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Abstract: An algorithm is presented for leader-following synchronization of a multi-agent system composed of linear
agents with time delay. The presence of different delays in various agents can cause a synchronization error that does
not converge to zero. However, the norm of this error can be bounded and this boundary is presented. The proof of
the main results is formulated by means of linear matrix inequalities, and the size of this problem is independent of
the number of agents. Results are illustrated through examples, highlighting the fact that the steady error is caused
by heterogeneous delays and demonstrating the capability of the proposed algorithm to achieve synchronization up
to a certain error.
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1 Introduction

The synchronization of multi-agent systems is
a field of recent control theory with numerous prac-
tical applications. Two basic problems, the leader-
following problem and the consensus problem, can
be distinguished. To solve the leader-following prob-
lem, it is supposed that one special agent (the so-
called leader) exists whose dynamics is not influ-
enced by other agents, and that the other agents
should replicate the behavior of the leader. In con-
trast, in the consensus problem, the agents should
converge to a common behavior. For comparison,
readers can refer to Li ZK et al. (2010) and Ni
and Cheng (2010). The characteristic feature of the
multi-agent synchronization problem is limited by
communication between agents. Furthermore, the
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synchronization of dynamical networks was investi-
gated by Anzo-Hernández et al. (2019); attention
was paid to parameter mismatch, which is a problem
closely related to the problem studied here.

Delays are inevitable in control over communi-
cation networks due to the transmission of data in
data packets and the packet dropouts. Bakule et al.
(2016) and Rehák and Lynnyk (2019a) dealt with
large-scale system control over networks (a problem
similar to the problem of synchronization of multi-
agent systems). Hence, the control algorithm must
be capable of dealing with these issues. To solve
these problems, several algorithms have been pro-
posed. Many of these algorithms use Lyapunov-
Krasovskii or Razumikhin functions that allow the
conversion of the stabilization problem of a time-
delay system to the solution of a set of linear matrix
inequalities (LMIs). For this purpose, the descriptor
approach described in Fridman (2014) shows many
benefits (easy implementation, not too conservative,
and the ability to deal with fast varying delays). It
is used in this study as well.
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To solve the problem of synchronization of
multi-agent systems over communication networks,
these challenges must be overcome. In many cases,
attention is restricted to multi-agent systems with
homogeneous delays (all agents have equal delays).
While this is a rather restrictive assumption, it sim-
plifies analysis to a large extent. For example, the
basic formulation of this problem and its solution can
be found in Hou et al. (2017). Wang D et al. (2018)
examined optimization of a multi-agent system with
communication delay. The synchronization of sys-
tems with nonlinear agents was solved in Qian et al.
(2019) using Lyapunov-Krasovskii functions similar
to those used in this study. Zhou et al. (2018) dealt
with the consensus of stochastic agents subject to
time delays. Systems with sampling (which induce
input delay) were treated in Wen et al. (2013), and a
similar problem was solved in Li XJ and Yang (2017)
for discrete-time agents. The consensus problem of
nonlinear multi-agent systems with input delay was
the topic of Rehák and Lynnyk (2019b), where a
boundary on the synchronization error was found.

The control of systems with heterogeneous time
delays is more challenging. However, there are sev-
eral different types of synchronization (Lynnyk et al.,
2019a, 2019b, 2020). Here, we deal with identical
synchronization. As shown in the case of the consen-
sus problem in Rehák and Lynnyk (2019c) (for sym-
metric graph topologies) and in Rehák and Lynnyk
(2020) (for general topologies), the heterogeneous de-
lays may lead to a steady synchronization error that
does not converge to zero. However, the norm of this
error can be estimated. The larger the difference in
the delays of various agents, the larger the induced
error. This problem was also investigated in Lin
et al. (2012), Zhang LJ and Orosz (2017), and Meng
et al. (2018). A similar problem of containment con-
trol under the presence of heterogeneous time delays
was solved in Xie et al. (2018). Wang HL (2014),
Petrillo et al. (2017), and Zhang MR et al. (2017)
investigated the synchronization of multi-agent sys-
tems with different delays in every communication
channel.

In this study, we present an algorithm for syn-
chronization of a multi-agent system composed of
identical agents with heterogeneous delays. It is
shown that a synchronization error can arise, which
does not converge to zero; thus, the identical syn-
chronization is not achieved. A boundary of the

norm of this steady error is derived through LMIs. In
fact, the effect of non-equal time delays in agents can
be regarded as disturbance and handled by methods
known from the H∞ control. The descriptor ap-
proach is used to deal with time delays and deliver
an easy-to-implement algorithm.

Notations used in this paper are summarized as
follows:

(1) Symbol IIIk denotes a k-dimensional identity
matrix, while the zero matrix is denoted by 000; its
dimension is always clear from the context.

(2) The symbol ‖ · ‖ stands for the quadratic
(Euclidean) norm (even for matrices).

(3) The time argument t is omitted for functions
of time if it does not cause confusion; f(t) indicates
the same as f . If the argument is different from t, it
is written.

(4) The time delay is expressed by the subscript:
f(t− τ) = fτ (t) = fτ .

(5) The linear matrix inequality P > 0 indicates
that matrix P is symmetric positive definite.

(6) The blocks below the diagonal are replaced
by an asterisk for symmetric matrices:

(
aaa bbb
bbbT ccc

)
=

(aaa bbb∗ ccc ) .

(7) If aaa and bbb are matrices, then diag(aaa, bbb) =(
aaa 000
000 bbb

)
.

(8) The Kronecker product is denoted by “⊗.”

2 Graph theory

An important tool for the analysis of multi-
agent systems is graph theory; therefore, the most
important facts are presented. For detailed informa-
tion, readers can refer to Li ZK et al. (2010). Let N
be a positive integer. Then, define V = {0, 1, . . . , N}
and E ⊂ V×V . The graph G is defined as G = (V , E).
Here, V is called the set of vertices and E the set of
edges. If there is an edge from node j to node i, then
(i, j) ∈ E . When translated into the multi-agent sys-
tem terminology, there is a connection from agent j
to agent i: Eji = 1. Hence, the state of agent j is
required to compute the control fed to agent i. It is
assumed that for all i = 0, 1, · · · , N , Eii = 0 holds.

Assume k0 ∈ {0, 1, . . . , N − 1} and assume
the existence of a sequence (ik, ik+1) ∈ E with
k = 0, 1, . . . , k0. This sequence is called the directed
path from node i0 to node ik0+1. Graph G contains a
spanning tree if node i ∈ V exists such that for every
node j ∈ V (j �= i), a directed path from node i to
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node j can be found. If there is a node i0 such that
for any node j �= i0, there exists a directed path from
i0 to j but no path exists from any node to i0, then
we call the associated agent the leader or the root of
the spanning tree. The leader is unique. Without
loss of generality, we suppose that the leader agent
is denoted by “0.”

Given graph G = (V , E), we define the adja-
cency matrix E ∈ R

N×N as Eij = 1 if (i, j) ∈ E ,
and Eij = 0 otherwise. We assume that graph
G contains no loops, which indicates that for all
i = 1, 2, . . . , N , Eii = 0 holds. Finally, we define
the Laplacian matrix L ∈ R

N×N by Lij = −Eij for
i, j = 1, 2, . . . , N (i �= j), and Lii = −∑N

j=1 Eij .

3 Problem setting

The multi-agent system considered in this study
is composed of the following agents:

{
ẋ0 = Ax0,

ẋi = Axi +Bui, i = 1, 2, . . . , N,
(1)

xi(0) =xi,0, i = 0, 1, . . . , N. (2)

The matrices and vectors have the following dimen-
sions: A ∈ R

n×n and B ∈ R
n×m.

For i = 1, 2, . . . , N , define di as di = 1 if agent i
receives information from the leader, and di = 0 oth-
erwise. The control input ui of agent i is expressed
as (Ni and Cheng, 2010)

ui = −Kdi(x0,τ0 − xi,τi)−
N∑

j=1

EijK(xj,τj − xi,τi),

(3)
where matrix K ∈ R

m×n is designed and the func-
tion τi : [0,∞) → [0,∞) is the time delay associated
with agent i. Note that these delays are not identi-
cally equal. The investigation of such systems is the
purpose of this study.
Assumption 1 Time delays satisfy the following
requirements:

(1) Functions τi are measurable.
(2) A constant τ̄ > 0 exists such that for i =

0, 1, . . . , N and t ≥ 0, τi(t) ≤ τ̄ holds.
The time delay τi represents the time needed to

display information of agent i to its neighbor agents.

Define x̄ =
1

N

∑N
i=1 xi.

4 Error dynamics

For future examination, define vectors x,v ∈
R

Nn as

x =

⎛

⎜⎜
⎜
⎝

x1

x2

...
xN

⎞

⎟⎟
⎟
⎠

, v =

⎛

⎜
⎜⎜
⎜
⎝

∫ t

t−τ1
ẋ1(s)ds∫ t

t−τ2
ẋ2(s)ds
...∫ t

t−τN
ẋN (s)ds

⎞

⎟
⎟⎟
⎟
⎠

, (4)

and analogously, v0 =
∫ t

t−τ0
ẋ0(s)ds. With D =

diag(d1, d2, . . . , dN ), the overall multi-agent system
can be written in compact form as

ẋ =(IN ⊗A)x− (L⊗BK)x+ (L⊗BK)v

+ (D ⊗BK)[a⊗ (x0 − v0)− x+ v]

=(IN ⊗A)x− [(L+D)⊗BK]x

+ [(L+D)⊗BK]v

+ (D ⊗BK)[a⊗ (x0 − v0)]. (5)

For example, one can find Proposition 1 (Li ZK
et al., 2010; Xu et al., 2014):
Proposition 1 Matrix L+D has eigenvalues with
positive real parts.

The disagreement vector which is useful in
the subsequent text is denoted by ξ. Using a =

(1, 1, . . . , 1)T ∈ R
N , it is defined as

ξ = x− a⊗ x0. (6)

Furthermore, ξ = 0 implies that x0 = x1=

. . .= xN . Moreover, define the following two vectors:

ω1 =

⎛

⎜
⎜⎜
⎜
⎝

∫ t

t−τ0
ξ̇1(s)ds∫ t

t−τ0
ξ̇2(s)ds
...∫ t

t−τ0
ξ̇N (s)ds

⎞

⎟
⎟⎟
⎟
⎠

, ω2 =

⎛

⎜
⎜⎜
⎜
⎝

∫ t−τ0
t−τ1

ẋ1(s)ds∫ t−τ0
t−τ2

ẋ2(s)ds
...∫ t−τ0

t−τN
ẋN (s)ds

⎞

⎟
⎟⎟
⎟
⎠

.

(7)
The goal is to design matrix K ∈ R

m×n and
find a constant κ > 0 such that for any T ′ > 0,

lim
t→∞

N∑

i=1

∫ T ′

0

‖xi(t)−x0(t)‖2dt ≤ κ

∫ T ′

0

‖ω2(t)‖2dt
(8)

holds, if xi(t) = x0(t) for t ∈ [−τ̄ , 0].
Remark 1 Inequality (8) is between H∞-norms of
the synchronization error and vector ω2. However,
this vector is zero if all delays are equal. Hence, it
is regarded as a disturbance caused by dealing with
non-equal delays in agents.
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Lemma 1 Vector ξ obeys the dynamics given by

ξ̇ = (IN ⊗A)ξ − [(L+D)⊗BK](ξ − ω1 − ω2).

Proof Note that v− a⊗ v0 = ω1 +ω2 and La =

000. The latter relationship implies (L ⊗ BK)xxx =

(L⊗BK)ξ. These relationships will be used in the
following reasoning:

ξ̇ =ẋ− a⊗ ẋ0

=(IN ⊗A)(x− a⊗ x0)− [(L+D)⊗BK]x

+ [(L+D)⊗BK](ω1 + ω2 + a⊗ v0)

+ (D ⊗BK)[a⊗ (x0 − v0)]

=(IN ⊗A)ξ − (L⊗BK)ξ − (D ⊗BK)x

+ [(L+D)⊗BK](ω1 + ω2)

+ (D ⊗BK)(a⊗ v0)

+ (D ⊗BK)[a⊗ (x0 − v0)]

=(IN ⊗A)ξ − [(L+D)⊗BK]ξ

+ [(L+D)⊗BK](ω1 + ω2).

Remark 2 Note that the term (IN ⊗A)ξ− [(L+

D) ⊗ BK]ξ + [(L + D) ⊗ BK]ω1 depends on the
error ξ. However, ω2 depends directly only on the
derivatives of state xi for i �= 0. Also, note that
ω2 = 0 if all delays in the multi-agent system are
equal. This term is also a perturbation of the error
dynamics due to the unequal time delays.

5 Leader-following synchronization

Another transformation is introduced at the be-
ginning of this section. Assume that there exists
a non-singular matrix T ∈ R

N×N so that L =

T−1JT . Thus, matrix J has a Jordan structure.
Let ζ = (T ⊗ IN )ξ, η1 = (T ⊗ IN )ω1, and

η2 = (T ⊗ IN )ω2. We decompose vectors ζ,
η1, and η2 into N -tuple of n-dimensional vectors:
ζ = (ζT

1 , ζ
T
2 , . . . , ζ

T
N )T, η1 = (ηT

1,1,η
T
1,2, . . . ,η

T
1,N)T,

and η2 = (ηT
2,1,η

T
2,2, . . . ,η

T
2,N )T. Then, Eq. (6) is

transformed into the ζ-variable form:

ζ̇ = (IN ⊗A)ζ − (J ⊗BK)(ζ − η1 − η2). (9)

The matrix Σ defined in the Appendix is needed
here. With these tools, the following lemma can be
proven:
Lemma 2 Let J be composed of real Jordan blocks
with dimension one so that λ1 ≤ λ2 ≤ · · · ≤ λN .
Let Q, S, and W be matrices of dimension n × n

such that S > 0, W > 0, and Q is non-singular.
Moreover, assume that Y ∈ R

m×n, ε > 0, and
γ > 0 exist, so that Σ(A, λ1B,Y ,Q,S,W , ε, γ) <

0 and Σ(A, λNB,Y ,Q,S,W , ε, γ) < 0 hold.
Then with K = Y Q−1, for any T ′ > 0, if
ζ(t) = 0 for t ∈ [−τ̄ , 0],

∫ T ′

0
‖ζ‖2dt ≤ γ(1 +

ε)λ2
N‖BK‖2 ∫ T ′

0
‖ω2‖2dt holds.

Proof System (9) consists of N equations:

ζ̇i = Aζi − λiBK(ζi − η1,i − η2,i). (10)

Since Σ(A, λB,Y ,Q,S,W , ε, γ) is convex
in λ, if Σ(A, λ1B,Y ,Q,S,W , ε, γ) < 0 and
Σ(A, λNB,Y ,Q,S,W , ε, γ) < 0 are valid, then
Σ(A, λiB,Y , Q,S,W , ε, γ) < 0 holds for all λi

(i = 1, 2, . . . , N).
Using Remark A1 in the Appendix, considering

the ordering of the eigenvalues λi, one can obtain
(for any T ′ > 0 and zero initial conditions)

∫ T ′

0

‖ζi‖2dt ≤ γ(1 + ε)λ2
N‖BK‖2

∫ T ′

0

‖η2,i‖2dt,
(11)

where i = 1, 2, . . . , N .
Lemma 3 deals with the case of L+D with one

Jordan block with real eigenvalues:
Lemma 3 Assume that

J =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1

0 0 0 . . . λ

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

such that J ∈ R
N×N . Let Q, S, and W be

matrices with dimension n × n such that S > 0,
W > 0, and Q is non-singular. Moreover, assume
that Y ∈ R

m×n, ε > 0, and γ > 0 exist, such that
Σ(A, λ1B,Y ,Q,S,W , ε, γ) < 0 and K = Y Q−1

hold. Then, a constant Cλ > 0 exists such that

∫ T ′

0

‖ζ‖2dt ≤ Cλ

∫ T ′

0

‖η2‖2dt, (12)

if ζ(t) = 0 for t ∈ [−τ̄ , 0].
Proof Lemma 2 implies that

∫ T ′

0
‖ζN‖2dt ≤

γ(1 + ε)λ2‖BK‖2 ∫ T ′

0
‖η2,N‖2dt. Assume that

inequality (12) is valid for j = N,N − 1, . . . , i + 1.
The structure of matrix J implies

ζ̇i = Aζi−λBK(ζi−η1,i−η2,i)+λBKζi+1. (13)
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Applying Lemma A1 on Eq. (10) with wi =

−λBKζi+1 + η2,i, we then obtain

∫ T ′

0

‖ζi‖2dt ≤ γ(1+ε)λ2‖BK‖2‖η2,i−λBKζi+1‖2.

Hence, a function C : N × [0,∞) × [0,∞) →
[0,∞) exists such that for positive constants λ′, γ′,
and ε′ and any i ∈ N, C(i, λ′, γ′, ε′) ≤ C(i −
1, λ′, γ′, ε′) and

∫ T ′

0

‖ζi‖2dt ≤ C(i, λ‖BK‖, γ, ε)
∥
∥
∥
∥
∥

⎛

⎝

η2,i
η2,2

...
η2,N

⎞

⎠

∥
∥
∥
∥
∥

2

hold.
Then, take Cλ = C(1, λ‖BK‖, γ, ε).
Now, consider the case of matrix J having Jor-

dan blocks with imaginary eigenvalues. Here, we use
a procedure similar to that in Zuo et al. (2017). Let
matrix (L + D) ∈ R

2×2 have two complex conju-
gated eigenvalues ι = α + jβ and ῑ = α − jβ. In
this case, we can consider the Jordan block defined

as J ′(ι) =
(

α β

−β α

)
.

Lemma 4 Suppose that matrix (L +D) ∈ R
2×2

has two complex conjugated eigenvalues ι = α + jβ

and ῑ = α − jβ. Assume that matrices Q, S, and
W exist with dimension n × n such that S > 0,
W > 0, and Q is non-singular. Moreover, assume
that Y ∈ R

m×n, ε > 0, and γ > 0 exist, such that
K = Y Q−1 and Σ(I2 ⊗A,J ′(ι) ⊗B, I2 ⊗ Y , I2 ⊗
Q, I2 ⊗ S, I2 ⊗ W , ε, γ) < 0 hold. Then, for any
T ′ > 0,

∫ T ′

0

‖(ζT
1 , ζ

T
2 )‖2dt

≤γ(1 + ε)‖J ′(ι)‖2‖BK‖2
∫ T ′

0

‖η2‖2dt (14)

holds.
The proof is conducted analogously in the case

of real eigenvalues. From Lemma A1, it follows that

∫ T ′

0

‖(ζT
1 , ζ

T
2 )‖2dt

≤γ(1 + ε)‖J ′(ι) ⊗BK‖2
∫ T ′

0

‖η2‖2dt.

A useful property of the Kronecker product is
derived in Lancaster and Farahat (1972): ‖J ′(ι) ⊗

BK‖ = ‖J ′(ι)‖‖BK‖2. For a simple eigenvalue
pair ι and ῑ, one can derive

∫ T ′

0

‖(ζT
1 , ζ

T
2 )‖2dt

≤γ(1 + ε)‖J ′(ι)‖2‖BK‖2
∫ T ′

0

‖η2‖2dt. (15)

The case of several simple eigenvalues is
straightforward, whereas in the presence of complex
eigenvalues in the Jordan structure, an iterative pro-
cedure analogous to the one presented in the case of
multiple real eigenvalues can be derived.
Lemma 5 Assume that N is an even integer. Let
matrix (L+D) ∈ R

2×2 be composed of a block cor-
responding to two complex conjugated eigenvalues
ι = α+jβ and ῑ = α−jβ with multiplicity N ′ = N/2.
Moreover, assume that n × n-dimensional matrices
Q, S, and W exist with S > 0, W > 0, and Q being
non-singular, and that Y ∈ R

m×n, ε > 0, and γ > 0

exist, such that K = Y Q−1 and Σ(I2 ⊗A,J ′(ι) ⊗
B, I2 ⊗ Y, I2 ⊗ Q, I2 ⊗ S, I2 ⊗ W , ε, γ) < 0 hold.
Then, a constant Cα,β exists so that for any T ′ > 0,

∫ T ′

0

‖(ζT
i , ζ

T
i+1)‖2dt ≤ Cα,β‖η2‖2dt (16)

holds.
Proof First, note that

∫ T ′

0

‖(ζT
N−1, ζ

T
N )‖2dt

≤γ(1 + ε)‖J ′(ι)‖2‖BK‖2
∫ T ′

0

∥
∥
∥
(
η2,N−1

η2,N

)∥
∥
∥
2

dt.

(17)

Proceeding similar to the case of multiple real
eigenvalues, one infers that there exists a function
C′ : N × [0,∞) × [0,∞) → [0,∞) such that for
any positive constants λ′, γ′, and ε′ and any i ∈ N,
C′(i, λ′, γ′, ε′) ≤ C′(i− 1, λ′, γ′, ε′) and

∫ T ′

0

‖(ζ2i, ζ2i+1)‖2dt

≤C
(
i,‖J ′(ι)‖‖BK‖,γ,ε)∥∥[ηT

2,2i,η
T
2,2i+1, . . . ,η

T
2,N ]T

∥
∥2

hold.
Then, take Cα,β = C(1, ‖J ′(ι)‖‖BK‖, γ, ε). In

summary, one arrives at the following theorem:
Theorem 1 Let constants λ1, λ2 ∈ R and
ι1, ι2, . . . , ιk ∈ C such that all eigenvalues of L+D
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lie in the convex hull of λ1, λ2, ι1, ῑ1, . . . , ιk, ῑk. As-
sume that n × n-dimensional matrices Q, S, and
W exist, such that S > 0, W > 0, and Q is
non-singular. Moreover, assume that Y ∈ R

m×n,
ε > 0, γ > 0 exist, so that with K = Y Q−1,
Σ(A, λiB,Y ,Q,S,W ) < 0 holds for i = 1, 2 and
Σ(I2 ⊗ A,J ′(ι) ⊗ B, I2 ⊗ Y , I2 ⊗ Q, I2 ⊗ S, I2 ⊗
W , ε, γ) < 0 holds for i = 1, 2, . . . , k. Then, a con-
stant κ exists such that for all T ′ > 0,

∫ T ′

0

‖ξ‖dt ≤ κ

∫ T ′

0

‖ω2‖2dt (18)

holds, if ξ(t) = 000 for t ∈ [−τ̄ , 0].
Proof Due to the assumption in Theorem 1, con-
stant αi ∈ [0, 1] (i = 1, 2, . . . , k + 2) exist so that
ι =

∑k
i=1 αiιi + αk+1λ1 + αk+2λ2. Also, observe

that Σ(A, λiB,Y ,Q,S,W ) < 0 for i = 1, 2 and
Σ(I2⊗A, λiI2⊗B, I2⊗Y , I2⊗Q, I2⊗S, I2⊗W ) <

0 for i = 1, 2. Moreover, if λ1 and λ2 are regarded as
complex numbers with a zero imaginary part, then
J(λi) = λiI2.

J ′(ι) =
k∑

i=1

αiJ
′(ιi) + αk+1J

′(λ1) + αk+2J
′(λ2).

(19)
Due to the assumption in Theorem 1, J ′(ιi) <

0 for i = 1, 2, . . . , k, J ′(λi) < 0 for i = 1, 2, and
J ′(ι) < 0.

If λ1 is a simple eigenvalue, then define Cλ1 =

γ(1 + ε)λ2
1‖BK‖2. Similarly, if λ2 is a simple eigen-

value, then define Cλ2 = γ(1 + ε)λ2
2‖BK‖2. If k′ ∈

{1, 2, . . . , k}, the eigenvalue ιk′ = αk′+jβk′ is simple.
Then define Cαk′ ,βk′ = γ(1 + ε)‖J ′(ιk′ )‖2‖BK‖2.
Finally, let

κ
′ = max(Cλ1 , Cλ2 , Cα1,β1 , . . . , Cαk,βk

).

Then, for T ′ > 0,
∫ T ′

0

‖ζ‖2dt ≤ κ
′
∫ T ′

0

‖η2‖2dt (20)

holds.
The non-singularity of matrix T implies the ex-

istence of a constant κ so that inequality (18) holds.

6 Examples

6.1 Example 1

In this example, two agents are described by

ẋi,1 = xi,2, ẋi,2 = xi,1 + biui, i = 0, 1,

where b0 = 0 and b1 = 1. The control input (3) is
given as u = (0.1760, 0.1767)(x0− x1,τ1). The delay
is chosen as τ1 = π/12.

The norm of the synchronization error on a long
time period is shown in Fig. 1. The error does not
converge to zero due to presence of τ1. However, if
no delays are present, the error converges to zero.

As shown in this example, identical synchroniza-
tion is not achieved; however, the amplitudes of the
sine curves generated by the leader and the follower
are equal, and the phase difference between these
signals is constant, determined by the delays.

6.2 Example 2

Here, a network of six agents is studied, and the
agents are again harmonic oscillators:

ẋxxi =

(
0 1

−1 0

)
xxxi +

(
0

bi

)
uuui, i = 0, 1, . . . , 5,

where b0 = 0 and bi = 1 (i = 1, 2, . . . , 5). The
interconnection of the agents is depicted in Fig. 2.
The corresponding matrix L+D has real eigenval-
ues in the interval (0.13, 4.11). The maximal time
delay τ̄ = 0.1 s. By solving the matrix inequali-
ties in Theorem 1, we obtain KKK = (0.2478, 0.2534).
Delays τ0, τ1, τ2, τ3, τ4, τ5 in the simulations are con-
stant, and are set as 0.100, 0.015, 0.100, 0.050, 0.080,
and 0.040 s, respectively. The initial conditions for
agents are defined as xxx0(t) = (1, 1), xxx1(t) = (0, 0),
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xxx2(t) = (0, 0.5), xxx3(t) = (0, 0), xxx4(t) = (−1, 1), and
xxx5(t) = (−0.5,−0.5) for t ∈ [−0.1, 0].

Results are shown in Figs. 3–5. In Fig. 3, the
states x0,1 for the leader (dotted line), x1,1 for agent
1 (solid line), and x3,1 for agent 3 (dashed line) are
depicted. Moreover, the control inputs of agents 1
and 3 are depicted in Fig. 4, and the solid line and
dashed line illustrate the control inputs of agents 1
and 3, respectively. The norm of the synchronization
error over a long time period is shown in Fig. 5. Here,
a steady error again appears. However, changing the
time delay to 0.1 s in all agents results in a zero
steady error, as illustrated in Fig. 6.

7 Conclusions and future work

An algorithm for leader-following synchroniza-
tion of a multi-agent system has been proposed. The
agents exhibiting time delays are, in general, differ-
ent for different agents. It is shown that difference
in delays causes a synchronization error that does
not converge to zero. The norm of this error can be
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Fig. 4 Control input ui

estimated, and the estimate is derived using linear
matrix inequality optimization.

In the future, a more detailed study of the ef-
fect of heterogeneous time delays on identical syn-
chronization is expected. The same algorithm will
be used to obtain the solution to the more general
problem, where delays differ in every communication
link. Also, systems with nonlinearities or switching
topology will be studied.
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Appendix: Auxiliary results

In this section, an auxiliary problem is intro-
duced and its solution is presented. A result concern-
ing H∞ stability of a time-delay system is presented,
obtained through the descriptor approach (readers
can refer to Fridman (2014) for details). For com-
pleteness, it is presented here together with its proof.

Let μ and ν be positive integers and matrices
AAA ∈ R

ν×ν ,BBB ∈ R
ν×μ, and KKK ∈ R

μ×ν . We now
consider the following auxiliary problem:

ż = AAAz +BBBKKKzτ +BBBKKKw, z(0) = z0, (A1)

where z(0) ∈ R
ν , the disturbance w : [0,∞) → R

ν is
bounded, and the time delay has properties described
above.

The following lemma holds for Eq. (A1):
Lemma A1 Assume that ν × ν-dimensional
matrices QQQ, SSS, and WWW exist, such that SSS > 0,
WWW > 0, and QQQ is non-singular. Moveover, assume
that Y ∈ R

μ×ν , ε > 0, and γ > 0 exist, such that
matrix Σ ∈ R

6ν×6ν is given by

Σ(A,B,Y ,Q,S,W , ε, γ)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

σσσ11 σσσ12 σσσ13 Iν 000 σσσ16

∗ σσσ22 εσσσ13 000 Iν 000

∗ ∗ σσσ33 000 000 000

∗ ∗ ∗ −γIν 000 000

∗ ∗ ∗ ∗ − γ
εIν 000

∗ ∗ ∗ ∗ ∗ −Iν

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

,

with σσσ11 = AQ +QTAT − (BY + Y TBT), σσσ12 =

W−Q+εQTAT−Y TBT, σσσ13 = −τ̄BY , σσσ16 = QT,

σσσ22 = −ε(Q+QT − τ̄S), and σσσ33 = −τ̄S. Thus,

Σ(A,B,Y ,Q,S,W , ε, γ) < 0 (A2)

holds.
Then, Eq. (A1) is asymptotically stable ifwww = 000

for t ≥ 0 with K = Y Q−1. Otherwise, the following
estimation holds:
∫ T ′

0

‖z‖2dt ≤ γ(1 + ε)‖BK‖2
∫ T ′

0

‖w‖2dt, (A3)

if z(t) = 000 for t ∈ [−τ̄ , 0].
Proof The proof is divided into three steps. First,
using a series of Schur complements, a matrix in-
equality condition equivalent to inequality (A2) is
derived with a smaller dimension. Then, a row and
column transformation is conducted and new matrix

variables (matrices V , P , R, and K in the subse-
quent text) are introduced, permitting construction
of a Lyapunov-Krasovskii function used to infer H∞
stability of the original system.

Step 1: define matrix Σ′ (for simplification, the
arguments are omitted) as

Σ′ =

⎛

⎝
σσσ′
11 σσσ12 σσσ13

∗ σσσ′
22 εσσσ13

∗ ∗ σσσ33

⎞

⎠ ,

with σσσ′
11 = σσσ11+QTQ+

1

γ
IN and σσσ′

22 = σσσ22+
ε

γ
IN .

Using the Schur complement on matrix Σ(A,B)

three times, inequality (A2) is equivalent to

Σ′ < 0. (A4)

Step 2: define V = Q−1 (this is possible thanks
to the assumption of non-singularity of Q). Let

Σ′′ =diag(V T,V T,V T)Σ′(A,B)diag(V ,V ,V ),

P =V TWV , R = V TSV , K = Y V .

Step 3: for system (A1), we introduce the
Lyapunov-Krasovskii function W by

W = zTPz +

∫ 0

−τ̄

∫ t

t+s

żT(σ)Rż(σ)dσ. (A5)

Define η =
1

τ̄

∫ t

t−τ̄ ż(s)ds and note that zτ =

z− τ̄η. This implies Ẇ ≤ 2żPz− τ̄ηTRη+ τ̄ żTRż.

Thus,

Ẇ − τ̄ηTRη + τ̄ żTRż + zTz − zTz

≤2żTPz + (zTV + εżTV T)

· (−ż +Az +BKz − τ̄BKη −BKw)

+ zTz − zTz

≤2żTPz + (zTV T + εżTV T)

· (−ż +Az −BKz − τ̄BKη)

+
1

γ
zTV TV z +

ε

γ
żTV TV ż +wTKTBTBKw

≤(zT, żT,ηT)Σ′′(A,B)

⎛

⎝
z

ż

η

⎞

⎠

+ γ(1 + ε)‖BK‖2‖w‖2 − zTz

<γ(1 + ε)‖BK‖2‖w‖2 − zTz.
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For any T ′ > 0, this yields
∫ T ′

0

zT(s)z(s)ds≤γ(1+ε)‖BK‖2
∫ T ′

0

wT(s)w(s)ds.

(A6)
Also, if w = 000 for t ≥ 0, we have Ẇ < 0, which

implies the asymptotic stability. Otherwise, we ob-
tain ‖z‖2 ≤ γ(1 + ε)‖BK‖2‖w‖22 for zero initial
conditions.

Remark A1 Note that Eq. (A1) can be rewritten
as

ż = Az+BKz−BK

∫ t

t−τ

ż(s)ds+BKw, z(0) = z0.

(A7)
This formulation is analogous to the form of

Eq. (9).


	Introduction
	Graph theory
	Problem setting
	Error dynamics
	Leader-following synchronization
	Examples
	Example 1
	Example 2

	Conclusions and future work

