
Wu et al. / Front Inform Technol Electron Eng   2021 22(1):79-87 79 

 
 
 
 

Derivation of the multi-model generalized labeled multi-Bernoulli 
filter: a solution to multi-target hybrid systems* 

 
Weihua WU†‡, Yichao CAI, Hongbin JIN, Mao ZHENG, Xun FENG, Zewen GUAN 

Department of Early Warning Intelligence, Air Force Early Warning Academy, Wuhan 430019, China 
†E-mail: weihuawu1987@163.com 

Received Mar. 11, 2020; Revision accepted June 30, 2020; Crosschecked Sept. 11, 2020 
 

Abstract: In this study, we extend traditional (single-target) hybrid systems to multi-target hybrid systems with a focus on the 
multi-maneuvering-target tracking system. This system consists of a continuous state, a discrete and switchable state, and a dis-
crete, time-constant, and unique state. By defining a new generalized labeled multi-Bernoulli density, we prove that it is closed 
under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems. In other words, we provide the 
exact derivation of a solution to this system, i.e., the multi-model generalized labeled multi-Bernoulli filter, which has been de-
veloped without strict proof. 
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1  Introduction 
 

A hybrid system consists of continuous state 
evolutions and discrete state (or mode) transitions 
(Seah and Hwang, 2009). It has attracted considerable 
interest in the field of state estimation and control 
from researchers in academic and industrial commu-
nities, because it can model complicated behaviors of 
various estimation and control systems, such as ro-
botic, transportation, and process control systems 
(Hwang et al., 2006). Hybrid estimation involves the 
continuous and discrete states of a hybrid system. 
Many estimation algorithms have been used in dif-
ferent applications (Seah and Hwang, 2009), such as 
target tracking, signal processing, and fault diagnosis. 
In this study, we focus on the application of target 
tracking, more specifically, multi-maneuvering-target 

tracking (MMTT). 
The prevailing approaches in hybrid estimation 

are based on multi-model (MM) algorithms, for in-
stance, the generalized pseudo-Bayesian (GPB) 
(Chang and Athans, 1978) and the interacting multi- 
model (IMM) estimator (Bar-Shalom et al., 2005; Li 
and Jilkov, 2005). These algorithms, especially the 
IMM algorithm, have proven to have excellent per-
formance at low computational cost. Nevertheless, 
they are limited to a single-maneuvering-target sce-
nario. To track multiple maneuvering targets, the MM 
approach is combined with traditional multi-target 
tracking (MTT) techniques, e.g., multi-hypothesis 
tracking (MHT) (Reid, 1979) and joint probabilistic 
data association (JPDA) (Fortmann et al., 1980). 
However, these algorithms are based on a conven-
tional random vector (RV) framework. 

As promising alternative approaches for MTT, 
random finite set (RFS) based algorithms have at-
tracted significant attention. The RFS framework is a 
natural extension of the RV framework. It is a system- 
level, top-down, and direct generalization of ordinary 
single-sensor single-target engineering statistics in 
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the realm of multi-sensor multi-target detection and 
tracking, and provides powerful new conceptual and 
computational methods for dealing with multi-sensor 
multi-target detection and tracking problems (Mahler, 
2014). For example, RFS algorithms can solve the 
problem of simultaneous estimation of target states 
and the target number. Hence, it is suitable for the 
MTT problem. However, conventional RV-based 
methods need to heuristically decompose the MTT 
problem into track management and state filtering. 
The target states are estimated through state filtering, 
and the number of targets can be estimated through 
track management. 

Under the RFS framework, many well-known 
MTT algorithms have been developed, including the 
probability hypothesis density (PHD) (Vo BN and Ma, 
2006), cardinalized PHD (CPHD) (Vo BT et al., 2007), 
multi-Bernoulli (MB) filter (the cardinality balanced 
multi-target multi-Bernoulli (CBMeMBer) filter) (Vo 
BT et al., 2009), labeled MB (LMB) (Reuter et al., 
2014), marginalized GLMB (M-GLMB) (the mar-
ginalized δ-GLMB (Mδ-GLMB)) (Papi et al., 2015), 
and generalized LMB (GLMB) filter (also named the 
Vo-Vo filter) (Vo BT and Vo, 2013; Vo BN et al., 2014, 
2017). Meanwhile, many studies combine the MM 
and RFS algorithms to solve the MMTT problem, e.g., 
MM-PHD (Punithakumar et al., 2008; Pasha et al., 
2009; Wood, 2011; Sithiravel et al., 2016), MM- 
CPHD (Georgescu and Willett, 2012; Mahler, 2012), 
MM-MB (Dunne and Kirubarajan, 2013; Yang et al., 
2013), MM-LMB (Reuter et al., 2015), and MM- 
GLMB (Jiang et al., 2016; Punchihewa et al., 2016; 
Punchihewa, 2017; Yi et al., 2017). The MM-GLMB 
filter is expected to have better tracking performance 
than the MM versions of other approximate RFS 
approaches, because the GLMB filter is the first an-
alytical solution to the multi-target Bayesian filter 
(Mahler, 2007). 

In these approaches, the continuous kinematic 
state is augmented with an additional discrete mode 
state, and the mode state evolves as a Markov process 
with constant mode transition probabilities inde-
pendent of the continuous state. Applications of the 
augmented state method to PHD, CPHD, and MB 
filters are straightforward since the structures of these 
filters are relatively simple. For example, the intensity 
of the PHD filter is a function only on the single- 
target state space. However, the GLMB filter is more 

complex and involves a labeled multi-target state 
space. One of the important properties of the GLMB 
filter is that the GLMB density is closed under the 
Chapman-Kolmogorov prediction and Bayes update 
(Vo BT and Vo, 2013). It is unknown whether directly 
incorporating an augmented discrete state will change 
the closure property of the GLMB filter. Furthermore, 
this question has not been answered (Jiang et al., 2016; 
Punchihewa et al., 2016; Punchihewa, 2017; Yi et al., 
2017) although the MM-GLMB filter was proposed. 
The motivation of this study is to address this problem. 
By defining a new H-GLMB (a GLMB for hybrid 
systems) density, we will prove that the H-GLMB 
density is closed under the Chapman-Kolmogorov 
prediction and Bayes update for multi-target hybrid 
systems. 
 
 
2  Notations and definitions 
 

Symbols commonly used in the labeled RFS 
context are adopted throughout this paper (Vo BT and 
Vo, 2013; Vo BN et al., 2014). A finite set of inter-
esting states is denoted as X={x1, x2, …, x|X|}, and its 
cardinality is denoted by |X|. For each xi∈X (i=1, 2, …, 
|X|), [ , , ],i lµx  x  where ,  ,µ∈ ∈x    and ∈l   
denote a continuous vector (e.g., a kinematic state), a 
discrete and switchable mode variable (e.g., a mode 
state), and a discrete, time-constant, and unique label 
variable (e.g., an ID state), respectively, and , ,   
and   denote the continuous state space, discrete 
mode space, and discrete and unique label space, 
respectively. ( )F   is the collection of finite subsets 
of ,  and ( )nF   denotes ( )F   with   having 

exactly n elements. | |( ) (| ( ) |)XΔ X L X= δ  denotes the 
distinct label indicator, where : × × →L      is 
the projection of ( , , )=L l lµx  and ( )L X   
{ : ( , , ) }.l l Xµ ∈x  δ is the generalized Kronecker 
delta (i.e., δY(X)=1 if X=Y, and δY(X)=0 otherwise), 
and supports arbitrary arguments such as sets, vectors, 
and integers. 1 ( )⋅  represents the indicator function 
of .  The multi-target exponential is defined by 

( )X
X

f f
∈

=∏ x
x  with h∅=1. 

For any real-valued functions : × →h    
and : ( ) ,× →f F    the conventional vector  
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integral and set integral are defined by (Vo BT and Vo, 
2013) 
 

( )d ( , )d ,
l

h h l
∈∑∫ ∫x x 
 

x x                 (1) 

1

1 1 1
( , , )0

( )

1 ({( , ), , ( , )})d( , , ).
! n

n
n

n n n
l ln

f X X

f l l
n ∈

∞

=

δ∫

∑ ∑ ∫


  x x x x




 

(2) 
 

To derive the MM-GLMB filter, the standard 
inner product, which is defined by α, β=∫α(x)β(x)dx 
for real-valued functions α and β, or defined by 

0
, ( ) ( )∞

=
〈 〉 = ∑ i

i iα β α β  for real sequences α and β, is 

generalized for functions α and β whose arguments 
consist of continuous and discrete variables. The 
generalized inner product is defined by 
 

, ( , ), ( , ) ( , ) ( , )d .
µ

α β α β α µ β µ〈 〉 = 〈 ⋅ ⋅ ⋅ ⋅ 〉 ∑ ∫ x x x  (3) 

 
Accordingly, the conventional vector integral and set 
integral need to be extended, and the extended vector 
integral and set integral including the mode variables 
are defined as follows: 
 

( )d ( , , )d ,
l

h h l
µ

µ
∈ ∈∑ ∑∫ ∫x x 
  

x x          (4) 
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f X X

f l
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µ
∈ ∈

∞

=

δ∫

∑ ∑ ∑ ∫
 

 




 

x

x x x

  (5) 

 
for : and : ( ) .h f F× × → × × →        In 
addition, the following two definitions are  
introduced: 
Definition 1    H-GLMB RFS is an RFS on 

( )× ×F     and is distributed according to 
 

( ) ( )( ) ( ) ( ( ))[ ] ,c c
c

XX Δ X w L X pp
∈

= ∑


      (6) 
 
where   is a discrete index space, and non-negative 
weight w(c)(L) and single-target density p(c) satisfy the 
normalization property: 
 

( ) ( )
, ( , ) ( )

( ) ( ) 1,
⊆ ∈ ∈ ×

= =∑ ∑c c
L c L c F

w L w L
  

    (7) 

( ) ( , , )d 1.cp l
µ

µ =∑ ∫ x x                       (8) 

 
Definition 2    H-LMB RFS is an RFS on 

( )× ×F     and is distributed according to 
 

( ) ( ) ( ( )) .XX Δ X w L X pp =                   (9) 
 
Remark 1    Although the H-GLMB and H-LMB 
densities are in the same form as the standard GLMB 
and LMB ones (Vo BT and Vo, 2013), repectively, the 
H-GLMB and H-LMB densities are defined on 

( ),F × ×    while the GLMB and LMB densities 
are defined on ( ).F ×   Hence, GLMB/LMB is a 
special case of H-GLMB/H-LMB when | | 1.=  
Moreover, as LMB is a special case of GLMB (Vo BT 
and Vo, 2013), H-LMB is also a special case of 
H-GLMB with one term (Wu et al., 2020). 
 
 
3  Multi-target hybrid system model 
 

As mentioned earlier, many applications fall 
within the state estimation of the hybrid system cat-
egory. We use the MMTT problem to explain hybrid 
estimation since MMTT is a typical hybrid system. 
Specifically, MMTT involves the joint estimation of 
continuous vectors (i.e., kinematic states), discrete 
and switchable mode variables (i.e., mode states), and 
discrete, time-constant, and unique label variables 
(i.e., identity or ID states). 

Consider an MMTT scenario. Suppose that at 
time k−1, there are |X| targets whose states are X={x1, 
x2, …, x|X|} (for clarity, the subscript k for the current 
time is omitted and for the next time is indicated by 
the subscript “+”). Next time, new targets may appear 
and some of the previous targets may die with prob-
ability 1−pS(x) or continue to survive with survival 
probability pS(x). If a target with state x survives, then 
it evolves to a new state x+ with the following transi-
tion probability: 

 
( | ) ( , , | , , )

             ( ) ( | , , ) ( | ),l

l l
l l

φ φ µ µ
φ µ τ µ µ

+ + + +

+ + + +

=
= δ

x x x x
x x

     (10) 

 
where δl(l+) indicates that label l is time-constant, and 
φ(ξ+|ξ, μ+, l) denotes the state transition probability 
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density. τ(μ+|μ) is the mode transition probability from 
μ to μ+ and satisfies 
 

( | ) 1.
+

+ =∑µ
τ µ µ                       (11) 

 
Remark 2    In some applications, mode transition 
depends on the continuous state and can be described 
by a continuous-state-dependent mode transition 
probability (Seah and Hwang, 2009). Nevertheless, 
the mode transition probability is assumed to be in-
dependent of the continuous state in an IMM algo-
rithm and MM versions of RFS methods. 

If the newborn targets and surviving targets are 
independent, then the multi-target transition kernel 
(incorporating the mode variable, the target spawning 
case is omitted here) can be obtained by (Vo BT and 
Vo, 2013; Vo BN et al., 2014) 

 

S

( | )
( ( ) | ) ( ( )),
X X
X X Xγ

φ
p p

+

+ += ∩ × × − × ×     
 

(12) 
where the density of set B of the newborn targets is 
assumed to be H-LMB, i.e., 
 

( ) ( ) ( ( )) ,BB Δ B w L B pγ γ γp =                (13) 
 
and the set S of the surviving targets is distributed 
according to 
 

S ( )( | ) ( ) ( )1 ( ( ))[ ( ; )]X
L XS X Δ S Δ X L S Φ Sp = ⋅    (14) 

with 

( ) S

S( , , )

( ; , , )
[1 1 ( )] ( , , )

( ) ( , , ) ( | , , ) ( | ).
L S

ll S

Φ S l
l q l

l p l l
µ

µ
µ

µ φ µ τ µ µ
+ + +

+ + + +∈

= −

+ δ∑ x

x
x

x x x

 

(15) 
For multiple targets with a multi-target state 

X={x1, x2, …, x|X|} at time k, the measurements re-
ceived by a sensor are represented as Z={z1, z2, …, 
z|Z|}. Some of these measurements may come from 
Poisson clutter with intensity κ and some may origi-
nate from the detected targets. Each target with a 
single-target state [ , , ]l Xµ= ∈x x  is detected with 
the detection probability pD(x). Conditional on de-
tection, the probability density function of observa-

tion z∈Z originating from this target is denoted by the 
single-target likelihood g(z|x). 

If measurements are independent of clutter and 
each detection from detected targets, the multi-target 
likelihood (like the single-target transition and mul-
ti-target transition kernel φ(·|·), the single-target like-
lihood and multi-target likelihood use the same 
symbol g(·|·), but they can be easily distinguished by 
their arguments), including the mode variable, can be 
obtained by (Vo BT and Vo, 2013; Vo BN et al., 2014) 
 

1
,1

({0:| |})
( | ) e ( ( ))[ ( ; )] ,Z X

ZZ
Θ

g Z X L Xκ
θ

θ

κ ϕ θ−
−〈 〉

∈

= δ ⋅∑  

(16) 
 
where Θ is the set of positive 1-1 maps and 

: {0 :| |} {0,1, ,| |}Z Zθ →    (Vo BN et al., 2017), 
satisfying that if θ(l)=θ(l′)>0, then l=l′ (i.e., no two 
distinct labels are mapped to the same positive 
measurement index). 
 

0 D

0 D ( ) ( )

( ; ) ( ( ))(1 ( ))
[1 ( ( ))] ( ) ( | ) ( ).

Z

l l

l p
l p g z zθ θ

ϕ θ θ
θ κ

= δ −

+ − δ

x x
x x

 

(17) 
 
 
4  MM-GLMB filter 
 

For the above multi-target hybrid system, a 
general solution is the MM-GLMB filter, which is 
described by the following two propositions (Wu 
et al., 2020): 
Proposition 1    � and   are denoted by the label 
space for (survived) targets at time k (including those 
born prior to k) and the label space for targets born at 
time k. If the birth density is H-LMB (with birth label 
space )  as given in Eq. (13), the prior multi- 
target density is H-GLMB (with label space )� as 
given in Eq. (6), and the multi-target transition kernel 
is as given in Eq. (12), then the predicted multi-target 
density is also H-GLMB given by 
 

( ) ( )( ) ( ) ( ( ))[ ]Xc c
c

X Δ X w L X pp +
+ + + + + +∈

= ∑


  (18) 

with label space + =     and 

( ) ( )
S( ) ( ) ( ),c cw L w L w Lγ+ = ∩ −             (19) 
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( )

( )
,S

( , , )

1 ( ) ( , , ) 1 ( ) ( , , ),

c

c

p l
l p l l p lγ

µ

µ µ
+ + +

+ + + + += +

x

x x 

  (20) 

( ) ( ) ( ) ( )
S S S( ) [ ] [1 ] ( ),c c L c I L c

I L
w L w Iη η −

⊇
= −∑   (21) 

( ) ( )
S S( ) ( , , ), ( , , ) ,c cl p l p lη = 〈 ⋅ ⋅ ⋅ ⋅ 〉              (22) 

( )
,S
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S

( )
S

( , , )

( , , ) ( | , , ) ( | ), ( , , )
,

( )

c

c

c

p l

p l l p l
l

µ

φ µ τ µ
η

+ + +

+ + +〈 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 〉
=

x

x     (23) 

 
where wγ(L) and pγ are given in the birth model (13). 
Proposition 2    If the predicted multi-target density is 
H-GLMB (18) and the multi-target likelihood is given 
by Eq. (16), then the posterior density is also 
H-GLMB in the form of 

 
( , ) ( , )( | ) ( ) ( ( ))[ ( | )] ,c c X
Z

c
X Z Δ X w L X p Zθ θ

θ

p
∈ ∈Θ

= ⋅∑∑


 (24) 
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1

1
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( ) ,

( )[ ] ( )

c L c
ZZc
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 (25) 

( )
( , )

( , )

( , , ) ( , , ; )( , , | ) ,
( )

c
c Z

c
Z

p l lp l Z
l

θ
θ

µ ϕ µ θ
µ

η
=

x x
x    (26) 

( , ) ( )( ) ( , , ), ( , , ; ) .= 〈 ⋅ ⋅ ⋅ ⋅ 〉c c
Z Zl p l lθη ϕ θ         (27) 

 
Remark 3    Propositions 1 and 2 complete the 
MM-GLMB filter, which was used in tracking mul-
tiple maneuvering targets hidden in the Doppler blind 
zone (Wu et al., 2020). These two propositions are 
consistent with the results in Jiang et al. (2016), 
Punchihewa et al. (2016), Punchihewa (2017), and Yi 
et al. (2017). Formally, Propositions 1 and 2 are sim-
ilar to Propositions 8 and 7 (which complete the 
GLMB filter) in Vo BT and Vo (2013), respectively. 
The key difference between the MM-GLMB and 
GLMB filters is the incorporation of the mode varia-
ble in the former. Actually, the GLMB filter is a spe-
cial case of the MM-GLMB filter when | | 1.=  In-
tuitively, the MM-GLMB filter can be obtained from 
the GLMB filter through variable substitution (i.e., 
replacing the original state ξ in the GLMB filter with 
the augmented state (ξ, μ)). The above-mentioned 
variable substitution is partially the idea adopted in 
Jiang et al. (2016), Punchihewa et al. (2016), 
Punchihewa (2017), and Yi et al. (2017). Nevertheless, 

the soundproof or specific derivation of the MM- 
GLMB filter was not provided. 
 
 
5  Exact derivation 

5.1  Motivation of the derivation 

To clarify this work, i.e., why the existing MM- 
GLMB filter should be derived, we use the PHD filter 
as an example for comparison and elaboration. 

The PHD filter includes the following prediction 
and update equations: 
 

S( ) ( ) ( ) ( | ) ( )d ,v v p vγ φ+ ′ ′= + ′ ′∫x x x x x x x         (28) 

D

D

D

( ) [1 ( )] ( )
( ) ( | ) ( ) ,

( ) ( ) ( | ) ( )dZ

v p v
p g v

p g vκ

+

+

∈ +

= −

+
+

∑
∫z

z
z z   

x x x
x x x
x x x x

 (29) 

 
where v denotes the prior intensity if its argument is ξ′ 
or the posterior intensity if its argument is ξ, v+ the 
predicted intensity at time k, vγ the newborn intensity 
at time k, Z the measurement set, pS the survival 
probability, φ(·|·) the transition density, pD the  
detection probability, and g(·|·) the measurement 
likelihood. 

Through variable substitution and using the 
generalized inner product (3), an MM extension of the 
PHD filter (i.e., the MM-PHD filter) can be obtained 
as follows: 

 

S( , ) ( , ) ( , )

( , | , ) ( , ) d ,

v v p

v

γ µ
µ µ µ

φ µ µ µ

+ ′
 ′= + ′
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′ ′⋅ 

∑ ∫x x x

x x x x
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v
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p g v
p g v

µ

µ
µ µ
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+

+

∈ +

= −

+
+
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z z



   

  

x
x x

x x x
x x x x

 (31) 

 
The above process of using variable substitution 

to extend the PHD filter to the MM-PHD filter is 
straightforward because, for the PHD filter, the state 
variable involves only a random vector ξ. However, 
the generalization from the GLMB filter to the MM- 
GLMB filter is not straightforward, because the state 
variable of the MM-GLMB filter involves a labeled 
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RFS X+ according to Eq. (18) or X according to 
Eq. (24). 

Essentially, the GLMB filter is derived from the 
following multi-target Bayesian filter (Mahler, 2007): 

 

( ) ( | ) ( ) ,X X X X Xp φ p+ + += δ∫            (32) 

( | ) ( )( | ) .
( | ) ( )
g Z X XX Z

g Z X X X
pp
p

=
δ∫

            (33) 

 
Note that for the standard GLMB filter, the la-

beled multi-target states X+ and X are defined on 
( );F ×   i.e., the labeled multi-target states do not 

contain the mode variable. 
If we use variable substitution to extend the 

GLMB filter to the MM-GLMB filter, it is unclear 
how to define the set integral of the labeled RFS in 
Eqs. (32) and (33). In addition, one of the important 
properties of the GLMB filter is that the GLMB den-
sity is closed under the Chapman-Kolmogorov equa-
tion and Bayes update (Vo BT and Vo, 2013). There-
fore, it is unclear whether directly incorporating the 
augmented discrete state changes the closure property 
of the GLMB filter. Unfortunately, these two prob-
lems have not been answered in Jiang et al. (2016), 
Punchihewa et al. (2016), Punchihewa (2017), and Yi 
et al. (2017). To solve the first problem, we introduce 
the definition in Eq. (5), which is extended from the 
conventional set integral (2) that does not contain the 
mode variable. Next, we will solve the second prob-
lem, which is to strictly derive the MM-GLMB filter. 

5.2  Lemma required in the derivation 

In the derivation of both Propositions 1 and 2, 
the following lemma is deployed: 
Lemma 1    For : ( ) and :h F g→ × × →      
being integrable on  , we have 
 

( ) ( ( ))

( ) ( , , )d .
L

X

L

Δ X h L X g X

h L g
µ

µ
⊆

δ

 = ⋅ 

∫
∑ ∑ ∫ x x



        (34) 

 
Proof    From Eq. (5), we have Eq. (35), where the 
second to the last lines follow the symmetry of 

1 1
({ , , }) ( , , )d

i

n
n i i i ii

h l l g l
µ

µ
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x x  in (l1, …, ln) 

and Lemma 12 in Vo BT and Vo (2013). Furthermore, 
the double sums in the second to the last lines of 

Eq. (35) can be combined as a sum over the subset of 
  and the last line.  
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(35) 
Remark 4    Lemma 1 is an extension of Lemma 3 in 
Vo BT and Vo (2013), and the mode variable is con-
sidered. Using Lemma 1, we derive Propositions 1 
and 2. 

5.3  Derivation of Proposition 1 

By andB X S X+ += − × × = ∩ × ×       and 
by substituting multi-target transition kernel (12) into 
the Chapman-Kolmogorov equation, we have the 
following predicted multi-target density: 
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where the birth density πγ(B) is given by Eq. (13). 
Hence, the key lies in the calculation of the density 
πS(S) of the surviving multi-target state, which is 
calculated by Eq. (37): 
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where π(X) and πS(S|X) are given by Eqs. (6) and (14), 
respectively. The last line of Eq. (37) follows  
Lemma 1. Due to the existence of the 1I(L(S)) term, 
we consider only I⊇L(S). In Eq. (37), the term 

( )( ; , , ), ( , , )c
l I

S l p lΦ
∈
〈 ⋅ ⋅ ⋅ ⋅ 〉∏  is calculated as Eq. (38): 
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where ( )

,S ( , , )cp lµ+ + +x  is given by Eq. (23) and 
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In Eq. (39), Eq. (11) is used. 

Hence, substituting Eq. (38) into Eq. (37) yields 
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(41) 
where ( )

S ( )cw L  is given by Eq. (21). 
Furthermore, substituting Eqs. (13) and (41) into 

Eq. (36) yields 
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(42) 

where ( ) ( )+
cw L  and ( ) ( , , )cp lµ+ + +x  are given in 

Eqs. (19) and (20), respectively. 

5.4  Derivation of Proposition 2 

The posterior multi-target density can be ob-
tained from the Bayes rule (Eq. (33)). Given the 
multi-target likelihood g(Z|X) (Eq. (16)) and the pre-
dicted density π(X) (Eq. (6)) of the H-GLMB, the 
numerator in Eq. (33) is calculated as follows: 
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where ( , ) ( , , | )cp l Zθ µx  and ( , ) ( )c

Z lθη  are given by 
Eqs. (26) and (27), respectively. 

Furthermore, the integral of Eq. (43), i.e., the 
denominator in Eq. (33), is obtained as Eq. (44): 
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where the last line follows Lemma 1. 

Finally, substituting Eqs. (43) and (44) into 
Eq. (33) yields the posterior multi-target density: 
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where ( , ) ( )c

Zw Lθ  is given by Eq. (25). 
In summary, both the predicted and updated 

multi-target densities are H-GLMB distributions ac-
cording to Eqs. (42) and (45). In other words, the 
H-GLMB density is closed under the Chapman- 
Kolmogorov prediction and Bayes update for multi- 
target hybrid systems. 
 
 
6  Conclusions 
 

In this study, we have extended traditional  
(single-target) hybrid systems to multi-target hybrid 
systems with a focus on the multi-maneuvering-target 
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tracking system, which consists of a continuous state, 
a discrete and switchable state, and a discrete, time- 
constant, and unique state. We have also provided an 
exact derivation of the MM-GLMB filter, which is a 
state estimation solution to multi-target hybrid  
systems. 
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