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Abstract: In underwater scenes, the quality of the video and image acquired by the underwater imaging system suffers from severe 
degradation, influencing target detection and recognition. Thus, restoring real scenes from blurred videos and images is of great 
significance. Owing to the light absorption and scattering by suspended particles, the images acquired often have poor visibility, 
including color shift, low contrast, noise, and blurring issues. This paper aims to classify and compare some of the significant 
technologies in underwater image defogging, presenting a comprehensive picture of the current research landscape for researchers. 
First we analyze the reasons for degradation of underwater images and the underwater optical imaging model. Then we classify the 
underwater image defogging technologies into three categories, including image restoration approaches, image enhancement 
approaches, and deep learning approaches. Afterward, we present the objective evaluation metrics and analyze the state-of-the-art 
approaches. Finally, we summarize the shortcomings of the defogging approaches for underwater images and propose seven 
research directions. 
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1  Introduction  
 
Nowadays, the environments that offer global 

resources face increasingly harsher restrictions, yet 
the ocean contains extensive sources of minerals and 
energy: this leads to a greater importance and 
strategic significance for the exploitation of marine 
resources (Han M et al., 2020). Since underwater 
images are an important medium in the acquisition of 
marine information, the visual quality of these images 
directly influences their practical applications (Pan  

et al., 2019; You et al., 2020). Owing to the complex 
imaging scenarios, the images obtained easily 
degenerate because of the suspended particles. The 
degenerated images present low contrast, blurring, 
color distortions, noise, and halos (Li YJ et al., 2018). 
The degenerated underwater images severely restrict 
practical applications such as feature extraction, 
target detection, and feature matching (Mangeruga  
et al., 2018; Zhao MH et al., 2019).  

To obtain high-quality images for practical ap-
plications, researchers usually take the following 
measures, which have been extensively applied in 
many marine resource fields, to improve the visibility 
of underwater videos and images (Zhou et al., 2019a): 
improving underwater imaging environments, modi-
fying underwater monitoring sensors, and providing 
stable transmission channels. However, the above- 
mentioned measures are costly and limited in practi-
cal applications (Zhou et al., 2019a). Compared with 
the high-cost hardware, applying low-cost digital 
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image processing software has a more practical value 
(Zhang WD et al., 2019a). As the key technologies in 
underwater image processing, restoration and en-
hancement approaches for underwater images have 
become a research hotspot, and the above-mentioned 
technologies have been extensively applied in the 
fields of marine resource survey, marine conservation, 
and the military (Hou et al., 2019). There are an im-
portant theoretical basis and practical significance for 
researchers to adopt image processing technology to 
enhance image quality. 

To date, underwater optical imaging has been 
one of the challenging fields in computer vision 
research (Gao et al., 2019). Due to the limitations of 
the environment and the imaging equipment, the 
underwater images obtained have noise, blurring, and 
low contrast (Deng XY et al., 2019; Liu P et al., 2019). 
The ground-breaking research proposed by Duntley 
(1963) identified the limits for an underwater optical 
imaging model (UOIM). The UOIM (Jaffe, 1990) is 
shown in Fig. 1. The model has many limitations, 
which can be summarized as the following: 

1. Low contrast and blurring of details: influ-
enced by absorption and scattering, light represents 
exponential decay, leading to low contrast and blur-
ring of details in the images obtained. 

2. Color distortion: different from land imaging, 
different types of light have different attenuation rates 
in water due to the unique underwater environment 
and light conditions. The attenuation of light causes 
underwater images to be bluish or greenish (Marques 
et al., 2019). The selective attenuation model for un-
derwater light is shown in Fig. 2. In visible light, red 
light at a comparatively large wavelength has the 
weakest penetrability; when it reaches 5 m underwa-
ter, it is the first to disappear; at 10 m underwater, 
orange light disappears; at 20 m underwater, yellow 
light disappears; at 30 m underwater, green light is 
absorbed. Blue and green lights have smaller absorp-
tion attenuation coefficients in water and stronger 
penetrability; thus, underwater images usually appear 
to be blue-green. 

3. Noise: due to underwater micro-particles and 
the quality problems of the sensor devices, the images 
obtained have noise. 

4. Halo: in deep-sea scenes, since there is no 
compensation for atmospheric light, artificial light is 
needed as an auxiliary light. However, artificial 

lighting gives rise to uneven illumination, which leads 
to a situation where the images obtained have shadow 
or there is false contouring (Wang Y et al., 2019). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In conclusion, owing to the complexity of 

underwater scenarios and their attendant light sources, 
the transmission of light is influenced by medium 
absorption and scattering, severely degrading the 
quality of the collected underwater images. To apply 
computer vision technology to underwater imaging, 
underwater image defogging methods need to solve 
common problems: color casts, low contrast, noise, 
blurring of details, etc. The existing unambiguous 
approaches in underwater imaging can be divided into 
three categories: underwater image restoration ap-
proaches based on a physical model, underwater im-
age enhancement approaches based on a nonphysical 
model, and approaches based on deep learning. 

Fig. 1  Schematic of the underwater optical imaging model
Reprinted from Xie et al. (2018), Copyright 2018, with per-
mission from MDPI, Basel, Switzerland, licensed under CC BY 
4.0 
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Fig. 2  Selective attenuation model of underwater light
Reprinted from Iqbal et al. (2007), Copyright 2007, with 
permission from the International Association of Engineers, 
licensed under CC BY 3.0 
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This paper presents a comprehensive survey of 
underwater image clarity technologies to help pri-
mary researchers determine the current developments 
in underwater image research, the existing problems, 
and promising applications. This paper also encour-
ages researchers in the underwater imaging field to 
adopt underwater image processing technologies to 
help find practical solutions to the degradation of 
underwater images.  

In this paper we analyze the UOIM, the unam-
biguous approaches to underwater images, and the 
existing problems. The contributions are presented as 
follows: 

1. We introduce an underwater imaging model 
and reasons for degeneration of underwater images, 
including low contrast, blurring of details, color dis-
tortion, noise, and uneven illumination. 

2. We classify and introduce the current unam-
biguous approaches for underwater images into three 
categories. 

3. We test some representative approaches, an-
alyzing the advantages and disadvantages of each 
approach from subjective and objective perspectives. 

4. We present the characteristics and perfor-
mances of and problems in the current approaches 
toward underwater image research, and provide seven 
research directions. 

 
 

2  Jaffe-McGlamery underwater optical im-
aging model 

 
The Jaffe-McGlamery UOIM (Jaffe, 1990) is as 

displayed in Fig. 1. The light received by the camera 
is linearly composed of three parts: direct component 
Ed, forward-scattering component Efs, and back-  
scattering component Ebs.  

The linear combination of these three compo-
nents can be used to describe the underwater optical 
imaging model; the total irradiance ET is 

 
ET=Ed+Efs+Ebs.                         (1) 

 
Ed is the light directly reflected by the object, 

which does not scatter into the camera. Considering 
the effects of absorption and scattering, part of the 
light can be received by the camera (Nomura et al., 
2018), and Ed is defined as  

Ed=J(m, n)·t(m, n),                       (2) 
 

where (m, n) represents the pixel coordinates of the 
image, J(m, n) denotes scene radiance, and t(m, n) 
indicates the transmission map (TM). 

Efs is the light reflected by the object entering the 
camera at a small angle. Efs can be expressed as the 
convolution of Ed and a point spread function, which 
is defined as 

 

Efs=J(m, n)*k(m, n),                      (3) 
 
where k(m, n) indicates the convolution kernel func-
tion, which means the light scattering caused by 
forward scattering, and * is the convolution operation. 

Ebs is the light that enters the camera after scat-
tering by water or suspended particles. Ebs is defined 
as 

Ebs=(1−t(m, n))·Aλ,                      (4) 
 
where Aλ denotes the background light (BL). 

In most cases, because the distance from the 
object to the camera is short, forward scattering can 
be ignored. The UOIM can be simplified as 

 
Uλ(m, n)=Jλ(m, n)·tλ(m, n)+(1−tλ(m, n))·Aλ,    (5) 

 
where Uλ(m, n) represents the collected underwater 
image, λ{r, g, b}, Jλ(m, n)·tλ(m, n) is the direct 
component, and (1−tλ(m, n))·Aλ denotes the back- 
scattered component. 

To collect a clear image, the estimation of Jλ(i, j), 
tλ(i, j), and Aλ is of great significance. The estimated 
Aλ is substituted by the brightest pixel in Iλ(i, j), which 
is 

   ( , )
max min min ( , ) 0,

y m nx I
A = I i j = 

 
      (6) 

 
where Ω(m, n) indicates a square local patch, which 
centers on pixel (m, n), and λ represents the RGB 
color channel. 
 
 

3  Underwater image defogging approaches 
 
In recent years, researchers have proposed many 

underwater image defogging methods. A broad  
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categorization of the underwater image defogging 
approaches is given in Fig. 3. The underwater defog-
ging approaches used to improve the visual quality of 
underwater images can be classified into underwater 
image restoration approaches based on a physical 
model, underwater image enhancement approaches 
based on nonphysical models, and approaches based 
on deep learning (Zhang WD et al., 2019b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The underwater image enhancement methods 
based on nonphysical models do not need to consider 
the underwater imaging model; they need only the 
spatial relationships between pixel values to enhance 
the image contrast and color. For early underwater 
image enhancement, usually defogging methods were 
applied directly to the processing of underwater im-
ages. Later, underwater image enhancement methods 
were designed to address problems of blurring of 
degraded underwater images, low contrast, and color 
cast according to the UOIM, and these methods 
achieved the enhancement by changing the pixel 
value. Recently, approaches based on deep learning 
models, in particular, convolutional neural networks 
(CNNs) and generative adversarial networks (GANs), 
have been used to sharpen underwater images, and 
these methods enhanced image quality by learning to 
hide certain characteristics (Abu and Diamant, 2019). 

3.1  Underwater image restoration approaches 

Underwater image restoration approaches based 
on physical models aim to reduce the effects produced 
by the underwater environment. Most methods are 
based on the Jaffe-McGlamery model (McGlamery, 

1980). This model is a sophisticated underwater op-
tical imaging system, which uses the prior knowledge 
of the image and model parameters to reconstruct the 
real underwater scenes (Jaffe, 1990). This subsection 
analyzes the underwater image restoration methods in 
detail from three aspects, prior-knowledge-based 
approaches, polarimetric imaging approaches, and 
stereo imaging approaches.  

Prior-knowledge-based approaches are a repre-
sentative of software-based methods. They can ef-
fectively achieve underwater image defogging. The 
software methods introduced here are dark channel 
prior (DCP) and DCP-based variants. In general, 
these methods are based on assumptions about dif-
ferent coefficients, which may not be sufficiently 
accurate. Compared with hardware-based methods, 
software-based methods simplify modulation, reduce 
the investment cost, and are easy to use. 

Polarimetric imaging methods and stereo imag-
ing methods are regarded as hardware-based imaging 
methods. These underwater image defogging meth-
ods use hardware for underwater image restoration. 
The hardware devices used are sensors, polarizers, 
and stereo imaging equipment. 

Polarization imaging technology uses polarized 
light sources or polarized cameras to capture under-
water images. To a certain extent, it can reduce the 
impact of suspended particles and back-scattered light, 
which can improve the contrast in underwater images. 
Stereo imaging technology puts a stereo camera on 
the seabed to capture images.  

Hardware-based underwater image defogging 
methods do not need to consider a priori knowledge 
of the imaging environment, and simply use physical 
hardware equipment to improve the visual quality of 
the images. Most of these methods are easy to im-
plement and have low computational complexity. 
However, the degradation of the underwater image is 
not considered, and this is the essential reason that the 
processing result does not necessarily represent the 
true appearance of the image, that the details of the 
image are not sufficiently enhanced, and that the 
processed image has obvious noise amplification 
problems. 

3.1.1  Prior-knowledge-based approaches 

DCP technology is an effective defogging 
method based on the Jaffe-McGlamery model. The 

Fig. 3  Categories of underwater image defogging 
approaches 
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flowchart of the DCP defogging method can be seen 
in Fig. 4. The aim of this model is to improve the 
accuracy in the estimated BL and TM (Singh and 
Kumar, 2019). 

 
 
 
 
 
 
 
 
DCP was designed by He KM et al. (2009), and 

it can be used to effectively estimate the TM. Many 
researchers have made improvements based on the 
DCP model, including Drews et al. (2013) and Wen et 
al. (2013). However, they calculated only the dark 
channel in the blue and green channels: 

 

udark {g,b} ( , )

( )
( , ) min min

( )
= ( , )min min (1 ( , )) 0.

y m n

y

J y
J m n

A

J y
t m n t m n

A
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Based on Eqs. (5) and (7), the TM ( , )t m n  is 
 

( )
( , )=1 min min .

y

I y
t m n
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The final result F(m, n) is 
 

0

( , )
( , ) .

max( ( , ), )

I m n A
F m n A

t m n t

 




 





              (9) 

 

When ( , )t m n  is close to 0, the direct transmission 

part will be very close to 0. Directly restoring this part 
of the scene may amplify the noise in this area, so we 
need to set a minimum value for the transmission rate 
t0; usually, the value is 0.1. 

The restoration method based on prior infor-
mation needs to extract physical properties through 
the prior knowledge and hypotheses, and then esti-
mates the BL and TM using these properties to restore 
an underwater image. There are several variants of 
TM and BL estimation approaches, as listed in  
Table 1 (Yang M et al., 2019). Compared with the 

land environment, in the underwater environment, 
DCP is more likely to be influenced by light attenua-
tion. Thus, some researchers improved and expanded 
DCP based on the underwater physical properties. 

Chao and Wang (2010) eliminated the influence 
of scattering and restored underwater images using 
the DCP method. However, the restored images were 
not satisfactory, as their method may also lead to color 
distortions. An easily implemented enhancement 
approach based on DCP for underwater images was 
proposed by Yang HY et al. (2011). The airlight was 
estimated by DCP, and the depth map was generated 
using the median filter. The highest blue color chan-
nel was set as the average target value. It can balance 
the red and green channels and achieve color correc-
tion. However, the method cannot solve the color cast 
when the image appears green. Therefore, Chiang and 
Chen (2012) combined the wavelength compensation 
and image dehazing (WCID) algorithm with the 
classical DCP defogging method, considering artifi-
cial light, the scattering effect of the transmission path, 
and the influence of color attenuation for the first time. 
This method can better restore the blue-color images, 
eliminating the effect of artificial light. Yet, when 
processing images with a severe color cast problem, 
the method is invalid. Based on the UOIM, Zhao XW 
et al. (2015) proposed a defogging approach without 
requiring camera parameters or underwater optical 
properties in advance. The transmission of three color 
channels was estimated separately based on DCP, 
through the relationship between the global BL of 
underwater images and the inherent optical properties. 
To reduce information loss in the output images, Li 
CY et al. (2016) introduced a restoration algorithm 
using the minimum information loss principle and 
underwater optical imaging characteristics. This 
method generates two enhanced underwater images 
simultaneously. One image has a realistic appearance 
and natural color, and the other has higher contrast 
and brightness. This approach does not require to 
obtain multiple images and complex information in 
the same scenario. 

When light is transmitting in water, compared 
with blue light and green light, red light has a larger 
wavelength and lower frequency, and it is attenuated 
more quickly in water. Thus, red light is defined as the 
dark channel. Galdran et al. (2015) provided a red 
channel approach (RCP), which restores colors that 
are related to a smaller wavelength, and this can be  

Fig. 4  The dark channel prior (DCP) defogging model
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Table 1  Mathematical formulas for background light (BL) and transmission map (TM) estimation 

Reference BL estimation TM estimation Prior
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explained as a variant of the DCP, adding prior satu-
ration to DCP to process the artificial light. This 
method can effectively restore the lost contrast. Yet, 
this method considers only the red channel to measure 
the transmission, thus estimating the scene depth in-
accurately, leading to poor restoration performance. 

To remove the deviations caused by the red 
channel, a method to estimate BL and TM was pro-
posed by Wen et al. (2013). This approach can handle 
the deep-sea images and images acquired from a tur-
bid underwater environment. Drews et al. (2013) gave 
a method to estimate TM in a single underwater im-
age, which assumes that the main sources of the un-
derwater visual information are from the blue and 
green channels, while the underwater DCP (UDCP) 
cannot be successful when there exist white objects or 
artificial light. Based on depth-related colors, Peng et 
al. (2018) proposed the generalized DCP (GDCP), 
which calculates the difference between BL and the 
intensity of observation to estimate the environmental 
light and TM. When there is bright sand in the fore-
ground in some underwater images, the sand will be 
mistaken as background using the DCP-based method; 
in this case, the precondition is not valid, and the 
methods that consider only the RGB channels may 
cause an error in scene depth estimation. 

When the prior information is incorrect, methods 
based on prior information would usually result in 
large estimation errors. Normal underwater images 
lack reliable prior information, which has become a 
significant obstacle for this research orientation. Thus, 
besides the mentioned prior information, some other 
underwater restoration approaches have been used to 
restore images extensively. 

As an alternative to DCP methods, Carlevaris- 
Bianco et al. (2010) introduced an algorithm for un-
derwater image scene depth estimation, which is the 
maximum intensity prior (MIP) method. This ap-
proach estimates the TM using the difference between 
the maximum intensity of the R channel and the 
maximum intensity of the G and B channels, which is 
related to wavelength decay. When the difference 
between the attenuations in the RGB channels is little, 
light scattering cannot be removed, as stated by Peng 
et al. (2015), who proposed the blurriness prior (BP). 
The larger the depth of water, the vaguer the under-
water objects, while the BP can conduct a depth es-
timation and restore the images. In another work by 

Peng and Cosman (2017), the image blurring and 
light absorption (IBLA) algorithm was proposed to 
improve the BP. This method combines hierarchical 
search and light transmission properties to estimate 
the global BL. It can more accurately estimate the BL 
and the depth of underwater scenes, and remove the 
effects of suspended particles and bright objects from 
many complicated scenes. Song et al. (2018) pro-
posed an approach based on the underwater light 
attenuation prior (ULAP), which can effectively es-
timate the scene depth. It assumes that the scene depth 
is closely related to the difference between the 
maximum value of the G and B channels and the 
value of the R channel. Dai et al. (2020) proposed a 
method which decomposes the attenuation color 
curves to enhance single underwater images. The 
method includes BL research, TM calculation, and 
color balance, using a score formula and quadtree 
subdivision hierarchy search method to estimate BL, 
decomposing the decay curves on the RGB channels 
of underwater images to collect the TM, and using the 
bright channel balance to obtain images with a natural 
appearance. 

In underwater scenes, some hypotheses of the 
DCP-based approaches are unreasonable. Since some 
parameters of the UOIM would undergo great 
changes due to the different environments, the esti-
mation of parameters would influence the restoration 
results directly, and the key parameters of the UOIM, 
including BL and TM. A few famous underwater 
restoration technologies are presented in Table 1, 
including DCP, MIP, RCP, UDCP, BP, ULAP, IBLA, 
and DCAC. The mathematical models of these tech-
nologies have been applied to the estimation of scene 
depth extensively. Table 1 presents many BLs, TMs, 
and other prior estimation methods. In Table 1, λ{r, 

g, b}, and λ′{g, b}; (i, j) represents the pixel coor-

dinates; Iλ denotes the image for foggy days; A in-

dicates the BL; ( , )t i j  denotes the TM; Dmip(i, j) is 

the difference between the maximum intensity of the 
R channel and G, B channels; ω represents the weight; 
b is the bias of the network; Fs is the soft matting; Pb 
denotes the refined blurriness map; Ω(i, j) indicates 
the local path which takes (i, j) as the central coordi-
nates; p0.1% represents the brightest pixels (top 0.1% ) 
picked in Iλ(i, j). 
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In Fig. 5, we compare several real underwater 
image restoration methods. Fig. 5a shows that de-
graded underwater images suffer from absorption and 
scattering. Figs. 5b–5h show a comparison of the 
results obtained using the restoration methods. The 
method from Chao and Wang (2010) shows no sig-
nificant improvement in the restored images. It retains 
a bluish and greenish color cast. The method from 
Chiang and Chen (2012) could deal with defogging 
and color cast simultaneously. Due to the influence of 
suspended particles, the scene depth estimation is not 
accurate. Therefore, there are halo artifacts and path 
effects in the restored images. Figs. 5d–5h show the 
restoration results obtained on the raw underwater 
images using the methods of Drews et al. (2013), Li 
CY et al. (2016), Peng et al. (2015), Peng and Cosman 
(2017), and Song et al. (2018). We can see success in 
dehazing because the same image formation model is 
used. Drews et al. (2013) used the blue and green 
channels to estimate the TM, but it is not valid for 
some underwater images. The over-bright and over- 
dark areas are revealed in the restored images. The 
method from Li CY et al. (2016) can improve contrast 
and correct color distortion. The over-exposure ap-
pearance, however, remains. Figs. 5f and 5g are not  
as good as Fig. 5e. The selective attenuation of  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

underwater light is ignored when estimating TMs and 
BL (Peng and Cosman, 2017). Fig. 5h shows that 
Song et al. (2018)’s method can effectively dehaze 
images, improve details, and achieve better visual 
performance in underwater scenarios. 

3.1.2  Polarimetric imaging approaches 

Polarization is an inherent attribute of light, and 
it can provide more valuable information than the 
scene spectrum (color) and intensity distribution. 
Images processed by polarization methods hold 
higher visual contrast than those processed by tradi-
tional images (Han PL et al., 2018). By collecting 
polarization images under different polarization states 
in the same scene, underwater polarization imaging 
technology accurately estimates the polarization 
characteristics (polarization degree or polarization 
angle) of back-scattering light, inverting the degen-
eration process, acquiring the background scattering 
light intensity and the transmission coefficient, and 
improving the clarity of images. Thus, this method 
has been applied extensively in the restoration of 
underwater images. 

The schematic of the experimental setup for 
underwater imaging is depicted in Fig. 6. By simu-
lating a real-world underwater imaging scenario, the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Comparison of underwater image restoration methods: (a) underwater raw images; (b–h) images obtained using 
Chao and Wang (2010), Chiang and Chen (2012), Drews et al. (2013), Li CY et al. (2016), Peng et al. (2015), Peng and 
Cosman (2017), and Song et al. (2018)’s methods, respectively 
Rows 1 and 2 are reprinted from the public data sets given by Li CY et al. (2019). References to color refer to the online version 
of this figure 
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polarization characteristics of the target object are 
estimated. The light source can be chosen as a light 
emitting diode (LED) lamp or laser source. The ro-
tating polarizer is put in front of the charge-coupled 
device (CCD) camera as the analyzer. The light out-
put from the lamp is reflected by the target object, and 
then through the rotating polarizer to impinge on the 
CCD camera. We fill the tank with clean water, and 
add different impurities to the water to make it turbid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Schechner et al. (2001) proposed for the first 

time a defogging scheme based on polarization im-
aging to improve the clarity of foggy images. In re-
cent years, this team and other researchers have been 
conducting further study on the theory and applying it 
to improve the quality of underwater images. 

To recover the real scenes, Schechner et al. 
(2003) used specialized hardware equipment to col-
lect many different polarization angle images in the 
same scene, calculating the scene depth through the 
relationship between polarization and back scattering. 
This method does not need a particular scattering 
model, but when the visibility is low or the light 
condition is poor, this method has poor performance. 
Schechner and Karpel (2005) proposed an image 
inverting model based on a polarization apparatus, 
collecting images from the target object at different 
angles. This method could restore the structural in-
formation of the scene without calculating the envi-
ronment parameters or natural light, thus improving 
the visibility of the images. Yet, when collecting im-
ages from moving objects, it is hard to collect the 
same polarization images at the same time. Yemel-
yanov et al. (2006) proposed an adaptive algorithm 
for two-channel polarization sensing under various 

polarization statistics with nonuniform distributions. 
This algorithm uses principal component analysis to 
determine the best linear combination for the polari-
zation channel, separating the polarization object 
from the background. 

A preliminary study shows that polarization can 
modulate the back scattering (Giakos, 2004; Wu et al., 
2020). Treibitz and Schechner (2006) proposed the 
instant 3Descatter, eliminating the rest of the back- 
scattering, and the 3D structure of a scene from the 
frames obtained by installing a polarization apparatus, 
to collect images in the light source and the camera. 
However, some parts of the hypothesis in this method 
are false. Thus, it is restricted in its applicability. 

Because noise would influence the result of 
imaging, Schechner and Averbuch (2007) proposed 
an adaptive polarization smoothing method, which 
can restore the visibility and restrict the amplification 
of noise at the same time. Treibitz and Schechner 
(2009) obtained two polarization images at two or-
thogonal directions to restore the original scene, im-
proving the image contrast. However, many unknown 
parameters (such as media attenuation coefficient and 
scene depth) cannot be accurately estimated. Treibitz 
and Schechner (2012) collected multidirectional il-
lumination fusion of images under many artificial 
lights, which could solve problems of uneven illu-
mination and partial low contrast, and collect clear 
underwater images. Xu et al. (2015) proposed a 
method for underwater light communication perfor-
mance evaluation based on polarization information, 
analyzing the transmitting characteristics of polariza-
tion light under different water types and link dis-
tances. Huang BJ et al. (2016) proposed a method for 
underwater image recovery based on estimating the 
polarized difference (PD) image of the target signal. 
This method uses nonlinear calculation, but many 
parameters need to be optimized, which is time- 
consuming. Hu et al. (2017) proposed an underwater 
image restoration method based on adjustment of the 
TM. Without considering the polarization degree of 
objects, this method can significantly improve and 
optimize the quality of images. Hu et al. (2018) pro-
posed an underwater image restoration method based 
on different position polarization degrees and the 
back-scattering intensity of underwater images under 
uneven illumination. This method can effectively 

Fig. 6  Schematic of the experimental setup for underwater
imaging 
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improve the quality of underwater images. Amer et al. 
(2019) combined the polarization imaging optical 
system with the optimized DCP method to signifi-
cantly improve the quality of underwater images. Liu 
F et al. (2019) proposed an underwater polarization 
imaging model which considers the scattering and 
absorption effect of water. This model uses polariza-
tion information to estimate the target scene distance, 
removing the back-scattering problem. Then it uses 
the gray world assumption and the information of the 
image at a particular wavelength to adjust the color 
distortion caused by absorption. 

To obtain the four-dimensional light field and 
polarization information by single imaging, Tian et al. 
(2019) proposed radiation of the object extraction 
method based on the polarization degree of the multi- 
view image and back-scattering intensity. This 
method can collect four-dimensional light field in-
formation and polarization information at the same 
time. Liu TG et al. (2020) proposed a method of po-
larimetric color image recovery in an underwater 
environment based on compensating for the crosstalk 
effect while estimating the transmittances of RGB 
channels. The proposed method can correctly esti-
mate the transmission rate of RGB channels, en-
hancing the underwater image contrast and correcting 
color. 

Using polarization-based methods can enhance 
visibility and estimate distance in scattering media. 
The formation of images under artificial illumination 
was studied by Treibitz and Schechner (2009). The 
method is simple, and the hardware is compact. Two 
images of the underwater scenario can be taken im-
mediately by the camera with polarizers in different 
states. Fig. 7 shows an underwater image taken in the 
Mediterranean using artificial light sources and the 
corresponding de-scattered image. 

 
 
 
 
 
 
 
 
 
 

3.1.3  Stereo imaging approaches 

In recent years, 3D image technology has em-
braced significant developments, but there are few 
defogging methods based on stereo imaging tech-
nology. Roser et al. (2014) proposed a stereo imaging 
method for autonomous underwater vehicles (AUVs), 
which estimates the visibility coefficients to restore 
underwater images (using stereo matching and a de-
caying light model to restore the underwater visibil-
ity). In an underwater environment of high turbidity, 
this method uses two stereograms under processing to 
improve the quality of the entire image. First, this 
method creates a rough 3D scene map from the de-
generated stereogram, using the atmospheric scatter-
ing physical model under natural light to estimate 
visibility; then, it uses the optimized stereo map to 
estimate the visibility coefficients accurately and 
reconstruct the 3D scenes. This method evaluates 
experiment statistics collected from coastal waters at 
low visibility and with insufficient natural light using 
an AUV. This method can enhance underwater im-
ages in real time. However, in the shallow water, the 
stereo matching algorithm of this method has poor 
robustness. Lee et al. (2014) proposed a novel ap-
proach using stereo foggy-day images to extract 
defogged images. This method calculates the scat-
tering coefficient and depth information to estimate 
the TM of the underwater image. It does not require 
prior knowledge, restrictions, or many images taken 
at different times. Nevertheless, because the esti-
mated disparity layer appears as discontinuous phe-
nomena in the far scenes, the structural information of 
natural scenes cannot be obtained. 

Underwater image restoration approaches also 
have drawbacks. These approaches require physical 
models or specialized hardware equipment to im-
prove the quality of the underwater images. Although 
these methods provide significant performances in the 
restoration of the visual effect of underwater images, 
there are still some problems affecting their applica-
bility. For instance, these methods based on the im-
aging model need to collect many parameters, among 
which many will change with the change of scenes, 
which limits the application of physical models. 
Methods based on polarization imaging and stereo 
imaging require particular hardware equipment, 
which is expensive and complicated. The main dis-
advantage of underwater image restoration methods 

Fig. 7  Raw image (a) and de-scattered image (b) 
Reprinted from Treibitz and Schechner (2006), Copyright
2006, with permission from IEEE 
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based on physical models is the need for many cal-
culation resources. 

3.2  Underwater image enhancement approaches 

Underwater image enhancement methods do not 
need the optical imaging model or any physical 
characteristics. The enhancement methods improve 
the visual effects in underwater images directly by 
nonlinear stretching of pixel values and an even dis-
tribution of the original histogram, which is distrib-
uted randomly. In recent years, researchers have 
proposed many underwater image enhancement 
methods, such as the histogram equalization method, 
color correction method, fusion method, and Retinex 
algorithm. These methods have been proved to work 
for the defogging of underwater images. 

3.2.1  Histogram equalization approaches 

Histogram indicates the distribution of the image 
tone (Chang et al., 2018). Histogram equalization is a 
typical image enhancement approach; it is used to 
solve the problem of low contrast. Compared with 
images acquired on land, the distribution of the un-
derwater image pixel histogram is more concentrated. 
Thus, the dynamic range of image histograms is am-
plified to enhance the contrast of degenerated images 
(Kapoor et al., 2019). 

Some researchers enhanced images by changing 
the distribution of the histogram (Hummel, 1977). As 
a typical enhancement approach, the histogram 
equalization method has attracted great attention from 
researchers. The researchers in this field improve the 
traditional histogram equalization method to achieve 
better enhancement of images. Pizer et al. (1987) 
proposed adaptive histogram equalization (AHE), 
which changes functions in the neighborhood to 
convert every pixel, optimizing the partial contrast of 
images effectively, but noise in the homogeneous 
region is enhanced. Kim TK et al. (1998) proposed a 
local histogram equalization (LHE), which highlights 
the image characteristics by defining image sub-blocks 
to conduct histogram equalization. LHE requires 
huge computation, and includes problems of blocking 
effect and color distortion. Kim YT (1997) proposed 
the brightness-preserving bi-histogram equalization 
(BBHE), which decomposes the image and makes the 
components of the decomposed images almost equal 
to the mean value. The BBHE method can enhance 

the image contrast while preserving its brightness. 
Compared with traditional histogram equalization 
methods, this method requires more sophisticated 
hardware. Reza (2004) proposed the contrast limited 
adaptive histogram equalization (CLAHE), which is 
an expansion of AHE, effectively restricting the am-
plification of noise, but the enhancement effect 
around the borders is poor. Tang JR and Isa (2017) 
proposed bi-histogram equalization using modified 
histogram bins (BHEMHB), which enhances the 
image details and the average brightness by mini-
mizing the high-frequency bin. However, noise still 
exists in the enhanced images. Demirel and Anbar-
jafari (2011) proposed a restoration method by in-
verse discrete wavelet transform (IDWT), which 
conducts wavelet decomposition on images to acquire 
some subband images, and the subbands of high fre-
quency and the original input image are interpolated, 
adjusting the coefficients obtained by the interpola-
tion of high-frequency subband images through the 
changes in stable wavelets. Finally, the IDWT method 
fuses these subband images and generates high- 
resolution images. Deng G (2011) introduced a gen-
eralized unsharp masking (GUM) method, which 
enhances image sharpness by creating an exploratory 
data model as the framework. The GUM method can 
enhance the contrast and sharpness at the same time, 
eliminating the halo artifact. Nevertheless, the effect 
of preserving the edges is poor. Fu et al. (2015) pro-
posed a probabilistic (PB) method of linear en-
hancement based on illumination and reflectance. 
Compared with the logarithmic domain, the linear 
domain model can better indicate the prior infor-
mation. They use an alternating direction method of 
multipliers to effectively estimate the reflectance and 
illumination, resulting in pleasing results. However, 
the PB method cannot expand the dynamic range to 
enhance contrast. 

This subsection provides an insight into the 
histogram equalization approach. Histogram equali-
zation and its evolutionary approaches ignore the 
underwater optical imaging model, which can en-
hance the contrast; artifacts and noise are introduced. 
If some applications need to enhance the contrast of 
the underwater image, histogram equalization can be 
added to the UOIM-based method as post-processing. 
The next subsection is dedicated to color correction 
approaches and their merits and demerits. 
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3.2.2  Color correction approaches 

Although histogram equalization approaches can 
effectively enhance contrast, these approaches cannot 
solve color cast. For instance, the white balance ap-
proaches in color spaces and the Retinex approach 
(Raihan et al., 2019) were proposed to keep the color 
constant. 

1. White balance approaches 
White balance is used to improve the color cast 

of the image. In water, the perception of color is re-
lated to depth, and a crucial problem is the blue- 
greenish effect that needs to be corrected. We com-
pared existing partial white balance methods: 
MaxRGB (Land, 1977), gray world (Buchsbaum, 
1980), shades of gray (Finlayson and Trezzi, 2004), 
gray edge (van de Weijer et al., 2007), weighted gray 
edge (Gijsenij et al., 2012), and automatic white 
balance (Weng et al., 2005). These methods aim at 
removing the undesired color shift due to the selective 
absorption caused by illumination or medium. Most 
of these methods make a specific assumption about 
the color of the light source. These methods achieve 
color constancy by dividing each color channel by the 
corresponding normalized light source intensity.  

Among these approaches, the MaxRGB method 
(Land, 1977) assumes that the reflections from RGB 
channels are equal, selecting the maximum RGB 
values from different channels for the estimation of 
the light source; the gray world method (Buchsbaum, 
1980) assumes that the average values of the average 
reflections of the light in natural scenes are fixed in 
most cases, using the average pixel values of the three 
channels to estimate the light color, and the fixed 
value is similar to “gray;” the shades of gray method 
(Finlayson and Trezzi, 2004) calculates the light 
value of each channel in the scenes by the Minkowski 
p-norm. When p=1, this method is a particular case of 
the gray world method; when p=∞, it can be seen as 
the MaxRGB method. The gray edge method (van de 
Weijer et al., 2007), which is the gray edge assump-
tion, assumes that the average value of the differen-
tials of the surface reflection coefficients in the scenes 
is achromatic. Based on the derivative structure of the 
images, this method achieves a color constant. The 
weighted gray edge method (Gijsenij et al., 2012) 
evaluates the performance of the constancy of edge 
colors using these different edge types. The automatic 

white balance method (Weng et al., 2005) examines 
the preferential white dots in the scenes using a dy-
namic threshold. 

As depicted in Fig. 8, the gray world method 
(Buchsbaum, 1980) can effectively remove the bluish 
color cast. Due to the overcompensation of the red 
channel, the resulting images for this method present 
reddish artifacts. Although the white balance tech-
niques are crucial in removing the color cast, these 
methods are not sufficient for solving the blurring and 
unsharp edge problem caused by inherent scattering. 

2. Approaches in other color spaces 
In the RGB color space, components of the 

three-color channels are closely connected. Thus, it is 
difficult to correct colors by modulating the three 
components. Some researchers have proposed 
methods for other color spaces, including HSI, HSV, 
and CIE-Lab (Tang C et al., 2019). 

Torres-Méndez and Dudek (2005) used learning 
constraints to convert the problem of color restoration 
to energy minimization. This method uses the Markov 
random field (MRF) to describe the relatedness be-
tween color-distorted images and real-color under-
water images. Using belief propagation, this method 
distributes the possible color information to the pixels 
in the color-distorted images. This method also uses 
abundant underwater scene data to examine the reli-
ability. Some factors influence the color correction 
effects, such as inadequate reliable information as an 
input and statistical inconsistency of the images in the 
training set. Iqbal et al. (2007) proposed the integrated 
color model (ICM) based on underwater images that 
slid and stretch in the RGB color space and HSI color 
space. This method balances the image contrast and 
enhances the saturability and brightness of the images, 
optimizing the image color. Iqbal et al. (2010) pro-
posed the unsupervised color correction method 
(UCM) to deal with the problems of low contrast and 
uneven color cast brought about by underwater scat-
tering and absorption. This method reduces color cast 
by equalizing color values and enhances the images 
by contrast enhancement, stretching the red histogram 
to the right maximum value and stretching the blue 
histogram to the left minimum value. Finally, this 
method uses the saturability and brightness of the HSI 
color model to enhance contrast, using saturability to 
enhance color authenticity and correcting the bright-
ness components to deal with the problem of light  
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intensity. However, the enhancement for some parts 
of the composed images is not well addressed, creat-
ing noise at the same time. Ghani and Isa (2014) in-
troduced the composition of dual-intensity images 
and the Rayleigh-stretching method to enhance the 
quality of underwater images. This method applies 
the improved von Kries hypothesis, guaranteeing the 
rationality of the evaluation of gain coefficients. At 
the same time, this method uses the average value 
distributed by Rayleigh to stretch into two images of 
different intensities. However, some parts of the green 
channel are greatly enhanced, resulting in the dim 
restored images. Based on Iqbal’s method, Ghani and 
Isa (2015a) redistributed the input images by com-
bining the Rayleigh distribution function with the 
changes of ICM and UCM, further enhancing the 
image contrast and reducing over-enhancement, over- 
saturability, and noise. To deal with the issue of color 
cast, Ghani and Isa (2017) proposed the recursive 
adaptive histogram modification (RAHIM) method, 
which modifies the histogram according to Rayleigh 
distribution. In the HSV space, this method modifies 
the saturability and brightness of images to strengthen 
the natural attributes of the images, turning the im-
ages into the RGB space and obtaining the enhanced 
images. 

In another interesting set of studies, Ghani et al. 
(2016) conducted work based on the Rayleigh dis-
tribution in the RGB and HSV color models to com-
bine two images of different intensities. This method 
corrects the colors by selecting the average values to 
guarantee the appropriate gain factor values. As for 
deep-water images though, the enhancement is not  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
significant. Based on Ghani et al. (2016), Azmi et al. 
(2019) proposed nature-based underwater image 
color enhancement through the fusion of a swarm- 
intelligence algorithm, which superimposes color cast 
neutralization, dual-intensity image fusion, and 
means equalization steps. This method can effectively 
solve the problem of bluish color cast. Based on the 
RGB and CIE-Lab color models, Huang DM et al. 
(2018) proposed the relative global histogram stretch 
(RGHS) method. Based on the images preprocessed 
using the gray world theory, this method adopts the 
adaptive histogram stretching in the RGB color model 
according to the distribution characteristics of the 
RGB channel and the selective decay of the light 
transmission in water. Finally, this method conducts 
linear and curve adaptive stretching optimization of 
the brightness L and components of colors a and b in 
the CIE-Lab color space retrospectively. The relative 
global histogram stretch method can improve the 
visual effect of images and restore useful information. 

3. Retinex 
The Retinex model simulates the perception 

mechanism of the human visual system, achieving 
color constancy, local contrast enhancement, dynamic 
range condensation, and others by estimating and 
eliminating the illumination in the scenes. It can be 
known from this model that the object colors per-
ceived by human eyes are related to the reflection 
characteristics of the object surface, but the object 
colors are not related to the particular object illumi-
nation. In early research, this method was applied to 
image defogging (Wang YF et al., 2016). Because 
there exist similar circumstances in the underwater 

Fig. 8  Results of different white balance methods: (a) raw images; (b) MaxRGB (Land, 1977); (c) gray world (Buchsbaum, 
1980); (d) shades of gray (Finlayson and Trezzi, 2004); (e) gray edge (van de Weijer et al., 2007); (f) weighted gray edge 
(Gijsenij et al., 2012); (g) automatic white balance (Weng et al., 2005)  
References to color refer to the online version of this figure 
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environment, some researchers use this method to 
enhance the underwater image. 

Joshi and Kamathe (2008) used the Retinex 
method to enhance underwater images. Compared 
with the enhanced images of foggy days, underwater 
image enhancement has some limitations. Fu et al. 
(2014) proposed a variational Retinex single under-
water image enhancement method. The method con-
verts underwater images into the Lab color space, 
decomposing the reflection rate and light by Retinex 
and the L component. This method uses bilateral 
filtering and trilateral filtering to process different 
colors under different restrictions, improving image 
colors, enhancing the brightness of the dark regions in 
the images, and enhancing edges and details. This 
method involves 4–6 iterations of the process, which 
has high time complexity. Alex and Supriya (2015) 
proposed an underwater image enhancement algo-
rithm based on single-scale Retinex. This method 
converts images into the YCbCr color space, using 
the Gaussian function to conduct convolution pro-
cessing while enhancing the Y and Cr components. 
The method has been shown to work except that the 
enhancement is uneven. Zhang S et al. (2017) pro-
posed an underwater image enhancement method 
based on the expansion of the multi-scale Retinex. 
According to the characteristics of the three channels 
in the CIE-Lab color space, this method conducts 
bilateral filtering and trilateral filtering for the 
brightness channel L and the color components a and 
b, eliminating the incident light and restricting the 
halo artifact. Zhou et al. (2019b) proposed the  
Retinex-based Laplacian pyramid method. This 
method adds the Gamma correction illumination back 
to reflection to achieve color enhancement, and then 
detail enhancement is achieved by the Laplacian 
pyramid to process the reflection component. Finally, 
the detailed enhanced image and color corrected im-
age are used to reconstruct a clear image. 

Figs. 9b–9h show the comparison results pro-
duced by underwater image enhancement methods. 
They are effective non-physical methods. As shown 
in Fig. 9b, Iqbal’s method (Iqbal et al., 2007) cannot 
improve the visual effect of overall images when the 
background has a bluish color cast. The yellowish 
resulting images are produced by Iqbal’s method 
(Iqbal et al., 2010) when the histogram of the blue 
channel cannot be stretched effectively. Compared 

with Iqbal’s method (Iqbal et al., 2007, 2010), Ghani’s 
method (Ghani and Isa, 2014) successfully increases 
detailed information and reduces the noise. Because 
the underwater image has lower contrast than the 
natural image, the edge information is not obvious. 
Therefore, Fig. 9d shows a reddish appearance.  
Fig. 9e shows that Huang’s method (Huang DM et al., 
2018) presents better details, color saturation, and 
removes the noise. Pan’s method (Pan et al., 2018) 
can remove color distortion and improve the clarity of 
underwater images. Yet, this method can enhance 
only part of the degraded images. Fu’s method (Fu et 
al., 2014) and Zhou’s method (Zhou et al., 2019b) can 
effectively improve global naturalness, because these 
methods are based on Retinex; they not only enhance 
details but also adjust illumination to match the hu-
man visual system. Zhou’s method (Zhou et al., 
2019b) can maintain the genuine color of the image. 

3.2.3  Fusion-based approaches 

Fusion-based approaches adopt the fusion 
strategy to fuse images with different image charac-
teristics. Ancuti et al. (2012) enhanced the visual 
effect of underwater images and videos based on 
fusion. This method first obtains the contrast-  
enhanced image and fuses it with a color-corrected 
image, then defines the four fusion weights according 
to the holistic contrast, partial contrast, salience map, 
and exposure image of the two images, and finally 
fuses the fusion component diagram with the defined 
weight component diagram based on a multi-scale 
fusion strategy. This method can effectively solve the 
color cast of images and videos, enhancing contrast. 
However, as for different underwater environments, 
the weighting coefficient in the fusion process is hard 
to determine. Ghani and Isa (2015b) proposed a novel 
method which fuses the holistic and partial contrast to 
correct and enhance low-quality underwater images. 
This method can enhance the image contrast and 
improve image details at the same time. For images of 
low brightness, however, there would be color dis-
tortion. Li CY et al. (2017) proposed a fusion method 
based on color correction and underwater image 
defogging. This method uses the color prior to correct 
the underwater image color model, and then the im-
proved image defogging methods to enhance the 
visual effect of the underwater images. 
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Based on a variation of the study in 2012, Ancuti 
et al. (2018) proposed a novel method for color bal-
ance and underwater image enhancement. According 
to the underwater optical imaging principles, this 
method uses Gamma correction and sharpness to 
obtain two fusion weight images, using a multi-scale 
fusion strategy to fuse the two-weight maps and ob-
tain the final enhanced image. This method reduces 
the over-enhancement and over-exposure, which can 
better process the dark regions of the image, en-
hancing the holistic contrast and edge clearness. 
Nevertheless, there is over-enhancement or insuffi-
cient enhancement in some parts of the fused image.  

The underwater image enhancement method 
based on fusion, which uses the multi-scale fusion 
strategy, can effectively avoid the halo artifact caused 
by linear fusion, thus enhancing the images. This 
method ignores the imaging principles though, and 
thus there is over-enhancement or over-saturation in 
different areas. 

The underwater image enhancement approach 
can more easily and quickly improve the visual effect 
of underwater images, but these methods neglect the 
underwater imaging model, which cannot compre-
hensively solve the problem of underwater image 
degeneration. The amplification of noise, color cast, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and halo artifacts remain. 

3.3  Approaches based on deep learning 

Recently, deep learning technology has been 
extensively applied to underwater image defogging, 
and it can improve the quality of underwater images 
to some extent. Deep learning based methods can 
reduce errors caused by invalid priors by training a 
neural network to study the relationship between the 
image sets and relevant TMs (Wang KY et al., 2019). 
The underwater image enhancement methods based 
on deep learning can be classified into two main 
categories, methods based on CNNs (Ren et al., 2019) 
and methods based on GANs (Cai WW and Wei, 
2020). The primary goal of CNN methods is to be 
loyal to the original underwater images, while the 
GAN methods are used to improve the perceived 
quality of images. 

3.3.1  CNN-based approaches 

CNN is composed of many network layers, in-
cluding the input layer, hidden layer, and output layer. 
The hidden layer consists of the convolutional layer, 
pooling layer, and fully connected layer (Ren et al., 
2020). CNN can provide great deformation modeling 
capability, but this method is applicable only to  

Fig. 9  Comparison of underwater image enhancement methods: (a) underwater raw images; (b–h) images obtained using 
Iqbal et al. (2007), Iqbal et al. (2010), Ghani and Isa (2014), Huang DM et al. (2018), Pan et al. (2018), Fu et al. (2014), and
Zhou et al. (2019b)’s methods, respectively 
Rows 1 and 2 are reprinted from the public data sets given by Li CY et al. (2019). References to color refer to the online version 
of this figure 
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certain underwater scenes, which are similar to the 
training set scenes, thus providing low applicability. 

Cai BL et al. (2016) proposed a trainable end-to- 
end estimation network of the media TM, DehazeNet. 
This network takes the blurred images as input and 
outputs the medium TM, which is used to restore the 
defogged images through the atmospheric model. The 
network takes a deep structure based on CNN, which 
is designed to indicate the structured hypotheses 
during the defogging of the prior knowledge, result-
ing in a great defogging effect. Ding et al. (2017) used 
CNN to estimate the scene depth information of un-
derwater white balance images after correction, and to 
estimate the TM. This method uses the average color 
values of the images after adjusting for the global BL. 
Perez et al. (2017) proposed an underwater image 
restoration method based on CNN, which restores the 
image quality by generating single images as the input 
images. This method examines the generalization 
ability of the neural network using images at different 
positions and of different characteristics. Wang Y et al. 
(2017) proposed an underwater image enhancement 
net based on CNN, which is called the UIE-net. This 
network is composed of two sub-networks to correct 
colors and defogging. This model is trained effi-
ciently using a synthetic underwater image database. 
The convolutional layer is used to train and study the 
difference between the degraded underwater images 
and the clear images. It was determined that this 
model has good applicability through an ablation 
study. Pan et al. (2018) proposed de-scattering and 
enhancement using DehazeNet and HWD (DSDH). 
This method uses CNN to conduct end-to-end train-
ing of the estimated TM, using adaptive bilateral 
filtering to refine the TM. Then, this method uses 
white balance to eliminate the color difference, using 
the Laplacian pyramid to obtain the detail-enhanced 
and color-corrected images, and finally converts the 
output images into a hybrid domain of wavelet and 
directional filtering, eliminating noise, preserving 
edges, and improving the clearness of images. Li CY 
et al. (2020) proposed a CNN underwater image en-
hancement model, called UWCNN. 

3.3.2  GAN-based approaches 

Recently, GAN methods have been extensively 
applied to underwater image enhancement, showing 
great potential. A well-trained GAN-based method 
can recover the various underwater scenarios using 

paired data sets (Chen et al., 2019). 
Zhu et al. (2017) used the cycle-consistent gen-

erative adversarial networks (CycleGAN) to generate 
approximately 4000 pairs of synthetic underwater 
images as the training data set for underwater images. 
Fabbri et al. (2018) adopted CycleGAN for restora-
tion of underwater images, using the synthetic data set 
to train the GAN, and improving the underwater im-
age quality based on an underwater generative ad-
versarial network (UGAN). Kim T et al. (2017) pro-
posed a model based on CycleGAN, which uses the 
relationship between domains, converting the images 
from one domain to another without training data or 
deeply matched circumstances, preserving the key 
attributes. Li J et al. (2018) proposed WaterGAN for 
restoration of underwater images. This network gen-
erates clean in-air images into turbid underwater 
images, constructing coupled data sets to train the 
neural network for enhancement of underwater im-
ages. WaterGAN consists of generator G and dis-
criminator D. The discriminator is used to distinguish 
the real images from the synthetic images. The gen-
erator aims to generate images that would be identi-
fied as real images by the discriminator. This method 
is effective for the underwater images in the training 
samples, but it has limitations for real underwater 
images of different types. Chen et al. (2019) adopted 
the underwater imaging model to generate clear im-
ages from turbid underwater images, using coupled 
data sets to train the GAN for image enhancement. Li 
CY et al. (2018) proposed a weakly supervised color 
transfer method for underwater image color correc-
tion (UWGAN). This model does not need to train 
coupled underwater images, which allows taking 
underwater images at unknown positions. This model 
follows the path of CycleGAN, adopting the cycle 
structure, including the forward network and the back 
network. This model studies the mapping function 
between the source domain and the target domain, 
aiming to capture the unique characteristics of one 
image set and find out how to convert these charac-
teristics into another image set. Inspired by GANs, 
Guo et al. (2020) proposed a multi-scale dense GAN 
for underwater image enhancement. This method 
introduces multi-scale, dense concatenation, and re-
sidual learning strategies to improve the visual effect 
of underwater images. The model cannot generate 
pleasing results. To increase the visual quality of  
the underwater image in real time, a GAN-based 
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restoration scheme was proposed by Chen et al. 
(2019). The scheme uses the single-shot network. It 
can preserve the image content and remove noise 
through a multibranch discriminator. 

Compared with other underwater image en-
hancement methods, underwater image enhancement 
methods based on deep learning can achieve under-
water image clearness. However, underwater image 
enhancement methods based on deep learning require 
paired image data sets to train the model, and ob-
taining enough paired images is difficult. These 
methods also have high requirements for hardware 
equipment. Thus, their applicability is limited. 

 
 

4  Evaluation metrics 
 
To evaluate the clarity of underwater images, 

researchers have designed a variety of image evalua-
tion metrics. The major performance metrics are 
shown in Table 2, including: average gradient (AG) 
(He N et al., 2015), information entropy (IE) (He N et 
al., 2015), mean squared error (MSE) (He N et al., 
2015), peak signal-to-noise ratio (PSNR) (He N et al., 
2015), structural similarity (SSIM) (Wang Z and Bo-
vik, 2006), rate of visible edges (e) (Hautière et al., 
2008), saturation (σ) (Hautière et al., 2008), quality of 
contrast restoration (  ) (Hautière et al., 2008), patch- 

based contrast quality index (PCQI) (Wang SQ et al., 
2015), underwater color image quality evaluation 
(UCIQE) (Yang M and Sowmya, 2015), and under-
water image quality measure (UIQM) (Panetta et al., 
2016). 

The evaluation metrics for unambiguous un-
derwater image methods can be classified into au-
tonomous evaluation metrics and the human system 
of vision. There are no acknowledged criteria to 
evaluate the performances of underwater image pro-
cessing objectively. Common metrics used for the 
evaluation of underwater image quality are PCQI, 
UCIQE, and UIQM. The elaboration of the evaluation 
metrics is as follows: 

1. PCQI  
PCQI is used to predict human perception of 

changes in contrast, calculating the average value, 
signal intensity, and signal structure in each patch, to 
compare the differences in contrast between images. 
Higher PCQI values indicate higher contrast. 

Fig. 10 shows the PCQI metric to quantify the 
results of underwater restoration methods and un-
derwater enhancement methods. Fig. 10a presents the 
PCQI values of the image restoration methods listed 
in Fig. 5. Due to the high contrast of restored images, 
the methods from Li CY et al. (2016) and Song et al. 
(2018) contribute to the highest PCQI value. In the 
resulting images processed by Li CY et al. (2016)’s 
method, three of four UIQM values show the highest 
value. For their method, 75% of the PCQI values are 
above average values. Hence, the methods of Li CY  
et al. (2016) can effectively increase the contrast of 
underwater images. 

Fig. 10b presents the PCQI values of the image 
enhancement methods listed in Fig. 9. The methods of 
Iqbal et al. (2010) and Fu et al. (2014) show the 
highest PCQI values. The PCQI values from Fu et al. 
(2014)’s method are higher than the average values, 
so their method can effectively improve the visual 
results. 

2. UCIQE 
UCIQE is based on the linear combination of 

chroma, saturation, and contrast under the CIE-Lab 
model. It is the no-reference image quality evaluation 
metric. The larger value of UCIQE indicates higher 
image quality. c1, c2, and c3 denote the weighting 
coefficients (c1=0.4859, c2=0.2745, c3=0.2576). 

Fig. 11 shows the UCIQE metric to quantify the 
results of the underwater restoration methods and 
underwater enhancement methods. Fig. 11a presents 
the UCIQE values of the image restoration methods 
listed in Fig. 5. Owing to the high contrast, saturation, 
and chroma of the restored images, the method of Li 
CY et al. (2016) demonstrates the highest UCIQE 
value. Compared to other methods, the one from Li 
CY et al. (2016) can produce visually pleasing results, 
though with fewer halos. 

Fig. 11b presents the UCIQE values of the image 
enhancement methods listed in Fig. 9. Ghani and Isa 
(2014)’s method leads to the highest UCIQE values, 
which demonstrates that the enhancement results 
have higher contrast and saturation. 

3. UIQM 
UIQM uses a linear combination of three 

measures, which are the underwater image colorful-
ness measure (UICM), underwater image sharpness 
measure (UISM), and underwater image contrast 
measure (UIConM). The higher the UIQM value, the 
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better the visual effect of the image. The selection of 
three coefficients is determined by the application 
scene: c1 is used to adjust underwater image colors; c2 
is used to enhance clearness of the underwater image; 
c3 is used to enhance the image contrast of the under-
water image (i.e., c1=0.0282, c2=0.2953, c3=3.5753). 

Fig. 12 shows the UIQM metric to quantify the 
results of the underwater restoration methods and 
underwater enhancement methods. Fig. 12a presents 
the UIQM values of the image restoration methods 
listed in Fig. 5. The methods from Peng et al. (2015),  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Li CY et al. (2016), and Peng and Cosman (2017) 
manifest the highest UIQM values, due to the high 
contrast sharpness of the restored images. In the re-
sulting images processed by Li CY et al. (2016)’s 
method, two of the four UIQM values show the 
highest value. One of the four has the highest value, 
after processing the results with the methods from 
Peng et al. (2015) and Peng and Cosman (2017). 
Although the UIQM value of the image processed by 
Peng et al. (2015)’s method is higher than those of 
other methods, there is a greenish color cast. For  

Table 2  Objective evaluation metrics 

Metric Formula Significance 

AG 
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of an image 
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 , where I1 is the original image and I2 

is the defogging image 

Lower MSE represents better recovery 
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, (I1, I2)=255 Higher PSNR represents better quality  
of the restored image 
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, where μx and μy are means, σx and σy are 

standard deviations, and C1 and C2 are constants 

Higher SSIM means more restoration 
information of the raw image 

e (nr−n0)/n0, where n0 and nr denote the numbers in the sets of visible 
edges in I0 and Ir, respectively 

Higher e shows more restored edges 

σ ns/(MN), where ns represents the number of saturated pixels Lower σ shows better contrast 

  
1

exp log
i

i
pn






 
  
 
  Higher   shows better contrast  

restoration 

PCQI i c s
=1

1
( , ) ( , ) ( , )

M

i i i i i i
i

q x y q x y q x y
M  , where M indicates the total 

number of patches in the image, qi(xi, yi) is the mean intensity, 
qc(xi, yi) is used to determine the structural distortion, and  
qs(xi, yi) represents the changes in contrast 

Higher PCQI represents better contrast 
of the image 

UCIQE c1σc+c2conl+c3μs, where σc, conl, and μs indicate the standard devia-
tion of chroma, the contrast in brightness, and the average value of 
saturation, respectively, and c1, c2, and c3 denote the weighting 
coefficients 

Higher UCIQE means better image qual-
ity in chroma, saturation, and contrast

UIQM c1UICM+c2UISM+c3UIConM, where c1, c2, and c3 denote the 
weighting coefficients 

Higher UIQM means better comprehen-
sive performance in color, contrast,  
and sharpness 

AG: average gradient; IE: information entropy; MSE: mean squared error; PSNR: peak signal-to-noise ratio; SSIM: structural similarity; e: 
rate of visible edges; σ: saturation; :  quality of contrast restoration; PCQI: patch-based contrast quality index; UCIQE: underwater color 

image quality evaluation; UIQM: under-water image quality measure 
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Li CY et al. (2016)’s method, 75% of the UIQM 
values are above the average values. Thus, the method 
from Li CY et al. (2016) can effectively unveil more 
details and improve the contrast for underwater 
scenes. 

Fig. 12b presents the UIQM values of the image 
enhancement methods listed in Fig. 9. Methods from 
Ghani and Isa (2014) and Fu et al. (2014) achieve the 
highest UIQM values, indicating that enhanced re-
sults have higher contrast and sharpness. The UIQM  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

values from Ghani and Isa (2014) are higher than the 
average values, so this method can effectively im-
prove image sharpness and color. 

The contrast enhancement method proposed by 
Li CY et al. (2016) can produce two versions of en-
hanced output: one has relatively genuine color and 
natural appearance, and the other has higher contrast 
and more details. The two versions are fused to obtain 
higher contrast and sharpness, so it has higher PCQI, 
UCIQE, and UIQM values.  

Fig. 11  The UCIQE values of the compared methods: (a) underwater image restoration methods in Fig. 5; (b) underwater 
image enhancement methods in Fig. 9 
Underwater image restoration methods: ROWS (Chao and Wang, 2010); WCID (Chiang and Chen, 2012); UDCP (Drews et al.,
2013); TIP (Li CY et al., 2016); IBLA (Peng et al., 2015); GDCP (Peng and Cosman, 2017); ULAP (Song et al., 2018) 
Underwater image enhancement methods: ICM (Iqbal et al., 2007); UCM (Iqbal et al., 2010); RALEIGH (Ghani and Isa, 2014); 
RGHS (Huang DM et al., 2018); DSDH (Pan et al., 2018); FU (Fu et al., 2014); ZHOU (Zhou et al., 2019b) 
 

0.50 

Image index 
(a) 

Image index 
(b) 

Fig. 10  The PCQI values of the compared methods: (a) underwater image restoration methods in Fig. 5; (b) underwater 
image enhancement methods in Fig. 9 
Underwater image restoration methods: ROWS (Chao and Wang, 2010); WCID (Chiang and Chen, 2012); UDCP (Drews et al.,
2013); TIP (Li CY et al., 2016); IBLA (Peng et al., 2015); GDCP (Peng and Cosman, 2017); ULAP (Song et al., 2018) 
Underwater image enhancement methods: ICM (Iqbal et al., 2007); UCM (Iqbal et al., 2010); RALEIGH (Ghani and Isa, 2014); 
RGHS (Huang DM et al., 2018); DSDH (Pan et al., 2018); FU (Fu et al., 2014); ZHOU (Zhou et al., 2019b) 

Image index 
(a) 

Image index 
(b) 
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5  Conclusions and future research directions 

 
In this paper we analyzed the reasons for the 

degeneration of underwater images, including ab-
sorption, scattering, noise, and halo. We classified, 
compared, and evaluated various image defogging 
approaches. Although not all classifications are cov-
ered, we have used several methods for each category 
to cover the field of underwater image defogging. 
These approaches have been divided into three cate-
gories, namely underwater image restoration ap-
proaches, underwater image enhancement approaches, 
and approaches based on deep learning. Lastly, we 
introduced a system for underwater image quality 
evaluation. Although unambiguous approaches in 
underwater imaging have made some progress, there 
still exist some problems to be solved. 

In future research on underwater image en-
hancement and restoration, researchers may carry out 
work from the following perspectives: 

1. Improve the robustness and adaptivity of the 
algorithms. The ideal methods should be adjusted 
according to different underwater application scenes 
and different types of degenerated images, and not be 
restricted by external conditions. 

2. Decrease the complexity of methods and im-
prove the processing results. To fulfill the demands of 
practical applications, the proposed methods should 
include instantaneity. At present, some underwater 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

image restoration methods based on physical models 
and underwater image enhancement methods based 
on deep learning require considerable processing time; 
at the same time, the processing results should be 
further improved to solve problems of color cast, 
blurring of details, etc. 

3. Most of the current underwater image en-
hancement methods focus on solving only one kind of 
problem. A comprehensive solution that can effec-
tively solve the common problems of underwater 
images such as color cast, low contrast, noise, and 
blurring of details is required. 

4. Most of the underwater image enhancement 
methods based on deep learning focus on the struc-
tural improvement of the current defogging networks. 
There are no network structures or loss functions 
designed especially for underwater images, which 
leads to unstable enhancement results. In most cases, 
deep learning methods fall behind advanced tradi-
tional methods (Anwar and Li, 2020). 

5. Establish a standard system for evaluation of 
underwater image quality and data sets of underwater 
images. Currently, Li CY et al. (2019) have estab-
lished standard public underwater data sets. As for 
machine learning, real data sets include limited scene 
information and numbers of scenes. At present, most 
of the training sets are synthesized artificially. 

6. Underwater video processing technologies 
need further improvement. Most of the current 

Fig. 12  The UIQM values of the compared methods: (a) underwater image restoration methods in Fig. 5; (b) underwater 
image enhancement methods in Fig. 9 
Underwater image restoration methods: ROWS (Chao and Wang, 2010); WCID (Chiang and Chen, 2012); UDCP (Drews et al.,
2013); TIP (Li CY et al., 2016); IBLA (Peng et al., 2015); GDCP (Peng and Cosman, 2017); ULAP (Song et al., 2018) 
Underwater image enhancement methods: ICM (Iqbal et al., 2007); UCM (Iqbal et al., 2010); RALEIGH (Ghani and Isa, 2014); 
RGHS (Huang DM et al., 2018); DSDH (Pan et al., 2018); FU (Fu et al., 2014); ZHOU (Zhou et al., 2019b) 

Image index 
(a) 

Image index 
(b) 
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methods are used to process a single underwater im-
age, and there are fewer underwater video processing 
technologies. As a crucial technology in the visual 
system, current processing methods focus mostly on 
hardware (examined cameras), and there are no ef-
fective underwater video processing technologies. 
The study of underwater video processing technolo-
gies should focus on instantaneity, guaranteeing sat-
isfying defogging effects. 

7. As a hot research field in recent years, text-to- 
image synthesis generates an image with content 
consistent with a given text description, which can be 
migrated to defogged underwater images to generate 
underwater images with strong contrast, rich details, 
and constant color (Yuan and Peng, 2018, 2020; Yin 
et al., 2019). 
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