech-
niques for proactive reliability management: propor-
tional dynamic voltage-frequency scaling (DVFS)
and coordinated thread swapping. Dynamic reliability
variance management (DRVM) (Song et al., 2015a)
was proposed to obtain the trade-offs among energy,
performance, and reliability.

The target of previous methods is to keep the
system error free. This will incur high costs on both
performance and energy consumption. Nowadays,
many researchers have proposed approximate com-
puting to relax the effort to guarantee reliability (Liu
et al., 2011; Grigorian et al., 2015; Zhong, 2015;
Wunderlich et al., 2016). These approximate tech-
niques can also obtain energy-performance trade-off.
The research on approximate techniques can be clas-
sified into three categories: circuit level, architectural
level, and algorithmic level. IMPACT (Gupta et al.,
2011) was designed for approximate computing at the
circuit level. Esmaeilzadeh et al. (2012) selected and
trained an NN to mimic a region of imperative code.
They designed an NPU to accelerate the execution of
the offloading approximate code region at the archi-
tecture level. At the algorithmic level, Paraprox can
make different data patterns adopt different approx-
imation methods through looking up the table (Sa-
madi et al., 2014).

The above optimization methods focus on volt-
age scaling, but do not take the approximate tech-
nique into account to reduce the overhead. To guar-
antee the output quality, the approximate technique
tunes only the approximate degree, but does not
consider voltage scaling. We propose a multi-
dimensional optimization mechanism to tune the
approximate degree and voltage scaling together to

obtain a better trade-off among energy, performance,
and output quality.

6 Conclusions

We proposed a multi-dimensional optimization
approach for approximate computing to reduce the
fault-tolerant overhead in an NTC system. This ap-
proach combines the NTC- and NN-based approxi-
mate strategies. We took advantage of the energy
efficiency of NTC, and leveraged the features of NN
to accelerate the execution and tolerate the NTC-
induced faults. We designed a framework to forecast
the performance, output quality, and energy of this
NN–NTC combined approximate system. Then, an
optimization algorithm was used to obtain the proper
voltage and NN complication based on the predicted
performance, energy, and output quality. The pro-
posed output quality predictor determines the output
quality of each instruction group at a given voltage
level and network topology through error injection
and propagation analysis. We modeled the power as a
function of the voltage level and NN complexity. The
complexity of NN was quantified by the amount of
computation and memory access times, which was
obtained by an NN model parser. The evaluation re-
sults showed that these two approximation techniques
can be employed in a synergistic manner; our opti-
mization framework can be aware of the features of
different applications and tune the energy and per-
formance allocation of each benchmark to obtain the
best trade-off.

Contributors

Jing WANG and Wei-gong ZHANG designed the re-
search. Wei-wei LIANG, Yue-hua NIU, and Lan GAO pro-
cessed the data. Jing WANG and Wei-wei LIANG drafted the
manuscript. Lan GAO helped organize the manuscript.
Wei-gong ZHANG and Yue-hua NIU revised and finalized the
paper.

Compliance with ethics guidelines

Jing WANG, Wei-wei LIANG, Yue-hua NIU, Lan GAO,
and Wei-gong ZHANG declare that they have no conflict of
interest.

References
Azizi O, Mahesri A, Lee BC, et al., 2010. Energy-performance

tradeoffs in processor architecture and circuit design: a

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1440

marginal cost analysis. ACM SIGARCH Comput Arch
News, 38(3):26-36.
https://doi.org/10.1145/1816038.1815967

Carlson TE, Heirman W, Eeckhout L, 2011. Sniper: exploring
the level of abstraction for scalable and accurate parallel
multi-core simulation. Proc Int Conf for High
Performance Computing, Networking, Storage and
Analysis, p.1-12.
https://doi.org/10.1145/2063384.2063454

Chippa VK, Chakradhar ST, Roy K, et al., 2013. Analysis and
characterization of inherent application resilience for
approximate computing. 50th ACM/EDAC/IEEE Design
Automation Conf, p.1-9.
https://doi.org/10.1145/2463209.2488873

Das S, Blaauw D, Bull D, et al., 2009. Addressing design
margins through error-tolerant circuits. 46th ACM/IEEE
Design Automation Conf, p.11-12.
https://doi.org/10.1145/1629911.1629917

Esmaeilzadeh H, Sampson A, Ceze L, et al., 2012. Neural
acceleration for general-purpose approximate programs.
45th Annual IEEE/ACM Int Symp on Microarchitecture,
p.449-460.
https://doi.org/10.1109/MICRO.2012.48

Ferreira K, Stearley J, Laros JH, et al., 2011. Evaluating the
viability of process replication reliability for exascale
systems. Proc Int Conf for High Performance Computing,
Networking, Storage and Analysis, p.1-12.
https://doi.org/10.1145/2063384.2063443

Grigorian B, Farahpour N, Reinman G, 2015. BRAINIAC:
bringing reliable accuracy into neurally-implemented
approximate computing. IEEE 21st Int Symp on High
Performance Computer Architecture, p.615-626.
https://doi.org/10.1109/HPCA.2015.7056067

Gupta V, Mohapatra D, Park SP, et al., 2011. IMPACT: IM-
Precise adders for low-power approximate computing.
IEEE/ACM Int Symp on Low Power Electronics and
Design, p.409-414.
https://doi.org/10.1109/ISLPED.2011.5993675

Huang KH, Abraham JA, 1984. Algorithm-based fault toler-
ance for matrix operations. IEEE Trans Comput,
C-33(6):518-528.
https://doi.org/10.1109/TC.1984.1676475

Karpuzcu UR, Kolluru KB, Kim NS, et al., 2012. VARIUS-
NTV: a microarchitectural model to capture the increased
sensitivity of manycores to process variations at near-
threshold voltages. IEEE/IFIP Int Conf on Dependable
Systems and Networks, p.1-11.
https://doi.org/10.1109/DSN.2012.6263951

Kaul H, Anders M, Hsu S, et al., 2012. Near-threshold voltage
(NTV) design—opportunities and challenges. Proc 49th
Annual Design Automation Conf, p.1149-1154.
https://doi.org/10.1145/2228360.2228572

Kozhikkottu V, Venkataramani S, Dey S, et al., 2014. Variation
tolerant design of a vector processor for recognition,
mining and synthesis. Proc Int Symp on Low Power
Electronics and Design, p.239-244.

https://doi.org/10.1145/2627369.2627636
Liu S, Pattabiraman K, Moscibroda T, et al., 2011. Flikker:

saving DRAM refresh-power through critical data parti-
tioning. Proc 16th Int Conf on Architectural Support for
Programming Languages and Operating Systems,
p.213-224. https://doi.org/10.1145/1950365.1950391

Reagen B, Gupta U, Pentecost L, et al., 2018. Ares: a
framework for quantifying the resilience of deep neural
networks. Proc 55th ACM/ESDA/IEEE Design
Automation Conf, p.1-6.
https://doi.org/10.1109/DAC.2018.8465834

Samadi M, Jamshidi DA, Lee J, et al., 2014. Paraprox: pattern-
based approximation for data parallel applications. Int
Conf on Architectural Support for Programming Lan-
guages and Operating Systems, p.35-50.
https://doi.org/10.1145/2541940.2541948

Sampson A, Baixo A, Ransford B, et al., 2015. ACCEPT: a
Programmer-Guided Compiler Framework for Practical
Approximate Computing. Technical Report No.
UW-CSE-15-01, University of Washington, USA.

Santriaji MH, Hoffmann H, 2016. GRAPE: minimizing energy
for GPU applications with performance requirements.
49th Annual IEEE/ACM Int Symp on Microarchitecture,
p.1-13. https://doi.org/10.1109/MICRO.2016.7783719

Shye A, Moseley T, Reddi VJ, et al., 2007. Using process-level
redundancy to exploit multiple cores for transient fault
tolerance. 37th Annual IEEE/IFIP Int Conf on Dependable
Systems and Networks, p.297-306.
https://doi.org/10.1109/DSN.2007.98

Sidiroglou-Douskos S, Misailovic S, Hoffmann H, et al., 2011.
Managing performance vs. accuracy trade-offs with loop
perforation. Proc 19th ACM SIGSOFT Symp and 13th
European Conf on Foundations of Software Engineering,
p.124-134. https://doi.org/10.1145/2025113.2025133

Silvano C, Palermo G, Xydis S, et al., 2014. Voltage island
management in near threshold manycore architectures to
mitigate dark silicon. Design, Automation & Test in
Europe Conf & Exhibition, p.1-6.
https://doi.org/10.7873/DATE.2014.214

Song W, Mukhopadhyay S, Yalamanchili S, 2015a. Architec-
tural reliability: lifetime reliability characterization and
management of many-core processors. IEEE Comput
Arch Lett, 14(2):103-106.
https://doi.org/10.1109/LCA.2014.2340873

Song W, Mukhopadhyay S, Yalamanchili S, 2015b. Managing
performance-reliability tradeoffs in multi-core processors.
IEEE Int Reliability Physics Symp, p.3C.1.1-
3C.1.7. https://doi.org/10.1109/IRPS.2015.7112707

Sutherland M, San Miguel J, Enright Jerger N, 2015. Texture
cache approximation on GPUs. University of Toronto,
Toronto, Canada. http://www.eecg.toronto.edu/~enright/
TexCacheApprox.pdf

Tavakkoli-Moghaddam R, Safari J, Sassani F, 2008. Reliability
optimization of series-parallel systems with a choice of
redundancy strategies using a genetic algorithm. Reliab
Eng Syst Saf, 93(4):550-556.

Wang et al. / Front Inform Technol Electron Eng 2020 21(10):1426-1441 1441

https://doi.org/10.1016/j.ress.2007.02.009
Teodorescu R, Torrellas J, 2008. Variation-aware application

scheduling and power management for chip multipro-
cessors. Int Symp on Computer Architecture, p.363-374.
https://doi.org/10.1109/ISCA.2008.40

Tian Y, Zhang Q, Wang T, et al., 2015. ApproxMA: approx-
imate memory access for dynamic precision scaling. Proc
25th Edition on Great Lakes Symp on VLSI, p.337-342.
https://doi.org/10.1145/2742060.2743759

Venkatagiri R, Mahmoud A, Hari SKS, et al., 2016. Approx-
ilyzer: towards a systematic framework for instruction-
level approximate computing and its application to
hardware resiliency. 49th Annual IEEE/ACM Int Symp
on Microarchitecture, p.1-14.
https://doi.org/10.1109/MICRO.2016.7783745

Wang L, Rivers JA, Gupta MS, et al., 2014. Resilience and
real-time constrained energy optimization in embedded
processor systems. 10th Workshop on Silicon Errors in
Logic-System Effects.

Wang L, Vega AJ, Buyuktosunoglu A, et al., 2015. Power-
efficient embedded processing with resilience and real-
time constraints. IEEE/ACM Int Symp on Low Power
Electronics and Design, p.231-236.
https://doi.org/10.1109/ISLPED.2015.7273519

Wunderlich HJ, Braun C, Schöll A, 2016. Pushing the limits:
how fault tolerance extends the scope of approximate
computing. IEEE 22nd Int Symp on On-line Testing and
Robust System Design, p.133-136.
https://doi.org/10.1109/IOLTS.2016.7604686

Yazdanbakhsh A, Mahajan D, Esmaeilzadeh H, et al., 2017.
AxBench: a multiplatform benchmark suite for approxi-
mate computing. IEEE Des Test, 34(2):60-68.
https://doi.org/10.1109/MDAT.2016.2630270

Zhang Y, Chakrabarty K, 2006. A unified approach for fault
tolerance and dynamic power management in fixed-
priority real-time embedded systems. IEEE Trans Com-
put-Aid Des Int Circ Syst, 25(1):111-125.
https://doi.org/10.1109/TCAD.2005.852657

Zhao BX, Aydin H, Zhu DK, 2008. Reliability-aware dynamic
voltage scaling for energy-constrained real-time embed-
ded systems. IEEE Int Conf on Computer Design,
p.633-639.
https://doi.org/10.1109/ICCD.2008.4751927

Zhong LL, 2015. BROAD: Bold and Reliable Online Ap-
proximate Computing Framework for Diverse Applica-
tions. MS Thesis, University of Illinois at Urbana-
Champaign, Urbana, Illinois, USA.

