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Abstract: Sepsis treatment is a highly challenging effort to reduce mortality in hospital intensive care units since
the treatment response may vary for each patient. Tailored treatment recommendations are desired to assist
doctors in making decisions efficiently and accurately. In this work, we apply a self-supervised method based on
reinforcement learning (RL) for treatment recommendation on individuals. An uncertainty evaluation method is
proposed to separate patient samples into two domains according to their responses to treatments and the state
value of the chosen policy. Examples of two domains are then reconstructed with an auxiliary transfer learning task.
A distillation method of privilege learning is tied to a variational auto-encoder framework for the transfer learning
task between the low- and high-quality domains. Combined with the self-supervised way for better state and action
representations, we propose a deep RL method called high-risk uncertainty (HRU) control to provide flexibility on
the trade-off between the effectiveness and accuracy of ambiguous samples and to reduce the expected mortality.
Experiments on the large-scale publicly available real-world dataset MIMIC-III demonstrate that our model reduces
the estimated mortality rate by up to 2.3% in total, and that the estimated mortality rate in the majority of cases
is reduced to 9.5%.
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1 Introduction

Sepsis is a severe life-threatening medical emer-
gency. It causes infections with organ failure and
becomes a leading cause of patient mortality. Sepsis
is often managed by two main interventions, intra-
venous (IV) fluid (adjusted for fluid tonicity) and
vasopressor (VP). They focus on correcting the hy-
povolemia and counteracting vasodilation induced
by sepsis. However, different dosage strategies for
these two interventions greatly affect patient out-
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comes, and individual patients respond differently to
treatments; this could have implications for patient
mortality.

Treatment recommendations have been studied
for a long time to assist inexperienced doctors (Chen
JG et al., 2018) and to develop personalized-risk es-
timation (Katzman et al., 2018). The methods based
on expert systems (Almirall et al., 2012; Chen Z
et al., 2016; Gunlicks-Stoessel et al., 2016) heavily
rely on prior knowledge of human experience. How-
ever, human knowledge summarized from experience
is not necessarily the optimal choice for treatment.
Data-driven approaches offer a new avenue to ex-
tract knowledge from large-scale data. Prior experi-
ence knowledge is then combined with personalized
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healthcare information to provide a treatment plan
for each individual.

One straightforward method of data-driven ap-
proach is to mimic a doctor’s prescriptions and
learn the relationship between disease and drug cat-
egories (Bajor and Lasko, 2017; Zhang et al., 2017).
However, it still relies on supervision by humans.
This supervision is not the optimal and not correct
in some situations. Such a learning paradigm is usu-
ally error-prone and problematic.

Instead of simply mimicing a doctor’s prescrip-
tions, another way is to learn from patients’ re-
sponses and then give a personalized recommen-
dation. This falls into the reinforcement learning
(RL) setting (Kaelbling et al., 1995; Yu et al., 2019).
Combined with deep learning for feature extrac-
tion, RL-based methods (Mnih et al., 2015; Wang
ZY et al., 2016) regard patient treatments as in-
dependent states, and the objective is to learn the
relationship between these states from the whole
treatment process. For sepsis treatment, Raghu
et al. (2017) proposed deep approaches to learn the
optimal policy from delayed reward and the spe-
cific policy of physicians in the continuous state
space. In Weng et al. (2017), policies were tested un-
der state expected value based metrics of estimated
mortality.

Nevertheless, there is no perfect solution for
individual medical cases due to the uncertainty of
treatment responses. A good treatment recommen-
dation system could not only learn from a doctor’s
experience but also combine it with patients’ re-
sponses. Therefore, it is important to decide which
part of a doctor’s policy to learn. Several studies
considered the quality of predictions and used uncer-
tainty evaluation which trades off between the mean
and variance of RL (Shortreed et al., 2011; Asiain
et al., 2018). These studies shed light on our eval-
uation of the variation of actions and confidence of
policies. In clinical scenarios, one aims to estimate
the value of the optimal policy based on the data col-
lected by a doctor’s policy. Off-policy value evalua-
tion obtains unbiased estimation with variance under
control (Jiang and Li, 2016). However, it provides
less flexibility for cases with diverse requirements.
Such flexibility would help policy exploration with
doctors. For rare diseases, treatment predictions
have a low confidence level. Otherwise, the method
usually results in overfitting. Therefore, high-value

recommendations should be both accurate and con-
fident on reliable samples, and also should be salient
on other samples.

We propose a deep architecture for the treat-
ment recommendation problem with self-supervised
learning. Samples are divided into reliable and unre-
liable sets according to the variance on actions and
confidence on policies. We use transfer learning (TL)
(Long et al., 2015; Lopez-Paz et al., 2016; Zhao et al.,
2017) to shift unreliable samples into reliable ones
and distill target sample information into original
samples. We perform a variety of experiments on
the large-scale publicly available real-world dataset
MIMIC-III (multi-parameter intelligent monitoring
in intensive care), with state-of-the-art RL-based
comparison methods, and discuss the influence of
specific parameters on risk control and trade-off on
conservative decisions. The experimental results ver-
ify that our method provides flexibility on high-risk
decisions with parameterized representations. The
estimated mortality rate in the hospital is reduced
to 2.3%, and the estimated mortality rate in the ma-
jority of cases is reduced to 9.5%.

2 Related works

The clinical treatment recommendation process
can be considered as a sequential decision-making
problem which suits RL settings well. Various RL
approaches have been proposed to model the prob-
lem into RL settings (Nemati et al., 2016; Yu et al.,
2019) and solve the problem by maximizing the accu-
mulated reward. Many works on modeling RL set-
ting on sepsis treatment (Komorowski et al., 2018;
Saria, 2018) use static and dynamic clinic indices to
represent the patient state, and the medical interven-
tions, especially IV and VP with different dosages,
are modeled as actions.

Several works on RL for sepsis treatment are
based on variants of deep RL (DRL) models, such as
deep Q-network (DQN) (Mnih et al., 2015) and du-
eling DQN (DDQN) (Wang ZY et al., 2016). They
used the deep learning approach to extract latent
representations of patient features and states, and
found the best policy evaluation according to the ac-
cumulated reward. This assesses the disease severity
or the survival rate of the patient. In variants of the
RL framework on sepsis, Raghu et al. (2018) used
a recurrent neural network (RNN) for intensive care
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unit (ICU) stay record sequence encoding tied to a
continuous state-space RL framework. A Gaussian
process tied with recurrent long-short term mem-
ory (LSTM) layers (Futoma et al., 2017) showed
the effectiveness in sequence encoding and was clini-
cally interpretable. However, a major concern of an
RL-based framework is the representation stability.
Especially for sepsis, patients respond differently to
treatment. This affects the uncertainty of clinical in-
dices and makes the RL framework hard to train. To
make RL policy clinically credible and stable, Peng
et al. (2018) proposed a mixture of the DRL frame-
work and a conservative kernel RL framework. Wang
L et al. (2018) combined the benefits of supervised
learning and RL.

The main idea of our work benefits from self-
supervised learning (SSL) and TL. SSL is for improv-
ing learning performance when labeled data is scarce.
It exhibits promising results in semi-supervised set-
ting only when partial samples have labels (Gidaris
et al., 2018; Zhai et al., 2019) and video tasks where
annotation is costly (Vondrick et al., 2016; Li et al.,
2019). Recently, SSL helps improve the robust-
ness on adversarial examples and label corruption,
and also benefits out-of-distribution detection on dif-
ficult, near-distribution outliers (Hendrycks et al.,
2019). Our proposed method is considered as a
self-supervised method since we refine the unreliable
samples using the reliable samples in the training
stage. In RL settings, states may have different dis-
tributions and behave differently. With this concern,
information learned from good situations can help a
model perform well in bad situations. TL methods
try to use models trained in a source domain to have
a desirable performance in the target domain, and
instance-based TL seeks to find the image of sam-
ples in the source domain where the original trained
model makes reasonable decisions. Recent research
on the variational auto-encoder (VAE) (Kingma and
Welling, 2014; Kingma et al., 2016) made effective
use of latent representations of states; deep adap-
tation models (Long et al., 2015) used maximum
mean discrepancy (MMD) loss to measure the dis-
tance between domains in deep adaptation networks.
However, VAEs tend to ignore the latent variables
when combined with a decoding distribution that
is too flexible. Info-VAE (Zhao et al., 2017) miti-
gates these problems. Our proposed method com-
bines VAE for feature representation and MMD for

measurement between domains, and constructs real
sample approximations.

3 Formulations and preliminaries

In this section, we formulate the treatment plan
with sequence decision and then provide the archi-
tecture using deep learning to extract latent features
into separate value and advantage. From uncertainty
risk evaluation, we transfer sample distribution to an
ideal domain to make the decision reliable and stable.

3.1 Problem formulations

In an RL setting, the clinical treatment recom-
mendation process can be represented by a Markov
decision process (MDP). The process is represented
by the observed state s, which takes an action a ac-
cording to policy π and obtains a reward r from the
environment. π assigns a probability to actions in
each state.

3.1.1 Reinforcement learning in treatment

Various treatment plans for patients can be
seen as solutions to various sequential decision prob-
lems (Nemati et al., 2016), and RL methods try
to find the best policy which provides decision se-
quences that maximize the expected reward (Kael-
bling et al., 1995).

The goal of an RL agent is to maximize the
expected long-term discounted return E[

∑
t γ

trt],
where γ is the discount factor that represents the
trade-off between current and future rewards. The
optimal value function and state-action value func-
tion are defined as V ∗

π (s) = maxπ E[
∑

t γ
trt|s, π]

and Q∗
π(s, a) = maxπ E[

∑
t γ

trt|a, π], respectively.
The state-action value function Q∗

π(s, a) satis-
fies the Bellman equation Q∗

π(s, a) = r(s, a) +

γmaxa′ E[Q∗
π(s

′, a′)] and is optimized by minimiz-
ing the temporal difference (TD) error of r(s, a) +
γQ∗

π(s
′, a′)−Q∗

π(s, a). The primary RL method seeks
a solution to the problem

aopt = argmax
a∈A

Q∗
π(s, a), (1)

where s represents the patient state, a is an action
provided by the optimal policy π, and A is the set of
all possible actions.
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3.1.2 State approximation

We consider that in the medical environment,
state s is not exactly the real state of the pa-
tient but an observation which can be seen as an
approximation of the real state s∗. For this reason,
clinical features are measurements related to not only
the patient’s actual body state but also the environ-
ment. Thereby, problem (1) can be reformed as

aopt = argmax
a∈A

Q∗
π(s

∗, a) s.t. s∗ ≈ s. (2)

Specifically, we attempt to find the optimal policy π

and the mapping from the observed state s to the
real state s∗ simultaneously:

⎧
⎨

⎩

aopt = argmax
a∈A

Q∗
π(ft(s), a),

ft : s → s∗,
(3)

where ft denotes the mapping from the observed
state s to the real state s∗. In this study, the map-
ping ft is implemented by an auto-encoder based
transfer module. Final decisions are made by policy
π on observation ft(s).

3.1.3 Value-advantage separation

In the medical environment, treatment effects
rely on both the patient’s physical state and the
doctor’s different prescriptions, and the dueling
net (Wang ZY et al., 2016) architecture maintains
separate value and advantage functions correspond-
ing to the above characteristics. The aggregating
module is updated as follows:

Qπ(s, a)=Vπ(s, a)+

[

Aπ(s, a)− 1

|Aπ|
∑

a′
Aπ(s, a

′)
]

,

(4)

where V is the value of the patient state and A is the
advantage of prescription according to the specific
policy π. Both V and A are outputs of the dueling
net. The final Q-value of action a on patient state
s is calculated using Eq. (4), which is related to the
survival rate of the patient. π is a policy provided
by the model. With the basic dueling structure, we
consider the value and advantage separately to divide
samples and reconstruct biased samples.

3.2 Framework preliminaries

We use variance and confidence of separate state
value-advantage pairs to evaluate sample reliability,

which divides sample distribution into the high-
uncertainty (unreliable) domain and low-uncertainty
(reliable) domain. With the transfer model, we re-
construct samples into an ideal domain that keeps
the final Q-function away from high-risk uncertainty.
Although it is a strong assumption that samples be-
have differently in bimodal distributions, the shift
between two distributions should be controlled. By
adjusting the parameter value according to the per-
formance on cross validation, we can obtain models
with different specialities, which we will discuss in
Section 5 together with experiments.

3.2.1 Model architecture

As discussed in Section 3.1, the dueling ar-
chitecture generates latent representations for pa-
tient states and separates the value and advantage.
Eq. (4) combines the final Q-value with both value
and advantage to update the Q-function. The fol-
lowing loss is considered in the RL framework:

Li(θi) = E(s,a,r,s′)∼U(D)[(y
DDQN
i −Q(s, a; θi))

2], (5)

where quadruples (s, a, r, s′) are sampled from the
replay buffer U(D). The true value yDDQN

i is ob-
tained by the target network and finally converges
to the reward of actions. The general framework of
our work is shown in Fig. 1. It contains two mod-
ules with four stages iteratively cycling during the
training process. First, the dueling module provides
encoding of patient clinic indices as state and out-
puts state-action value parameters (discussed in Sec-
tion 4.1). Then we use a risk-evaluation score to find
samples with high-risk uncertainty (discussed in Sec-
tion 4.2) and divide them into reliable set S and un-
reliable set Ŝ. Next, samples from the unreliable set
Ŝ are reconstructed with the transfer module via the
MMD distance (discussed in Section 4.3). Finally,
the model computes the Q-value with reconstructed
samples and updates the state-action value function
(discussed in Section 4.4).

3.2.2 Transfer learning and distillation

VAE is used to shift the sample distribution
between different domains. We use the MMD dis-
tance (Long et al., 2015) to measure the gap between
domains. Distillation via the privileged learning
(PL) method (Hinton et al., 2015) attempts to learn
additional information from high-quality samples or
representations. Training on the PL framework aims
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Dueling module
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Transfer module
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(2)
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      ˆ
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π
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π
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S∈is

ˆˆ S∈is

Fig. 1 General architecture of our work
Each state iteration includes four steps: (1) features go to the dueling structure to obtain the value and advantage; (2) the
value and advantage are used to calculate uncertainty and a dividing score, and then the original states are divided into
reliable set S and unreliable set Ŝ; (3) ambiguous ŝ is transferred to obtain srecon; (4) srecon is used to obtain the final
value and advantage, and Q-function is updated in a privileged learning form

to distill high-level information into the model. This
benefits the performance on normal samples.

4 The proposed method

This section starts with an overview of our
method. Our framework deals with the state value
and action advantage separately using a part of
the dueling structure, which we will discuss in Sec-
tion 4.1. In Section 4.2, we propose an evaluation
method to divide samples into a reliable domain with
low uncertainty and an unreliable domain with high
uncertainty, and use self-supervised learning with the
help of the transfer module. In Section 4.3, we trans-
fer samples to an ideal domain via the MMD dis-
tance. In Section 4.4, we reconstruct the sample and
train the model via PL-based methods. We analyze
our algorithm in Section 4.5.

4.1 Dueling net with sequence

Patient states can be represented by static fea-
tures (such as demographics) and dynamic features
(such as lab values). Dynamic features within one

course of treatment are segmented into sequences
corresponding to one specific action. We put a dy-
namic feature sequence in one course of treatment in
LSTM to learn deep relevance and generate highly
characteristic features, and use fully connected layers
to combine those with static features. The feature
extraction network architecture is shown in Fig. 2.

In Section 3.1, we use Eqs. (2) and (3) to extend
the basic Q-learning problem to an unreliable envi-
ronment with a mapping function f . In our proposed
framework, the mapping f in Eq. (3) is instantiated
using a VAE, and the final Q-function with VAE
model M(·) is modified as follows:

Qπ(s, a) =Vπ[M(s; θ), a] +

{

Aπ[M(s; θ), a]

− 1

|Aπ |
∑

a′
Aπ [M(s; θ), a′]

}

. (6)

A key concern for directly optimizing the Q-
value in a dueling framework using the original loss
and transferred samples is that the model uses only
the information from a part of samples. We thereby
apply a privileged learning framework to distill
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Dueling module

Features
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etc.

Static Dynamic

LSTM
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Fully connected
layer

Convolutional 1D layer

Value Advantage

Diastolic blood 
pressure, temperature 
(Celsius), heart rate, 
etc.

Convolutional 1D layer

Fully connected
layers

Fig. 2 Dueling module of our framework
Dynamic features in a sequence are handled by long-short
term memory (LSTM) to obtain latent representations, which
are combined with static features and turned into separate
value-advantage vectors

information from transferred samples into original
ones. This can be seen as self-supervised learning
from reliable samples to unreliable ones.

4.2 Uncertainty evaluation

In this subsection, we analyze how states and
actions affect the future reward. Let st denote a
patient state sequence in RL settings and buffer
D = {e1, e2, . . . , et} consists of experience tuples
et = (st, at, rt, st+1) which are segmented from
sequence P = {s1, a1, r1, . . . , sN , aN , rN}. Mini-
batches of experience (s, a, r, s′) are sampled from
D uniformly at random. The evaluation items take
the forms as

⎧
⎪⎨

⎪⎩

v(s, π) = Ea∈A(s)[(Qπ(s, a)− Q̂π(s, a))
2],

c(s, π) =
Qπ(s, â)∫

A(s)
Qπ(s, a)

,
(7)

where
⎧
⎨

⎩

Q̂π(s, a) = Ea∈A(s)[Qπ(s, a)],

â = argmax
a∈A(s)

Qπ(s, a).
(8)

Here, v(s, π) and c(s, π) denote the variance and
confidence for the action on state s on policy π,
respectively.

In most cases, a patient in a desirable condition
can be cured using a proper treatment. However,
the choice of the treatment plan in some extreme
situations is worthless in the policy learning process.
Consider the following two extreme situations:

Situation 1: a patient cannot be cured even us-
ing the ideal treatment;

Situation 2: a patient is in a good condition and
can be cured using any treatment.

Reflected in the clinic log, the variance of ex-
pected return in prescriptions taken for a bad situa-
tion like situation 1 is low and often leads to a zero
reward (dead). On the contrary, in situation 2, the
expected return is high, but a doctor’s policy gains
little effect. However, prescriptions that perform ef-
fectively and have a significant impact on patient
states often result in a higher variance of actions. If
the policy is effective in this circumstance, then we
will have high confidence in the chosen action.

The variance of actions evaluates the probability
that the state drops into extreme cases. The confi-
dence of the optimal action evaluates the quality of
the chosen treatment policy. Using the definition of
variance v and confidence c, we define the proposed
evaluation metric as high-risk uncertainty (HRU) in
the form of d-score:

d-score(s, π) = v(s, π)exp

[
c(s, πopt)− c(s, πdoc)

T

]

,

(9)
where T is the temperature that controls the influ-
ence on choice of actions; i.e., a lower T makes the
model care more about states with choices differing
from a doctor’s, and a higher T makes the model care
more about states with large variance on action val-
ues. πdoc is the policy with chosen actions, and πopt

is the greedy policy with the best actions. If there is
a big difference between actions with maximal con-
fidence under the optimal policy and a physician’s
policy, the score tends to be large. On the contrary,
if the variance of actions is small, the policy’s choice
of actions makes less difference to the expected value.
In this case, it is not necessary to pay much attention
to choosing the right action in the policy. The treat-
ment for this state is ambiguous and needs deeper
discussion. In this case, d-score tends to be small.
We use d-score to divide samples into two distribu-
tions mentioned above by the threshold ε, and trans-
fer ambiguous ones into a clear distribution. ε is set
according to the distribution of samples’ d-score on
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cross-validation via grid search or the elbow method.

4.3 Transfer learning via MMD

In Section 4.2, we assume that a doctor’s poor
choice attributes to the poor observation of the real
patient state s∗. Samples that perform undesirably
under a specific physician policy have low evalua-
tion d-score s, which results in a bad observation on
the patient’s real state features. In a self-supervised
learning setting, samples learn from themselves. We
divide sample states using the evaluation metric
d-score and use TL on divided domains to mitigate
the observation shift. The MMD distance is used
to measure the gap between domains. This can be
formulated as follows:

MMD[f, p, q] = sup{Ex∼p[f(x)]−Ey∼q[f(y)]}, (10)

where p is the distribution of x and q is the distribu-
tion of y. f is the mapping function which can be a
fully connected network or a convolutional layer. We
divide the samples into two distributions and min-
imize the following MMD distance to transfer the
auto-encoder’s outputs to a reliable domain:

MMD[M,S, Ŝ] = sup{Es∼S[s]− Eŝ∼Ŝ[M(ŝ; θi)]}. (11)

We denote clear samples with low uncertainty
by s in set S and ambiguous ones by ŝ in set Ŝ. De-
tails of the transfer module can be seen in Fig. 3. The
dueling structure provides latent representations for
sample features. As the training process progresses,
value and advantage converge to the optimal Q-
function. This makes the d-score dividing more clear.
Threshold-based methods using the temperature T

in Eq. (9) and threshold ε on d-score control the gap
between source distribution and target distribution.
The flexibility makes the model pay attention to dif-
ferent Q-value distributions.

4.4 Self-supervised training via PL

In the reconstruction process, we use weight-
based methods and knowledge distillation based
methods to extract information from transferred
samples and help the whole training process on the
proposed framework.

4.4.1 Naive weight-based training

One way to treat samples of different impor-
tance is sample weighting. We could train the model

Transfer module

Divide by d-score si

Encoder

VAE

Mean vector Standard deviation vector

Sampled latent vector

Decoder

Reconstruction using PL srecon

Loss of MMD[M,S,S]     ˆ

Fig. 3 Transfer module of our framework
Samples are divided by d-score and transferred through VAE
using MMD loss between sample distributions

to use a sample weight calculated using the afore-
mentioned d-score and normalized by a softmax func-
tion σ(·):

weight(s) = σ(d-score(s, π)). (12)

This naive approach attempts to use different
importance on samples, but may contaminate clear
samples.

4.4.2 Distillation in PL

In the reconstruction process, samples recon-
structed with weight-based methods could lose va-
riety of information; the difference between sample
domains could trace back to information asymme-
try. Distillation (Hinton et al., 2015) and privi-
leged information (Vapnik and Izmailov, 2015) are
two techniques that enable machines to learn from
other ones. Moreover, Lopez-Paz et al. (2016) uni-
fied these two into one framework and extended it
to semi-supervised scenarios. Specifically, it regards
high-quality samples as “teachers” and low-quality
samples as “students,” and extracts high-level knowl-
edge of “teacher” samples into “student” sample mod-
els. We divide the sample into different domains
and use TL approaches to acquire an image into the
source domain. To use the learning effect of samples
in different distribution domains, we use privileged
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learning methods to guarantee an optimal recon-
struction process of deep models.

Sample features are transferred into a new do-
main. They can be seen as “teachers” to our model
f . We train model f with both original samples and
transferred ones in the form of PL. The general PL
framework takes the forms as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f t =argmin
f∈Ft

n∑

i=1

L{yi,σ(f(xi))},

f s =argmin
f∈Ft

n∑

i=1

{(1− λ)L[yi, f(xi)]

+ λL[ŷi, f(xi)]},

ŷi =σ

(
f t(xi)

Tp

)

,

(13)

where f t denotes the “teacher” model from high-
quality samples and f s denotes the student model
from normal samples. σ(·) is an activation function.
Tp is the temperature. We use the PL framework to
distill information from transferred samples provided
by VAE as follows:

πt =argmin
π

n∑

i=1

E(s,a,r,s′)∼U(D){L[yi,

Qπ(M(s; θi), a)]}, (14)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πs =argmin
π

n∑

i=1

E(ŝ,a,r,s′)∼U(D){(1− λ)

· L[yi, Qπ(ŝ, a)] + λL[ŷi, Qπ(ŝ, a)]},
ŷi =Qπt(srecon, a),

(15)

where s is the original state, a the action, and ŷi the
soft label on the reconstructed sample srecon. Model
M(ŝ; θi) uses the VAE model M(·) with parameter
θi to obtain the transferred state. For the clear state
set S, the training process needs only to optimize
the “teacher” model, which is equivalent to the basic
Q-learning process. For the ambiguous state set Ŝ,
the training process goes according to the aforemen-
tioned PL framework, and the reconstructed sample
srecon takes the form as

srecon = lŝ+ (1 − l)M(ŝ; θi), (16)

where l is the reconstruction parameter and controls
the portion of the information distilled from trans-
ferred samples. If l → 1, the sample domain tends to
be the original sample distribution, and the transfer

module is not working. The Q-learning model learns
the original Q-function (4). If l → 0, the sample do-
main tends to be the transferred sample distribution,
and function f s reduces to

πs = argmin
π

n∑

i=1

E(ŝ,a,r,s′)∼U(D){L[ŷi, Qπ(ŝ, a)]}.
(17)

In the dueling structure, we optimize
Q-function (4) and update the network parameter
using loss (5). The “teacher” model includes rich
information of ambiguous samples. The updating
process takes the forms as

πt =argmin
π

n∑

i=1

E(s,a,r,s′)∼U(D){[yi

−Qπ(M(s; θi), a)]
2}, (18)

πs =argmin
π

n∑

i=1

E(ŝ,a,r,s′)∼U(D){(1− λ)

· [yi −Qπ(s, a)]
2 + λ[ŷi −Qπ(s, a)]

2}. (19)

4.5 Algorithm

With all the aforementioned parts, we propose
the HRU-control method, as shown in Algorithm 1.

The HRU-control framework trains two deep
networks, dueling net for Q-function Qπ(s, a) op-
timization and VAE M(·) for TL. The dueling net
is trained with sample states provided by LSTM
f(·), learns the relationship between state sequences
of one action course, and gives latent representa-
tions. Survival status is used as the final reward

Algorithm 1 The proposed HRU-control method
1: Read the patient state sequence of one course like

P = {s1, a1, r1, . . . , sN , aN , rN}
2: Split the sequence into (s, a, r, s′) tuples stored in

the buffer D
3: for t = 0 to T do
4: Sample (s, a, r, s′) in D at random
5: if d-score(s, π) > ε then
6: Divide s into Ŝ

7: else
8: Divide s into S

9: end if
10: Minimize the loss of MMD[M,S, Ŝ]

11: Update VAE model M(·)
12: Reconstruct srecon for an ambiguous sample set
13: Minimize PL loss to obtain the optimal Qπ

14: end for
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of +15/−15 to help Q-function converge to policy
π. The evaluation d-score(s, π) for high-risk un-
certainty divides the samples in buffer D into sets
S and Ŝ. The VAE model is trained on the loss
of MMD[M,S, Ŝ] using backpropagation to update
model parameters. Finally, we update the dueling
module parameters using the Q-learning updating
function with reconstructed sample srecon in the form
of privileged learning.

5 Experiments

In this section, we present experimental results
of our method on the open dataset MIMIC-III.

5.1 Dataset and cohort

Our experiments were carried out on the
MIMIC-III v1.4 database (Johnson et al., 2016),
which is large and publicly available. It includes
all patient admissions to ICU from 2001 to 2012.
Sepsis-3 criteria were set to identify patients with
sepsis (Singer et al., 2016). Following Raghu et al.
(2017), our cohort consists of 15 415 patients with
the age ranging from 18 to 91. The dataset is sum-
marized in Table 1.

Table 1 Dataset cohort statistics for subjects fulfilling
the sepsis-3 criteria

Subject Female (%) Mean age
Total number
of patients

Survivor 44.1 63.9 13 535
Non-survivor 44.3 67.4 1880

5.2 RL settings and preprocessing

We present RL settings in medical environment
experiments where patient features are extracted
into states and treatment plans as actions, and fi-
nal patient status is used to evaluate the delayed
reward.

5.2.1 Features and states

Following Raghu et al. (2017), relevant clinical
features include static variables and dynamic vari-
ables (time-series variables), which are sliced in a
given four-hour window. Forty-eight physiological
features used in our experiments include 8 demo-
graphics/static features, 24 lab values, 12 vital signs,

3 intake/output events, and 1 miscellaneous variable;
this yields a 48 × 1 feature vector, which is denoted
as the state s in the RL setting. The physiological
features used in our model are shown in Table 2. Fea-
tures are standardized and rescaled into 0–1. Those
features with large values are dealt with by log trans-
formation. Samples with ≥ 8 missing variables are
excluded.

5.2.2 Actions and rewards

Treatments are discretized into 25 actions,
which yields a 5 × 5 action space. The 5 × 5 action
space includes two axes of IV fluid and maximum
VP dosage in the given four-hour time slice. At the
terminal state of a patient’s trajectory, the reward
is set to +15 if the patient is discharged; otherwise,
the reward is −15. The learned policy in the ac-
tion space is shown in Fig. 4. The physician’s policy
follows mainly the rule that IV dose and VP dose
increase with the severity of the disease (organ fail-
ure). For mild symptoms, vasopressors are not usu-
ally prescribed unless the symptoms reach a certain
degree. For our model, there are slight differences
from the physician’s policy. Despite some treatments
with no drugs given to mild symptom patients (left
bottom), most decisions follow the physician’s rule
that dosages align with symptoms. The vasopres-
sor dosages seem less conservative, which results in
a higher dosage of vasopressors in the middle part.
It might be a signal of treatment trade-off between
relying on external medication and the body’s im-
mune system, including the other side-effects that
could not be reflected in the mortality rate. Deeper
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Fig. 4 Learned policy in the action space
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Table 2 Physiological features in the model

Physiological feature Detailed information

Demographics/Static Shock index, elixhauser, SIRS, gender, re-admission, Glasgow coma scale, sequential organ
features (8) failure assessment, and age

Lab values (24) Albumin, arterial pH, calcium, glucose, hemoglobin, magnesium, partial thromboplastin time,
potassium, arterial blood gas, blood urea nitrogen, serum glutamic-pyruvic transaminase,
chloride, bicarbonate, international normalized ratio, sodium, arterial lactate, CO2,
creatinine, ionised calcium, prothrombin time, platelet count, serum glutamic-oxaloacetic
transaminase, total bilirubin, and white blood cell count

Vital signs (12) Diastolic blood pressure, systolic blood pressure, mean blood pressure, PaCO2, PaO2, FiO2,
PaO/FiO2 ratio, respiratory rate, temperature, weight, heart rate, and SpO2

Intake/Output events (3) Fluid output (4 hourly period), total fluid output, and mechanical ventilation
Miscellaneous variable (1) Timestep

The corresponding number of features is also given in the bracket in the first column

clinical insights and considerations need to be further
discussed in future work.

5.3 Metrics and evaluation

As the patient’s health status is the clinician’s
most prominent indicator, the reward is related to
the patient’s survival. Following Raghu et al. (2017),
Weng et al. (2017), and Wang L et al. (2018), we
use in-hospital mortality rate to evaluate the perfor-
mance of our method. These works showed that the
expected return Q∗ learned by the optimal policy π∗

is negatively correlated with the mortality rate with
high correlation. The empirically estimated mor-
tality rate of each Q-value unit is calculated using
a mortality-expected return function acquired from
learned representations with a probabilistic output
ranging from 0 (discharged) to 1 (died). Finally, the
estimated mortality rate is obtained by averaging
all these values in the corresponding units (Raghu
et al., 2017; Weng et al., 2017). Although there is
still difference between the estimated mortality rate
and the real one, it is still a widely used metric for
computational experiments.

Another evaluation metric is used to compare
the difference between the agent and a doctor’s poli-
cies. We use the Jaccard coefficient to measure the
consistency. The Jaccard coefficient is defined as
(1/M)

∑M
i=1(1/Ti)

∑Ti

t=1 |U i
t ∩ Û i

t |/|U i
t ∪ Û i

t |, where
M is the number of patients and Ti is the number
of ICU days of the ith patient. The medication and
dosage at day t for the ith patient are defined as U i

t

and Û i
t , respectively, one from the learned policy and

the other from the doctor.
Furthermore, we try to fairly compare evalua-

tions among different Q-value regions so that per-

formance on cases with different severities could be
discussed. The learned Q-value units are divided
into regions with small intervals and used to calcu-
late averaging estimated mortality separately. The
estimated mortality in the region with most Q-value
units is defined as estimated major mortality. This
part of comparison will be discussed in Section 5.5.

5.4 Competitors

Competitors of the experiments include three
parts.

1. Basic-LSTM (baseline, BLSTM)

This baseline uses LSTM to deal with a sequence
of states and outputs the final action as a result of
supervised learning in sequence. While the LSTM
structure focuses on longitudinal records, states are
equally treated using two-layer fully connected net-
works and concatenated to obtain per-step action
prediction.

2. Reward-LSTM (RLSTM)

Reward-LSTM is a variant of basic-LSTM. It
has extra reward signals for the feedback of mortality,
which makes the prediction a Q-learning policy. It
uses a tabular Q-learning approach to learn the Q-
values that fit a doctor’s prescriptions and survival
situations.

3. Dueling deep Q-network (Q-learning, DDQN)

The DQN method (Mnih et al., 2015) uses a
deep neural network to learn the corresponding Q-
value function, and DDQN (Wang ZY et al., 2016)
combines DQN with the dueling structure which di-
vides the Q-value into separate values and advan-
tages to revise the value function.
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5.5 Results and analysis

We present the results and analysis for compar-
ison models and case studies for the effect of hyper-
parameters that control the model flexibility.

5.5.1 Model comparison

Table 3 shows the results of the estimated mor-
tality rate for all the chosen comparison models
on MIMIC-III. The results show that Q-learning
based approaches (DDQN and the proposed HRU-
control method) outperform recurrent deep ap-
proaches (basic-LSTM and reward-LSTM) in mor-
tality evaluation, and that our proposed method is
significantly better than all the adopted baselines
in terms of both total estimated mortality and esti-
mated major mortality. The total estimated mortal-
ity is calculated among all the Q-value intervals; the
estimated mortality of our framework is 12.3%. Si-
multaneously, our method improves the performance
in conservative Q-value regions. As discussed in Sec-
tion 5.3, the expected return Q is negatively corre-
lated with the mortality rate with a high correlation.
We consider that cases with too high or too low mor-
tality are less important than those in the middle
region. So, we divide Q-value units into different re-
gions. The estimated major mortality is calculated in
the major Q-value region, which includes most (over
80%) of the decisions in typical cases. This met-
ric is aimed to evaluate the performance on regular
decisions, and the exceptional cases with extremely
high or low Q-value predictions are not considered.
The estimated major mortality of our framework is
9.5%. The Q-value distribution is influenced by re-
construction parameter l, which will be discussed in
Sections 5.5.3 and 5.5.4.

5.5.2 Training with the temperature parameter

As mentioned in Section 4.2, sample risk uncer-
tainty is evaluated by d-score(s, π) in Eq. (9). The
temperature parameter is used to control d-score’s
volatility. If the d-score strictly distinguishes sam-
ples, the model takes good care of ambiguous sam-
ples but with less attention to clear samples. We
want the d-score to be strict to help the model learn
the reliability of samples. Still, strict d-score judg-
ment ignores information of the clear samples. This
means that the model would abandon information
from a portion of samples. Therefore, we use a strict

Table 3 Performance comparison of different methods

Method
Expected Estimated Major Jaccard

return mortality mortality coefficient

BLSTM – 22.1% – 0.376
RLSTM – 21.3% – 0.378
DDQN 14.3 14.6% 12.4% 0.289
Our method 15.1 12.3% 9.5% 0.357

The estimated mortality in expected Q-value’s adjacent in-
terval is entitled the estimated major mortality. Jaccard
coefficient is calculated between the physician’s and policy’s
decisions. “–” means that the expected return is not used
in the non-RL-based approaches for evaluation. Best results
are in bold

parameter setting at the beginning of the training
and gradually shrink parameter T to 1 at the end
of the iteration. Our model’s performance converges
to a final expected Q-value of 15.1, significantly bet-
ter than that of the state-of-the-art method DDQN,
which is 14.3.

5.5.3 Q-value distribution

The transfer module turns high-uncertainty
samples into a projection on the low-uncertainty do-
main, which keeps the final policy away from high-
risk decisions. Fig. 5a is produced by estimating
the mortality-expected return function in a similar
way to that in Weng et al. (2017). The Q-values are
provided by the model for each observed state, and
mortalities are calculated by the final survival status
of the corresponding Q-value. Fig. 5b is produced
by simply calculating the distribution of Q-values
for each observed state representation predicted by
the model. As shown in Fig. 5, if the reconstruc-
tion parameter l is large, the Q-value distribution
tends to be more conservative. Otherwise, it tends
to be more erratic. The spike in Fig. 5a is caused
mainly by the transfer module, which makes the
model make more conservative decisions around the
overall expected return, thus sacrificing the perfor-
mance in low- and high-confidence regions. In our
experiments, the model performs best in the metric
of the total estimated mortality when l=0.5. The
influence of different choices of l on the final perfor-
mance of estimated mortality is shown in Table 4.

5.5.4 Choice of l

Fig. 5b shows the influence of l on the estimated
mortality in different Q-value predictions. Over 80%
of policy prediction Q-values range from 10 to 20.
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With a large reconstruction parameter l, Q-values
are controlled not to make high-risk predictions,
which ensures conservative Q-value predictions to
have desirable mortality. Still, small Q-value pre-
dictions would be less stable. We use grid search to
find the ideal parameter of l = 0.5 and have the low-
est estimate mortality of 12.3% around an expected
Q-value of 15 (which is obtained by model training).
As shown in Fig. 5b, a large reconstruction parame-
ter l controls the model to make most of the decisions
around the expected value and sacrifice the perfor-
mance on other regions.

5.5.5 Performance trade-off

The trade-off between efficiency and conserva-
tiveness provides flexibility for different scenarios.
In a clinical environment that has accurate measure-
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Fig. 5 Expected Q-value distribution under different
reconstruction parameter l settings (a) and estimated
mortality in different Q-value intervals under the set-
ting of reconstruction for the transfer module (b)
In (a), l is the reconstruction parameter. In (b), l stands
for the portion of transferred state feature vectors which are
projected into the ideal domain in the reconstruction process.
References to color refer to the online version of this figure

ments with a mature and stable treatment process,
the model finds it easy to make clear prescriptions.
It is efficient for adjusting the model to maintain a
desirable accuracy on high-confidence regions; there
would be fewer cases in low-confidence regions. From
another perspective, if the clinical environment is
complicated and messy, measurements and obser-
vations could be ambiguous for a model to predict
a high-confidence prescription. Under this circum-
stance, it is important to maintain the accuracy of
the most prescription-confident regions around the
expected value. Conservative models leave more
space for doctor intervention for detailed treatment
plans. This brings more randomness for policy ex-
ploration and could be seen as a trade-off between
exploitation and exploration. Fig. 6 shows the per-
formance in continuous Q-value intervals. An effi-
cient parameter setting improves the performance on
high Q-value regions over the expected Q-value of 15
while trading off the performance in low-confidence
regions. A conservative parameter setting main-
tains the performance around the expected Q-value
of 15 and low-confidence regions with most of their
decisions.

Table 4 Performance with different reconstruction
parameter l settings used in the transfer module M(·)

l Estimated mortality (%) Expected return

0.1 12.5 15.00
0.2 12.6 15.01
0.5 12.3 14.98
0.8 14.3 15.28
0.9 14.7 15.41

Best results are in bold
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6 Conclusions

In this study, we have proposed a self-supervised
RL method with privileged learning to tackle the
treatment recommendation problem. The proposed
method provides flexibility on the trade-off between
efficiency and accuracy. The transfer module, with
the evaluation of high-risk uncertainty, helps the
model better learn the state representation of the
patient’s physiological features. The model uses re-
construction parameter l to switch between a conser-
vative policy and an efficient policy. On one hand,
the conservative policy centralizes most predictions
around the expected Q-value and retains the ensem-
ble mortality, and predictions are more likely to be
regarded as guiding suggestions. On the other hand,
the efficient policy provides exact treatment prescrip-
tions on easy-handing cases while sacrificing accu-
racy on ambiguous ones, which then can be left to
doctors.
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