
1092 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

GPU-basedmulti-slice per pass algorithm in

interactive volume illumination rendering∗

Dening LUO‡, Yi LIN, Jianwei ZHANG
College of Computer Science, Sichuan University, Chengdu 610065, China

E-mail: onexinoneyi@hotmail.com; Yilin@scu.edu.cn; zhangjianwei@scu.edu.cn

Received May 3, 2020; Revision accepted July 9, 2020; Crosschecked June 8, 2021

Abstract: Volume rendering plays a significant role in medical imaging and engineering applications. To obtain
an improved three-dimensional shape perception of volumetric datasets, realistic volume illumination has been
considerably studied in recent years. However, the calculation overhead associated with interactive volume rendering
is unusually high, and the solvability of the problem is adversely affected when the data size and algorithm complexity
are increased. In this study, a scalable and GPU-based multi-slice per pass (MSPP) volume rendering algorithm is
proposed which can quickly generate global volume shadow and achieve a translucent effect based on the transfer
function, so as to improve perception of the shape and depth of volumetric datasets. In our real-world data tests,
MSPP significantly outperforms some complex volume shadow algorithms without losing the illumination effects, for
example, half-angle slicing. Furthermore, the MSPP can be easily integrated into the parallel rendering frameworks
based on sort-first or sort-last algorithms to accelerate volume rendering. In addition, its scalable slice-based volume
rendering framework can be combined with several traditional volume rendering frameworks.

Key words: Volume rendering; Volume illumination; Volumetric datasets; Multi-slice per pass
https://doi.org/10.1631/FITEE.2000214 CLC number: TP391

1 Introduction

Medical imaging and engineering applications
are the two most explored domains among the nu-
merous visualization fields associated with volumet-
ric datasets. The computed tomography (CT) and
magnetic resonance imaging (MRI) datasets of med-
ical imaging are intuitively visualized with a detailed
three-dimensional (3D) structure. In mechanical en-
gineering, some intermediate results associated with
the data flow or structural data analysis are sim-
ulated. Therefore, the visualization of volumetric
datasets has always been a major research hotspot.

Several volume rendering methods have been

‡ Corresponding author
* Project supported by the Sichuan Provincial S&T Projects,
China (Nos. 2020YFG0327 and 2020YFG0306) and the China
Scholarship Council (No. 201806240168)

ORCID: Dening LUO, https://orcid.org/0000-0003-4359-5975
c© Zhejiang University Press 2021

proposed with the development of the data visual-
ization techniques, and some of these methods have
been used in practical applications, including ray
casting (Kruger and Westermann, 2003), slice-based
volume rendering (Fernando, 2004), and splatting
(Laur and Hanrahan, 1991). Such methods have ad-
vantages and disadvantages in case of different spe-
cific applications. Fortunately, the volume rendering
methods are still being studied, optimized, and im-
proved to achieve improved real-world applications;
volume illumination addresses mainly the visual per-
ception of depth as well as the problems associated
with the spatial structure.

Generally, volume illumination requires a com-
plicated procedure involving illumination computing
and data processing. Particularly, several significant
challenges are associated with interactive volume
rendering when the data size and algorithm complex-
ity increase tremendously. Currently, understanding

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1093

the manner in which the GPU and parallel rendering
techniques can be used to resolve performance issues
has become a major challenge.

To resolve the aforementioned issues, we pro-
pose a scalable and GPU-based multi-slice per pass
(MSPP) volume rendering algorithm to balance the
calculation performance and volume illumination
of slice-based volume rendering. The specific and
promising contributions are as follows:

1. MSPP can be used to build a scalable and
effective slice-based volume rendering framework.
MSPP is based on the traditional graphics pipeline
and can be easily combined with other polygonal
algorithms, thereby offering considerable interactiv-
ity without affecting the rendering quality. Fur-
thermore, various geometry slices of the volumetric
datasets associated with different applications can
be managed and updated in a flexible manner.

2. The MSPP algorithm dynamically renders an
arbitrary number of slices in a single pass of GPU
to improve the calculation efficiency by avoiding fre-
quent draw calls. This algorithm can ensure im-
proved utilization of the GPU and reduce the al-
ternation of CPU and GPU, especially in case of
slice-based multi-pass applications.

3. The MSPP algorithm can effectively pro-
duce global volume shadow and translucent effects
of volume illumination for the real-world volumetric
datasets, obtaining a better perception of the shape
and depth of volumetric datasets. Meanwhile, inter-
active volume illumination can be achieved in real
time.

4. The scalability and flexibility of the MSPP
algorithm make it easier for integration into parallel
volume rendering, and the flexibility of an arbitrary
number of slices per pass can help balance the per-
formance and the effect.

2 Related work

Volume visualization has always been one of the
most exciting areas in scientific visualization (Beyer
et al., 2015), specifically in extracting meaningful
information from volumetric datasets through the
techniques of interactive graphics and imaging. Also,
it is concerned with the representation, manipula-
tion, and rendering of volumetric datasets (Çalışkan
and Çevik, 2015). Meanwhile, with the develop-
ment of display devices, volumetric datasets from

numerous simulation and sampling devices such as
MRI, CT, positron emission tomography, ultrasonic
imaging, confocal microscopy, supercomputer simu-
lations, geometric models, laser scanners, depth im-
ages estimated by stereo disparity, satellite imaging,
and sonar can be efficiently visualized and demon-
strated on Web (Wangkaoom et al., 2015; Mwalongo
et al., 2016), mobile (Hachaj, 2014), or virtual reality
(Hänel et al., 2016) platforms or devices.

Volume rendering has been developed for many
years, and a large number of interactive rendering
techniques have been proposed and practically ap-
plied (Jönsson et al., 2014). Direct volume rendering
has become more important due to its effectiveness
compared with indirect volume rendering, which is
a method to reconstruct geometry from volumetric
datasets (El Seoud and Mady, 2019). Therefore, dif-
ferent methods have been proposed to achieve di-
rect volume rendering, such as ray casting (Kruger
and Westermann, 2003; Stegmaier et al., 2005),
slice-based (Bordoloi and Shen, 2005), shear-warp
(Lacroute and Levoy, 1994), and splatting (Laur and
Hanrahan, 1991) methods. In summary, a clear and
fast representation of the 3D structures and inter-
nal details of volumetric datasets is the key task of
volume visualization.

Texture-based volume rendering, which depends
only on the image size instead of the scene complex-
ity, includes two principal methods: slicing and cell
projection. The 3D texture slicing volume render-
ing is the simplest and fastest slice-based approach
on GPU (Rodríguez and Alcocer, 2012). It approx-
imates the volume-density function by slicing the
datasets in the front-to-back or back-to-front order
and then blends the slices using hardware-supported
blending. The view-aligned 3D texture slicing (En-
gel et al., 2001) is a classic method, and it takes
advantage of functionalities implemented on graph-
ics hardware like rasterizing, texturing, and blending
(Fernando, 2004). Meanwhile, various composition
schemes (Zhang Q et al., 2011) have been used with
particular purposes, including first, average, maxi-
mum intensity projection, and accumulation.

The transfer function (TF) (Ljung et al., 2016;
Ma and Entezari, 2018) for volume rendering is a
central topic in scientific visualization. It is used
to present more details of volumetric datasets, such
as implementing volume classification (Khan et al.,
2018) and volume illumination (Schlegel et al., 2011).

1094 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

Perceptually motivated techniques for visualization
add additional insights when displaying the volumet-
ric datasets, because global illumination techniques
can obviously improve spatial depth and shape cues
and thus provide better perception (Zhang YB and
Ma, 2013; Preim et al., 2016). Meanwhile, Schott
et al. (2009) provided the directional occlusion ap-
proach that provides perceptual cues similar to am-
bient occlusion. Later approaches (Šoltészová et al.,
2010; Patel et al., 2013) present soft shadows with-
out precomputation, but do not bring considerable
performance benefits (Angelelli and Bruckner, 2015).

Besides, the central topics in scientific visualiza-
tion are parallel volume rendering (Beyer et al., 2015;
Usher et al., 2017), remote rendering, and portable
display (Noguera and Jimenez, 2016) in the future.
The combination of slice-based algorithms and these
central topics is also an important research hotspot
in the future. Therefore, considering the better per-
ception of volumetric datasets and the flexibility and
scalability of the growing data, MSPP is proposed to
satisfy the increasing practical application require-
ments of interactive volume rendering.

3 Algorithm

Volumetric datasets are usually a 3D array of
volume elements or voxels, so volume rendering is
the reconstruction process of displaying each point
in a volume. Voxels can represent various phys-
ical characteristics, such as density, temperature,
velocity, and pressure. Typically, the volumetric
datasets store densities that are obtained using a
cross-sectional imaging modality such as CT or MRI
scans. A 3D texture, which is a simple array of
two-dimensional (2D) textures, is obtained by accu-
mulating these 2D slices along the slicing axis, and
the densities store different material types.

For a long time, volume rendering implemen-
tations are almost exclusively based on slice-based
methods where axis- or view-aligned texture slices
are blended to approximate the volume rendering
integral. Slice-based techniques can easily be com-
bined with polygonal algorithms. In addition, slice-
based techniques require only a few rendering passes
and offer an excellent interactivity level without sac-
rificing the rendering quality.

First, slice-based volume rendering requires de-
termining the slicing axis of volumetric datasets ac-

cording to different application purposes and algo-
rithm processes. Specifically, the selection of the
slicing axis needs to be taken into account in the
algorithm. Second, many slices are high-efficiently
managed and updated in various interactive scenar-
ios. Most importantly, the proposed MSPP will be
highlighted to reduce the calculation alternation of
multi-pass CPU and GPU and thus significantly im-
prove the rendering performance. It is an effective
solution to improve performance when a large num-
ber of slices are applied to complex practical volume
visualization. In the working pipeline of MSPP, sev-
eral steps can be efficiently implemented in interac-
tive volume rendering methods, such as translucent
effect, volume shadow, and TF applications.

Volume rendering is usually designed on the ba-
sis of the whole rendering framework, which includes
the process of volumetric datasets, specific algorithm
flow, and data updates. The rendering framework of
MSPP is shown in Fig. 1. Slice-based volume ren-
dering initializes volumetric datasets into 3D texture
(1) and manages geometry slices (2) according to
the algorithm processing. With the flexibility of the
MSPP rendering framework, slice-based algorithms
can be easily integrated and replaced, such as 3D
texture slicing (3), half-angle slicing (Kniss et al.,
2002) (4), and MSPP applications (5). Moreover,
an interactive volume rendering, including geometry
slice update (6) and algorithm update (7), needs to

Start Stop

Yes

No
Exit?

Begin frame

End frame Event handling

Data update
(6) Geometry slice update
(7) Algorithm update

Initial configuration
(1) Reading 3D texture
(2) Managing slices

Slice-based algorithms
(3) 3D texture slicing
(4) Half-angle slicing
(5) Multi-slice per pass

Fig. 1 The multi-slice per pass (MSPP) rendering
framework. In the initial configuration, the slice-
based algorithms and data updates are involved in
the graphics pipeline

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1095

be designed and refined in the graphics pipeline.

3.1 Slice-based volume rendering

Slice-based volume rendering sequentially accu-
mulates and blends all the slices generated from vol-
umetric datasets along the slicing axis. In general,
slice-based methods use a cube or a cylinder as a
geometry base, dividing it into a certain number of
slices on the slicing axis of the baseband, then map-
ping the corresponding value of the whole volumetric
datasets onto each slice according to the geometry
position, and finally blending all the slices sequen-
tially with the front-to-back or back-to-front order.

The choice of slicing axis related to volume ren-
dering methods and the volume illumination model is
very crucial for slice-based volume rendering. Here,
we discuss the three types of cube-based slicing axis
methods (i.e., axis-aligned slicing, view-aligned slic-
ing, and half-angle slicing), as well as the application
of management of geometry slices for MSPP.

3.1.1 View-aligned 3D texture slicing

The easiest way of doing slice-based volume ren-
dering is the axis-aligned quad slicing; that is, all the
quad slices are consistently regular and are blended
sequentially slice by slice (Fig. 2a). Although the
cube-based slicing method is fast and straightfor-
ward, one of the major problems is that a transparent
blend occurs when the viewer’s direction is inconsis-
tent with the slicing axis (Fig. 2b). In this case, the
billboard technique solves this problem by forcing
the quad slices always facing the viewer’s direction
(Fig. 2c).

View-aligned 3D texture slicing (Fig. 1, (3)) is
an interactive volume rendering algorithm that can
generate much better results because the slicing axis
is always consistent with the viewer’s direction. Al-

(a) (b) (c)

Fig. 2 Volume rendering of axis-aligned quad slices:
(a) a set of regular quad slices; (b) the blend prob-
lem occurs when the viewer’s direction is inconsistent
with the slicing axis; (c) using the billboard technique
to force the quad slices always facing the viewer’s
direction

though it improves the refinement of geometry, the
algorithm becomes much more complicated. The
slices from any viewpoint to the cube are perpendic-
ularly sliced. Each slice obtains 1–3 triangle meshes
from the nearest to farthest vertices of a cube, as
shown in Fig. 3.

Algorithm 1 shows the process of the view-
aligned 3D texture slicing on CPU, in which the in-
tersections of a unit cube and the geometry slices
are found, which are perpendicular to the viewer’s
direction. The whole process is recomputed for each
frame as the object or viewer changes (line 1). The
minimum and maximum distances of unit cube ver-
tices are calculated by doing a dot product of the
viewer’s direction vector with each unit cube vertex
(line 2). The perpendicular plane from the nearest to
the farthest vertices is used in a certain step to inter-
sect with all the edges of the unit cube and to obtain
the intersection parameters λ (line 3). The intersec-
tion points are found and triangular primitives are
generated for each slice (lines 4 and 5). Finally, the
management and update of geometry slices (Fig. 1,
(2) and (6)) are done (line 6). Fig. 3 shows the result
of mapping the 3D texture of volumetric datasets
onto geometry slices.

To manage a large number of geometry slices
of volumetric datasets more effectively, all the ge-
ometry slices need to be managed by a root node.
Its children are organized and updated according to
the different application requirements in the MSPP

Algorithm 1 Process of generating geometry slices
on CPU
1: Obtain the viewer’s direction and normalize it
2: Calculate the minimum and maximum distances of

unit cube vertices in the viewer’s direction
3: Calculate all the possible intersection parameters

(λ)
4: Find the intersection points of each geometry slice
5: Generate triangular primitives
6: Update geometry slices

(−0.5, −0.5, −0.5)
0 1

(0.5, −0.5, −0.5)

2 (0.5, 0.5, −0.5)3
(−0.5, 0.5, −0.5)

4
(−0.5, −0.5, 0.5)

5 (0.5, −0.5, 0.5)
67

(0.5, 0.5, 0.5)(−0.5, 0.5, 0.5)

(a) (b)

Fig. 3 The result of view-aligned 3D texture slicing:
(a) meshes of geometry slices; (b) the visualization
result of volumetric datasets

1096 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

rendering framework. For example, view-aligned 3D
texture slicing has only one geometry node that man-
ages the vertices of all the slices, whereas half-angle
slicing has child geometry nodes (having the same
number of slices) that manage each slice. In con-
trast, each geometry node of our proposed MSPP
manages the vertices of a cluster of slices according
to the number of slices in one pass.

3.1.2 Half-angle slicing

The slicing axis of half-angle slicing is differ-
ent from that of the view-aligned 3D texture slic-
ing. As the name suggests, the slicing axis is the
half-angle direction formed by the viewpoint and the
light direction, instead of slicing the cube of volu-
metric datasets as perpendicular to the viewpoint
direction. The advantage is that the same slices can
simulate light absorption slice by slice, producing
volume shadow or other volume rendering effects.
Therefore, the same set of geometry slices can be
rendered from the viewpoint of both the viewer and
the light. Also, the slicing axis needs to be changed
according to the sign of the dot of the light and the
viewer’s direction vectors.

The illumination attenuation of volumetric
datasets is accumulated from the viewpoint of light.
The half-angle slicing axis is shown in Fig. 4, in
which c and l are unit vectors of the camera (viewer)
and light, respectively, and s is the final slicing axis.
Meanwhile, the following equation shows the calcu-
lation method of the half-angle vector, which will be
used in half-angle slicing and MSPP:

⎧
⎨

⎩

θ = c · l,
s =

{
c+ l, θ ≥ 0,

−c+ l, θ < 0.

(1)

3.2 Volume illumination

Volume illumination can present the depth per-
ception of volumetric datasets, and it is different
from the surface illumination mode. Usually, the vol-
ume illumination mode (Rostamzadeh et al., 2013)
in its differential form is solved by integrating along
the light direction from the starting point s = s0 to
the end point s = D as

I(D) = I0e
− ∫ D

s0
K(t)dt

+

∫ D

s0

q(s)e−
∫ D
s

K(t)dtds, (2)

where optical properties K and q are respectively the
absorption coefficient and the source term describing

emission. In most practical applications, simplified
models are often used because the complete equation
of light transportation is computationally intensive.
The emission–absorption model, which is the most
common in volume rendering, is used in this study.
For the emission–absorption model, the accumulated
color C and opacity A with the number of slices n

are computed as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C =

n∑

i=1

Ci

i−1∏

j=1

(1−Aj),

A =1−
n∏

j=1

(1 −Aj),

(3)

where Ci and Aj are the color and opacity assigned
by the TF to the data value at samples i and j,
respectively. Opacity Aj approximates the absorp-
tion, and opacity-weighted colorCi approximates the
emission and absorption along the ray segment be-
tween samples i and i+ 1.

For iterative computations of the discretization
volume integration, the blend function is different
for either the front-to-back or back-to-front order,
shown respectively as

{
Cdst ← Cdst + (1− αdst)Csrc,

αdst ← αdst + (1− αdst)αsrc,
(4)

Cdst ← (1 − αsrc)Cdst + Csrc. (5)

Front-to-back means that rendering proceeds in the
front-to-back order to the eye and back-to-front
means that rendering proceeds in the back-to-front
order to the eye. Variables with subscript src (as
for “source”) describe quantities introduced as in-
puts from the optical properties of the dataset (e.g.,
through a TF). In contrast, variables with subscript
dst (as for “destination”) describe output quantities
that hold accumulated colors C and opacities α.

For illumination attenuation, the illumination
intensity of the slice attenuates proportionally under
the light source, as shown in Fig. 5. The second-layer
slice is the blended illumination intensity of the first-
layer slice. The volume shadow is calculated by the
illumination attenuation slice by slice.

3.3 MSPP for volume shadow

A large number of passes are required for half-
angle slicing for volume shadow. Thus, the draw calls

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1097

(a) (b)

s l

c −c

1
2

l
s

c

θ

－θ 1
2－θ

Fig. 4 The half-angle slicing axis: (a) the dot product
of the viewer and light vectors is non-negative; (b) the
negative direction of the viewer if the dot product is
less than zero (c: unit vector of the camera (viewer);
l: unit vector of the light; s: the final slicing axis)

Illumination
attenuation buffer

Slice 01

Slice 02

Light source

Fig. 5 Illumination attenuation slice by slice under
the light source

and memory overhead are huge. The algorithm com-
plexity is O(n·2m) (n is the number of slices and m is
the number of samples of each slice), given that each
slice is simultaneously sampled from the viewpoint
of both the viewer and the light source. The same set
of slices is sampled twice, and all the passes are al-
ternately calculated and rendered on CPU and GPU
to cause frequent draw calls so that the performance
will be significantly degraded.

In contrast, our proposed MSPP (Fig. 1, (5))
makes sure that multiple slices could be rendered
in one pass to reduce alternate calculating and ren-
dering on CPU and GPU. That is to say, n slices
per pass can reduce the number of passes to 1/n.
Meanwhile, MSPP takes measures to calculate vol-
ume shadow without loss, and it can approximate
the global illumination process quickly.

MSPP has mainly three major steps, as shown
in Algorithm 2. The first step is to obtain the
LightBuffer0,1,...,n−1 of n slices per pass from the

Algorithm 2 MSPP for volume shadow on GPU
1: Initialize n, LightBuffer0,1,...,n−1(1,1,1,1),

EyeBuffer(0,0,0,0), and AttenuationBuffer(1,1,1,1)
2: for int i=0; i <TotalPasses; i++ do

// Step 1: render n slices per pass into
// LightBuffer0,1,...,n−1

3: Bind LightBuffer0,1,...,n−1 as the render target
4: for each sample do
5: for each slice per pass do
6: Evaluate sample color α

7: Multiply α by illumination color and output
to the corresponding light buffer

8: end for
9: end for

// Step 2: render n slices per pass and accumulate
// into EyeBuffer

10: Bind EyeBuffer as the render target
11: Bind LightBuffer0,1,...,n−1 as texture
12: Bind AttenuationBuffer as texture
13: for each sample do
14: for each slice per pass do
15: Compute LightBuffer0,1,...,n−1 texture

coordinates
16: Evaluate sample color
17: Read illumination intensity from

LightBuffer0,1,...,n−1 and blend with illumi-
nation attenuation of the previous slices

18: Multiply the color by illumination intensity
19: end for
20: Blend all slices and accumulate into EyeBuffer

21: end for
// Step 3: accumulate illumination attenuation of
// all rendered slices

22: Accumulate illumination attenuation slice by slice
into AttenuationBuffer

23: end for

viewpoint of the light source. The second step is to
render each slice of n slices from the viewpoint of
the viewer to calculate volume shadow according to
illumination attenuation from LightBuffer0,1,...,n−1.
Then n slices are blended to EyeBuffer by the ren-
dering order according to Eq. (4) or (5). The third
step accumulates the illumination attenuation of all
rendered slices for the next pass to preserve the con-
tinuity of illumination attenuation slice by slice.

All geometry slices are proceeded by Algo-
rithm 1, and the viewer’s direction is the half-angle
vector in Eq. (1). Meanwhile, once the direction
of the viewer or the light is changed, these geometry
slices are managed and efficiently updated to achieve
real-time interaction.

1098 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

From the viewpoint of the light source, the
conventional “over” blending (similar to the nor-
mal painting operation) in half-angle slicing is not
needed. The n geometry slices are rendered simulta-
neously from the viewpoint of the light source into
LightBuffer0,1,...,n−1, which independently store the
illumination intensity of the corresponding slice. The
illumination intensity is determined only by multi-
plying the sample color of volumetric datasets α by
illumination color.

When n geometry slices are rendered
from the viewpoint of the viewer, the former
LightBuffer0,1,...,n−1 are used as textures to find
out the illumination intensity of the corresponding
slice. Similar to the shadow mapping algorithm, the
shadow texture lookup coordinates C are calculated
by matrix transformation to the light source space
as follows:

C = Lp · Lv ·Evi ·Emv · V , (6)

where V is the object space vertex position, Lp and
Lv are the projection matrix and the view matrix
respectively from the viewpoint of the light source,
and Emv and Evi are the model-view matrix and
the view inverse matrix respectively from the view-
point of the camera. Each slice color is determined
by multiplying the sample color by the illumination
intensity blended with illumination attenuation of
previous slices in AttenuationBuffer by the “over”
blending. All slices’ colors are blended and accumu-
lated into EyeBuffer according to Eq. (4) or (5). The
blending equation changes as θ (Eq. (1)) changes. If
θ is non-negative, use Eq. (4) as the blend function;
otherwise, use Eq. (5).

In step 3, it is easy to accumulate attenuation
slice by slice into AttenuationBuffer. However, the
question that arises here is how to distinguish each
slice in the shader of MSPP. The easiest way is by
marking the vertices of each slice without adding
more vertex attributes. In the four components
(x, y, z, w) of each vertex, the fourth component w

can be used to mark the slice number. Unfortu-
nately, the vertex will be normalized in the render-
ing pipeline, so the first three components need to
be multiplied by the slice number to ensure correct-
ness in the shader. Meanwhile, the coordinates of
the vertices in the shader need to be divided by the
component w to restore the correct position.

Another question is that each slice of MSPP

outputs correct light attenuation messages into
LightBuffer0,1,...,n−1. First, one slice per pass is de-
termined by the slice number mark (MarkNo) of the
vertices and the current pass (PassNo). Second, once
a slice is calculated in the fragment shader, the cur-
rent slice is computed and output to the correspond-
ing buffer:

|MarkNo− n · PassNo− i| < Threshold, (7)

where “Threshold” is the threshold value and i is one
slice of n slices.

4 Results and analysis

To make the proposed algorithm usable across
all platforms and to implement all the algorithms in-
volved in this study, we use OpenSceneGraph (ver-
sion 3.6.4). All the tests are performed on different
hardware platforms. Related experiments are im-
plemented on a laptop with 8 GB NVIDIA GeForce
RTX 2070 (with Max-Q Design), an Intel Core i7-
8750H processor, and 16 GB of RAM. Experiments
are also implemented on a Mac computer (running
OS X El Capitan version 10.11.6) with a 3.2-GHz
Intel Core i5 processor, 16 GB 1600 MHz of RAM,
and 2 GB NVIDIA GTX 680MX.

The experimental data of the following tests
are from the volumetric datasets of UZH VMML
(https://www.ifi.uzh.ch/en/vmml/research/datasets.
html) and open scientific visualization datasets
(https://klacansky.com/open-scivis-datasets/).
Those files in .raw format of volumetric datasets are
loaded from the disk and parsed in real time.

Half-angle slicing for volume shadow acquires a
large number of passes to complete shadow comput-
ing, so the rendering performance is relatively weak.
Assuming that volume data are divided into n slices
and extra passes are excluded, 2n passes (twice the
number of slices) are needed to calculate the global
volume illumination. It will result in an extremely
low frame rate and difficulties for real-time interac-
tion. On one hand, GPU is highly demanded in the
massive number of passes for each frame. On the
other hand, CPU is used to handle alternate passes
and external updates of events and data. Once the
interactive operations occur, the calculation over-
head will be largely increased and spent on much
more geometry slices and rendering updates.

Therefore, in the first experiment we compare

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1099

view-aligned slicing, half-angle slicing, and MSPP
(including 4, 8, and 16 slices per pass) without
shadow under the same volume data and presenta-
tion methods to verify the feasibility of MSPP and
to study the effect of the number of slices per pass.
That is, the volume shadow is not considered, and
the translucent effect with the TF is consistent for
each method. Different numbers of slices for En-
gine data (resolution: 2563; file size: 16.8 MB) are
designed to test their performance (Table 1).

The view-aligned slicing has no complicated op-
erations, and the performance is the best, equivalent
to rendering all the geometry slices in a rendering
pass. However, here, we study mainly the feasibil-
ity based on MSPP. In general, as the number of
slices increases, the performance of each algorithm
will gradually decrease, because more geometric ver-
tices are processed in each pass. Meanwhile, it can
be seen that MSPP with different numbers of slices
per pass outperforms half-angle slicing, and the time
spent increases as the number of slices of the volume
data increases. Even with the maximum overhead of
512 slices, the time spent of the four slices per pass
is close to a quarter of that of half-angle slicing.

Specifically, view-aligned slicing has only one
pass, so the rendering efficiency is the highest; half-
angle slicing has n passes for n slices, and calcula-
tion resources are heavily occupied; MSPP greatly
reduces the number of passes with n slices of the vol-
ume data, which is n/m depending on the number
of slices per pass (m). However, a more significant
number of slices per pass is not good, because the
internal processing time of one pass will affect the
whole time spent; thus, the number of slices per pass
should have a balance for specific applications, as can
be seen from rows C–E in Table 1. The experiment

Table 1 Performance comparison of the three meth-
ods without shadow in different numbers of slices for
Engine data

Case
Average time spent (ms)

16 32 64 128 256 512

A 1.00 1.04 1.05 1.06 1.15 1.61
B 1.25 1.77 2.78 4.81 9.58 19.34
C 1.05 1.06 1.34 1.85 2.87 5.28
D 1.06 1.06 1.10 1.33 1.85 2.93
E 1.08 1.07 1.15 1.33 1.69 2.30

A: view-aligned slicing; B: half-angle slicing; C: MSPP with
4 slices per pass; D: MSPP with 8 slices per pass; E: MSPP
with 16 slices per pass. The data are divided into six different
numbers of slices from 16 to 512 increased by a power of 2

shows that the rendering performance of volumetric
datasets can be significantly improved by reducing
the number of passes. At the same time, volume
shadow is not considered, and only limited textures
are used for the experiment.

Meanwhile, the unified resolution of the exper-
iments is 800 × 600 (for both images and videos).
If the current density value of Engine data in a
shader is more significant than 0.1, these calcula-
tions are performed only to remove air and other
low-intensity artifacts to produce much better re-
sults, as shown in Fig. 6. We can see that each algo-
rithm can present the outline and internal details of
the volumetric datasets. The TF is generated as the
maximum intensity projection value by looking up
in the one-dimensional (1D) color table after inter-
polation. The geometry meshes become dense as the
number of slices increases. The other methods have
just some geometry meshes per pass, except for the
view-aligned 3D texture slicing, which is the whole
geometry mesh of volumetric datasets for each pass.
Simultaneously, as the number of slices increases,
the rendering effects become clearer. The results of
rendering a certain number of slices (e.g., 64 slices
or more) are practical. More importantly, MSPP
can achieve the effect of half-angle slicing, but faster
than it.

In addition to the visual representation of vol-
umetric datasets, the advantage of the slice-based
algorithm is that it can simulate illumination scat-
tering effects, such as the volume shadow of global il-
lumination. Thus, in our second experiment we com-
pare the rendering performance and effects of vol-
ume shadow algorithms of half-angle slicing (HAS)
and MSPP with different numbers of slices per pass
(Table 2 and Fig. 7). All the conditions of the
experiment are consistent. The global volume
shadow of slice-based slicing needs to be computed
slice by slice and simulated in the process of illu-
mination attenuation. Compared with HAS, MSPP
increases the complexity of illumination simulation.

As can be seen from Table 2, the cost of vol-
ume shadow calculation of both HAS and MSPP
is very large; additionally, as the number of slices
increases, the overhead of each algorithm is increas-
ing and the performance is drastically decreasing.
However, MSPP with a different number of slices
per pass can improve performance by approximately
two times in the same number of slices compared

1100 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

64

128

256

512

View-aligned
3D texture slicing

MSPP (4 slices
 per pass)

Half-angle slicing
 without shadow

MSPP (8 slices
 per pass)

MSPP (16 slices
 per pass)

Fig. 6 Rendering effects of view-aligned 3D texture slicing, half-angle slicing without shadow, and MSPP of
4, 8, and 16 slices per pass. All results are presented in the same way as a translucent effect with transfer
function (TF) in different numbers of slices. Meanwhile, images at the bottom left are the geometry slice mesh
per pass for each method

128

256

512

Half-angle slicing MSPP (2 slices
 per pass)

MSPP (3 slices
 per pass)

MSPP (4 slices
 per pass)

MSPP (5 slices
 per pass)

Fig. 7 Effects of volume shadow of half-angle slicing and MSPP with different numbers of slices per pass.
The illuminated area within the red frame is the case where the light source is calculated through the space
structure of volumetric datasets. Meanwhile, images at the bottom left are the illumination attenuation buffers
of the last slice

with HAS. It is mainly because MSPP has reduced
the rendering passes from 2n (twice the number of
slices n) to 2n/m (m slices per pass); thus, the over-
head of CPU and GPU for interactive events and
data updates is significantly reduced.

At the same time, it can be seen that the ren-
dering performance of MSPP does not increase lin-
early as the number of slices per pass increases, but
decreases. The main reason is that the number of
shadow buffers required for illumination attenuation

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1101

calculation increases as the number of slices per pass
increases. Moreover, the storage overhead is in-
creased so that the time spent does not increase with
the increase in the number of slices. The memory
overheads of HAS and MSPP for volume shadow are
shown in Fig. 8. This is consistent with the results
of the second experiment about the different num-
bers of slices. As the number of slices increases, the
memory overhead of each method will gradually in-
crease. However, with the increasing number of slices
per pass, the memory overhead of MSPP does not
decrease linearly but stabilizes gradually. It is be-
cause MSPP increases the number of slices per pass.
The buffers for illumination attenuation are gradu-
ally increased, just in balance with the advantage of
reducing the number of passes.

The attenuation buffer accumulates the illumi-

Table 2 Performance comparison of the two methods
with volume shadow in different numbers of slices for
Engine data

Case
Average time spent (ms)

32 64 128 256 512

A 2.84 4.69 8.93 19.13 41.70
B 1.87 3.04 5.25 10.24 19.52
C 1.54 2.29 3.45 7.01 12.22
D 1.47 2.08 3.34 5.81 10.62
E 1.62 2.42 3.91 6.95 14.71
F 1.80 2.72 4.41 7.77 13.86

A: half-angle slicing; B: MSPP with 2 slices per pass; C:
MSPP with 3 slices per pass; D: MSPP with 4 slices per
pass; E: MSPP with 5 slices per pass; F: MSPP with 6 slices
per pass. The volume data are divided into five different
numbers of slices from 32 to 512 increased by a power of 2

nation attenuation slice by slice, similar to half-angle
slicing for volume shadow. Although the number of
illumination attenuation passes is increased by the
number of total passes, because these passes are pro-
cessed by image-based pass, it does not add too much
calculation overhead. The results of MSPP for vol-
ume shadow (Fig. 7) are consistent with those of
HAS. Meanwhile, as the number of slices increases,
multiplying each slice by (1 + α)n (α is an opacity
value of the current slice and n is an adjustable fac-
tor of illumination attenuation) compensates for the
fact that more and more slices are over-dark due to
excessive accumulation of illumination attenuation.

More test effects of MSPP are shown in Fig. 9,
including plants and medical datasets. The tests of

0

20

40

60

80

100

120

140

160

Half
-an

gle
 sl

icin
g

MSPP (2
 sl

ice
s

pe
r p

as
s)

MSPP (3
 sl

ice
s

pe
r p

as
s)

MSPP (4
 sl

ice
s

pe
r p

as
s)

MSPP (5
 sl

ice
s

pe
r p

as
s)

M
em

or
y

ov
er

he
ad

 (M
B)

32 64 128 256 512

MSPP (6
 sl

ice
s

pe
r p

as
s)

Case

Fig. 8 Memory overhead of half-angle slicing and
MSPP for volume shadow in different numbers of
slices from 32 to 512 increased by a power of 2

(a)

(b)

Hnut Aneurism Bonsai Foot

Fig. 9 Effect comparison for volume shadow between half-angle slicing (a) and MSPP (b). The four volumetric
datasets from the left to right are Hnut (resolution: 5123; file size: 128 MB), Aneurism (resolution: 2563;
file size: 16 MB), Bonsai (resolution: 2563; file size: 16 MB), and Foot (resolution: 2563; file size: 16 MB).
Meanwhile, images at the bottom left are the illumination attenuation buffers of the last slice

1102 Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103

real-world volumetric datasets show that MSPP has
a wide range of applications. As can be seen from
the overall effects, images of MSPP are the same with
half-angle slicing in illumination and shadow. There
is another problem that slice-based volume rendering
can cause artifacts (Belyaev et al., 2019). It is related
to the texture mapping in the 3D graphics render-
ing process. However, there are some ways to reduce
slicing artifacts. On one hand, the number of slices
and per-slice image resolution can be increased. On
the other hand, post-processing anti-aliasing meth-
ods can be used to improve image effects.

MSPP can be easily integrated into parallel ren-
dering frameworks based on sort-first or sort-last al-
gorithms to accelerate volume rendering. The ge-
ometry slices of volumetric datasets can be flexibly
managed and updated for MSPP applications. In
the parallel rendering framework, two stages are ex-
ecuted in parallel. One is that each server thread ex-
ecutes rendering tasks to local images, and the other
is that all the local images are composed into the
final result. In MSPP for parallel volume rendering,
slices of an adjacent rendering pass can be simply
divided into different rendering servers. These ren-
dering servers accept only slices of a nearby pass, so
the locality of the data can be guaranteed.

According to the “over” operator satisfying the
conjunction rule, n passes are divided into m sub-
sets. Each subset contains several adjacent passes,
like this {s1, s2, . . . , sk1}, {sk1+1, sk1+2, . . . , sk2}, . . .,
{skm−1+1, skm−1+2, . . . , sn}, so that all images are
composed using the sort-last parallel algorithm as

(s1 over s2 over . . . over sk1) over (sk1+1 over

sk1+2 over . . . over sk2) over . . . over (skm−1+1

over skm−1+2 over . . . over sn). (8)

5 Conclusions and future work

In general, the MSPP method of slice-based
volume rendering can quickly implement the visu-
alization of volumetric datasets and some volume ef-
fects, such as translucent effect with TF and volume
shadow. In contrast to other slice-based volume ren-
dering algorithms such as half-angle slicing, MSPP
can improve the rendering performance for volume
shadow by at least two times and effectively reduce
the memory overhead. Meanwhile, the scalability of
MSPP can be flexibly applied to more volumetric

datasets and rendering applications. Combined with
the parallel rendering framework, it also dramati-
cally improves the performance of volume rendering.
However, there are also some problems with MSPP
to represent the better volume effects, such as the
lack of a combination of more methods over the state
of the art.

We will further optimize and improve the MSPP
method to form a mature framework system and
combine it with multi-computer parallel rendering
frameworks. Meanwhile, more related volume ren-
dering methods (such as traditional volume render-
ing ray casting) combined with MSPP will be stud-
ied. Furthermore, soft shadow, slicing artifacts, and
illumination scattering will be solved.

Contributors
Dening LUO and Jianwei ZHANG designed the re-

search. Dening LUO processed the data and drafted the

manuscript. Jianwei ZHANG and Yi LIN helped organize

the manuscript. Dening LUO and Jianwei ZHANG revised

and finalized the paper.

Compliance with ethics guidelines
Dening LUO, Yi LIN, and Jianwei ZHANG declare that

they have no conflict of interest.

References
Angelelli P, Bruckner S, 2015. Performance and quality

analysis of convolution-based volume illumination. J
WSCG, 23(2):131-138.

Belyaev SY, Smirnova ND, Smirnov PO, et al., 2019.
Fast selective antialiasing for direct volume rendering.
Proc SPIE, Medical Imaging: Imaging Informatics for
Healthcare, Research, and Applications, 1095407.
https://doi.org/10.1117/12.2511887

Beyer J, Hadwiger M, Pfister H, 2015. State-of-the-art in
GPU-based large-scale volume visualization. Comput
Graph Forum, 34(8):13-37.
https://doi.org/10.1111/cgf.12605

Bordoloi UD, Shen HW, 2005. View selection for volume
rendering. Proc IEEE Visualization, p.487-494.
https://doi.org/10.1109/VISUAL.2005.1532833

Çalışkan A, Çevik U, 2015. Overview of computer graphics
and algorithms. Proc 23rd Signal Processing and Com-
munications Applications Conf, p.831-834.
https://doi.org/10.1109/SIU.2015.7129957

El Seoud MSA, Mady AS, 2019. A comprehensive review
on volume rendering techniques. Proc 8th Int Conf on
Software and Information Engineering, p.126-131.
https://doi.org/10.1145/3328833.3328878

Engel K, Kraus M, Ertl T, 2001. High-quality pre-integrated
volume rendering using hardware-accelerated pixel
shading. Proc ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, p.9-16.
https://doi.org/10.1145/383507.383515

Luo et al. / Front Inform Technol Electron Eng 2021 22(8):1092-1103 1103

Fernando R, 2004. GPU Gems: Programming Techniques,
Tips, and Tricks for Real-Time Graphics. Addison-
Wesley, Boston, USA.

Hachaj T, 2014. Real time exploration and management
of large medical volumetric datasets on small mobile
devices—evaluation of remote volume rendering ap-
proach. Int J Inform Manag, 34(3):336-343.
https://doi.org/10.1016/j.ijinfomgt.2013.11.005

Hänel C, Weyers B, Hentschel B, et al., 2016. Visual qual-
ity adjustment for volume rendering in a head-tracked
virtual environment. IEEE Trans Vis Comput Graph,
22(4):1472-1481.
https://doi.org/10.1109/TVCG.2016.2518338

Jönsson D, Sundén E, Ynnerman A, et al., 2014. A survey of
volumetric illumination techniques for interactive vol-
ume rendering. Comput Graph Forum, 33(1):27-51.
https://doi.org/10.1111/cgf.12252

Khan NM, Ksantini R, Guan L, 2018. A novel image-centric
approach toward direct volume rendering. ACM Trans
Intell Syst Technol, 9(4):42.
https://doi.org/10.1145/3152875

Kniss J, Premoze S, Hansen C, et al., 2002. Interactive
translucent volume rendering and procedural modeling.
Proc IEEE Visualization, p.109-116.
https://doi.org/10.1109/VISUAL.2002.1183764

Kruger J, Westermann R, 2003. Acceleration techniques for
GPU-based volume rendering. Proc IEEE Visualiza-
tion, p.287-292.
https://doi.org/10.1109/VISUAL.2003.1250384

Lacroute P, Levoy M, 1994. Fast volume rendering using a
shear-warp factorization of the viewing transformation.
Proc 21st Annual Conf on Computer Graphics and In-
teractive Techniques, p.451-458.
https://doi.org/10.1145/192161.192283

Laur D, Hanrahan P, 1991. Hierarchical splatting: a progres-
sive refinement algorithm for volume rendering. ACM
SIGGRAPH Comput Graph, p.285-288.
https://doi.org/10.1145/127719.122748

Ljung P, Krüger J, Groller E, et al., 2016. State of the art in
transfer functions for direct volume rendering. Comput
Graph Forum, 35(3):669-691.
https://doi.org/10.1111/cgf.12934

Ma B, Entezari A, 2018. Volumetric feature-based classifica-
tion and visibility analysis for transfer function design.
IEEE Trans Vis Comput Graph, 24(12):3253-3267.
https://doi.org/10.1109/TVCG.2017.2776935

Mwalongo F, Krone M, Reina G, et al., 2016. State-of-the-
art report in web-based visualization. Comput Graph
Forum, 35(3):553-575.
https://doi.org/10.1111/cgf.12929

Noguera JM, Jimenez JR, 2016. Mobile volume rendering:
past, present, and future. IEEE Trans Vis Comput
Graph, 22(2):1164-1178.
https://doi.org/10.1109/TVCG.2015.2430343

Patel D, Šoltészová V, Nordbotten JM, et al., 2013. In-
stant convolution shadows for volumetric detail map-
ping. ACM Trans Graph, 32(5):154.
https://doi.org/10.1145/2492684

Preim B, Baer A, Cunningham D, et al., 2016. A survey
of perceptually motivated 3D visualization of medical
image data. Comput Graph Forum, 35(3):501-525.
https://doi.org/10.1111/cgf.12927

Rodríguez MB, Alcocer PPV, 2012. Practical volume render-
ing in mobile devices. Proc 8th Int Symp on Advances
in Visual Computing, p.708-718.
https://doi.org/10.1007/978-3-642-33179-4_67

Rostamzadeh N, Jönsson D, Ropinski T, 2013. A compari-
son of volumetric illumination methods by considering
their underlying mathematical models. Proc SIGRAD,
Visual Computing, p.35-40.

Schlegel P, Makhinya M, Pajarola R, 2011. Extinction-based
shading and illumination in GPU volume ray-casting.
IEEE Trans Vis Comput Graph, 17(12):1795-1802.
https://doi.org/10.1109/TVCG.2011.198

Schott M, Pegoraro V, Hansen C, et al., 2009. A directional
occlusion shading model for interactive direct volume
rendering. Comput Graph Forum, 28(3):855-862.
https://doi.org/10.1111/j.1467-8659.2009.01464.x

Šoltészová V, Patel D, Bruckner S, et al., 2010. A multi-
directional occlusion shading model for direct volume
rendering. Comput Graph Forum, 29(3):883-891.
https://doi.org/10.1111/j.1467-8659.2009.01695.x

Stegmaier S, Strengert M, Klein T, 2005. A simple and flexi-
ble volume rendering framework for graphics-hardware-
based raycasting. Proc 4th Int Workshop on Volume
Graphics, p.187-195.
https://doi.org/10.1109/VG.2005.194114

Usher W, Amstutz J, Brownlee C, et al., 2017. Progres-
sive CPU volume rendering with sample accumulation.
Proc 17th Eurographics Symp on Parallel Graphics and
Visualization, p.21-30.
https://doi.org/10.2312/pgv.20171090

Wangkaoom K, Ratanaworabhan P, Thongvigitmanee SS,
2015. High-quality web-based volume rendering in real-
time. Proc 12th Int Conf on Electrical Engineering/
Electronics, Computer, Telecommunications and Infor-
mation Technology, p.1-6.
https://doi.org/10.1109/ECTICon.2015.7207091

Zhang Q, Eagleson R, Peters TM, 2011. Volume visual-
ization: a technical overview with a focus on medical
applications. J Dig Imag, 24(4):640-664.
https://doi.org/10.1007/s10278-010-9321-6

Zhang YB, Ma KL, 2013. Lighting design for globally illu-
minated volume rendering. IEEE Trans Vis Comput
Graph, 19(12):2946-2955.
https://doi.org/10.1109/TVCG.2013.172

	Introduction
	Related work
	Algorithm
	Slice-based volume rendering
	View-aligned 3D texture slicing
	Half-angle slicing

	Volume illumination
	MSPP for volume shadow

	Results and analysis
	Conclusions and future work

