
1080 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Improvedbinary artificial bee colony algorithm

Rafet DURGUT
Computer Engineering Department, Engineering Faculty, Karabuk University, Karabuk 78050, Turkey

E-mail: rafetdurgut@karabuk.edu.tr

Received May 19, 2020; Revision accepted Aug. 27, 2020; Crosschecked Aug. 4, 2021

Abstract: The artificial bee colony (ABC) algorithm is an evolutionary optimization algorithm based on swarm
intelligence and inspired by the honey bees’ food search behavior. Since the ABC algorithm has been developed
to achieve optimal solutions by searching in the continuous search space, modification is required to apply it to
binary optimization problems. In this study, we modify the ABC algorithm to solve binary optimization problems
and name it the improved binary ABC (IbinABC). The proposed method consists of an update mechanism based
on fitness values and the selection of different decision variables. Therefore, we aim to prevent the ABC algorithm
from getting stuck in a local minimum by increasing its exploration ability. We compare the IbinABC algorithm
with three variants of the ABC and other meta-heuristic algorithms in the literature. For comparison, we use the
well-known OR-Library dataset containing 15 problem instances prepared for the uncapacitated facility location
problem. Computational results show that the proposed algorithm is superior to the others in terms of convergence
speed and robustness. The source code of the algorithm is available at https://github.com/rafetdurgut/ibinABC.

Key words: Artificial bee colony; Binary optimization; Uncapacitated facility location problem (UFLP)
https://doi.org/10.1631/FITEE.2000239 CLC number: TP301.6

1 Introduction

In recent years, several meta-heuristic opti-
mization algorithms that are influenced by various
phenomena of nature have been developed (Hus-
sain et al., 2019). There are many algorithms in-
spired by physical, chemical, or biological phenom-
ena and swarms of animals. An optimization algo-
rithm is called population-based if it searches the
best solution using a set of solutions (Wu et al.,
2019). The population-based algorithms are divided
into two evolutionary and swarm intelligence algo-
rithms. Genetic algorithm (GA) (Holland, 1992),
evolutionary strategy (Rechenberg, 1978), and dif-
ferential evolution (Storn and Price, 1997) are the
most popular in population-based evolutionary algo-
rithms, while artificial bee colony (ABC) (Karaboga
and Basturk, 2007), particle swarm optimization

ORCID: Rafet DURGUT, https://orcid.org/0000-0002-6891-
5851
c© Zhejiang University Press 2021

(PSO) (Kennedy and Eberhart, 1995), grey wolf
optimization (GWO) (Mirjalili et al., 2014), crow
search algorithm (CSA) (Askarzadeh, 2016), and
whale optimization algorithm (WOA) (Mirjalili and
Lewis, 2016) are the most popular for population-
based swarm intelligence algorithms.

Optimization methods work on certain types of
problems when they are first proposed. These opti-
mization problems can be continuous (e.g., ABC and
PSO), combinatorial (e.g., GA), binary (e.g., GA),
or constrained under some conditions (e.g., CSA).
An optimization algorithm can be applied to other
problem types. However, by the no free lunch the-
orem (Mallipeddi et al., 2011), the increase in suc-
cess for one problem type has the opposite effect in
other problem types. Therefore, when an algorithm
is applied to different types of problems, some modi-
fications are required. The literature on the variants
of meta-heuristic algorithms developed for different
problems is quite extensive (Talbi, 2009; Gogna and

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1081

Tayal, 2013).

The original ABC algorithm was first devel-
oped to solve single-objective continuous problems,
but multi-objective (Akbari et al., 2012), binary
(Jia et al., 2014), and combinatorial (Karaboga and
Gorkemli, 2011) versions have been developed in due
course. The related literature across all honeybees-
inspired meta-heuristics was detailed in Rajasekhar
et al. (2017). Although the ABC algorithm solves op-
timization problems via evolution, it has some struc-
tural problems. The exploration-exploitation bal-
ance is not provided properly with existing operators
and mechanisms. In the original ABC algorithm,
the exploration phase supported by many mecha-
nisms remains more dominant and the exploitation
phase remains more recessive. Only one decision
variable is updated at each iteration. This situation
differs for the binary versions. The dissimilarity-
based binary ABC (DisABC) algorithm, which is a
similarity-based binary variant proposed by Kashan
et al. (2012), generates a new candidate solution
by changing the value of more than one bit. Al-
though the DisABC algorithm provides fast conver-
gence by changing several decision variables, it works
slowly in large-scale problems because it contains
the mixed-integer linear programming model. Ki-
ran and Gündüz (2013) proposed a new variant of
the binary ABC (binABC) algorithm based on XOR
operations. A candidate solution is generated by
a mechanism derived similar to the original ABC
update mechanism. However, Kiran and Gündüz
(2013) adjusted the balance of exploration and ex-
ploitation with a parameter in the mechanism. How-
ever, they did not reveal the effect of this parameter.
Santana et al. (2019) proposed a new binary ABC
(NBABC) algorithm which uses the flip operator in-
stead of arithmetic operations within the neighbor-
hood. NBABC also adapts the maximum number
of dimension changes throughout iterations to im-
prove exploration phases. He et al. (2018) proposed
another variant of binary ABC (BABC) for the set-
union knapsack problem imposing two modifications:
a new full mapping function and probability-based
dimension change.

Solving binary problems is very substantial in
many fields, in particular computer, mathematics,
and economics (Lorena et al., 2008). Therefore, there
are arrangements of different meta-heuristic algo-
rithms proposed to solve binary optimization prob-

lems in Crawford et al. (2017). Chuang et al. (2008)
improved the binary PSO to solve the feature se-
lection problem. Korkmaz and Kiran (2018) made
a modification of the artificial algae algorithm that
is improved for continuous optimization problems
to solve the uncapacitated facility location problem
(UFLP).

This paper consists of a modified version of the
binABC algorithm (Kiran and Gündüz, 2013) by en-
hancing the exploitation ability. In this study, we
aim to obtain better results in solving binary opti-
mization problems using the ABC algorithm. With
this purpose, we propose an improved update mech-
anism. The proposed mechanism consists of two
parts. The first is the determination of the number
of decision variables to be changed in each iteration
as nonlinear and stochastic, which strengthens the
exploration at the early phase and the exploitation
in the middle and last phases. The second is the use
of an improved update operator to transfer better
solutions to the next generations.

2 Artificial bee colony algorithm

The ABC algorithm was developed by Karaboga
and Basturk (2007), inspired by the honey bees’ food
search behavior, and was first applied to continuous
optimization problems. The ABC algorithm mod-
els the swarm intelligence formed by bees interacting
with each other in the bee hive. According to the
model, there are three types of bees in the hive: em-
ployed, onlooker, and scout bees. These bee types
are modeled in a way that each of them is responsible
for only one phase. In the first phase, the so-called
employed bee phase, each employed bee tries to im-
prove its own food source. In the onlooker bee phase,
each onlooker bee works on its own food source in
proportion to the quality of its food source. In the
scout bee phase, if the onlooker bees fail to provide
an improvement in the food source, the scout bees
start the search for a new food source.

A food source represents a feasible solution in
the model. The fitness function, which depends on
the cost function of this solution, expresses nectar
information, and is calculated by Eq. (1). Depending
on the probability value calculated by Eq. (2), based
on this fitness value, the neighborhood operator is
applied to the current food source as in Eq. (3). The
limit value determined for the implementation of the

1082 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091

scout bee phase is controlled by a variable called a
trial, and if this value exceeds the limit value, a new
solution is generated by Eq. (4).

Fit(xi) =

{
1

1+f(xi)
, f(xi) ≥ 0,

1 + |f(xi)|, otherwise,
(1)

pi =
Fit(xi)∑N
j=1 Fit(xj)

, (2)

vi,j = xi,j + φi,j(xi,j − xn,j), (3)

xi,j = LBj + rand(0, 1)(UBj − LBj), (4)

where xi, xn, and vi are the selected, neighbor, and
candidate solutions, respectively. φi,j is a random
number within the range of [0, 1]. i = 1, 2, · · · , N
represents the index of the food source, with N as
the number of food sources. j = 1, 2, · · · , D is the
decision variable index in the D-dimensional solution
set. LB and UB represent the lower and upper bound
values for a decision variable, respectively. There are
many studies on detailed analysis of the method and
its applications (Karaboga et al., 2014).

3 Binary artificial bee colony

Since the ABC algorithm is developed for the
continuous decision variables, it is not possible to
apply it to binary optimization problems without
making modification. Therefore, the binABC vari-
ants have been proposed to solve this problem. Re-
searchers have improved new variants by making
some modifications to Eqs. (3) and (4). In what fol-
lows, we review three current studies. The methods
generate new random solutions using Eq. (5) instead
of Eq. (4) by a Bernoulli process:

xi,j =

{
0, if rand < 0.5,

1, otherwise.
(5)

3.1 binABC

Kiran and Gündüz (2013) modified Eq. (4) with
Eq. (6), using the XOR logical operator “⊕” to pro-
duce a candidate solution in their binary variant.
Here, parameter ϑ is used as a logic NOT gate. If it
is less than the threshold value (0.5), then the output
of parenthesis is complemented.

vi,j = xi,j ⊕ ϑ(xi,j ⊕ xn,j), (6)

where i is the index of the selected solution, and
j is the randomly selected problem dimension. To
determine the corresponding bit of the candidate so-
lution, the corresponding bits of the selected and
the neighbor solutions are taken to a logical process.
Table 1 lists possible candidate bit values that can
be obtained using the neighborhood operator. From
Table 1, for state 1 (ϑ < 0.5), if the input bits are
the same, then the output is inverted; otherwise, it
follows the input. For state 2 (ϑ ≥ 0.5), if the input
bits are the same, then the output takes the same
value of the input; otherwise, it takes the value of
the neighbor bit.

Table 1 Truth table for the XOR-based neighborhood
operation

Type Operation Bit value

Input

xi,j 0 0 1 1
xn,j 0 1 0 1

xi,j ⊕ xn,j 0 1 1 0
ϑ < 0.5 (state 1) 1 0 0 1
ϑ ≥ 0.5 (state 2) 0 1 1 0

Output
vi,j (state 1) 1 0 1 0
vi,j (state 2) 0 1 0 1

3.2 DisABC

Kashan et al. (2012) proposed a DisABC vari-
ant for binary optimization problems. The DisABC
method uses a new solution generator by transform-
ing Eq. (4) into the binary search space. The new
solution generator calculates dissimilarity between
the selected and neighbor solutions using Eqs. (7)
and (8). In Eq. (8), the Jaccard similarity coefficient
is calculated.

sim(xi, xj) =
M11

M01 +M10 +M11
, (7)

dissim(xi, xj) = 1− sim(xi, xj), (8)

where M11 is the number of bits, both xi and xj

have value 1. M01 and M10 are determined similarly
according to the bits of xi and xj , respectively. The
new candidate solution is generated by Eq. (9) and
an integer nonlinear programming model (Eq. (10)).

dissim(vi, xi) ≈ φdissim(xi, xj), (9)

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1083

min |dissim(vi, xi)− φdissim(xi, xj)|
s.t. M11 +M01 = n1,

M10 ≤ n0,

M10, M11, M01 ≥ 0,

M10, M11, M01 ∈ Z, (10)

where φ is the random positive scaling factor. The
minimum possible value is determined according to
the difference between the candidate and selected so-
lutions. Since it is not possible to provide equality in
all conditions, there is the approximately equal ex-
pression “≈.” To solve Eq. (9), it is necessary to solve
Eq. (10) first using integer programming techniques.
In the constraints, n1 and n0 represent the numbers
of 1 and 0 bits in the selected solution, respectively.
A new candidate solution is generated using the bits
of M11, M01, and M10 obtained by solving Eq. (10).
For more information and examples, the reader can
refer to Kashan et al. (2012).

3.3 ABCbin

In this ABC variant proposed by Kiran (2015),
continuous decision variables are converted into bi-
nary vectors by Eq. (11). In the ABCbin algorithm,
Eq. (4) is used as the neighborhood operator. Since
it is not possible to apply decision variables in the
continuous space to the problem, the binary vector,
zi, is used:

zi = round(|xi mod 2|) mod 2. (11)

The original ABC algorithm can be easily modified
to binary problems by this variant. The ABCbin al-
gorithm was implemented for different population
numbers and competitive results against the bin-
ABC and DisABC algorithms were obtained (Kiran,
2015).

4 Improved binary artificial bee colony

The ABC algorithm includes updating the value
of only one decision variable over D-decision vari-
ables in each update process. However, new gen-
eration swarm intelligence methods such as WOA
and GWO update all decision variables in each it-
eration. While updating a single decision variable
strengthens the exploitation phase, it weakens the
exploration phase and raises the problem of getting
stuck in a local minimum (Hakli and Kiran, 2020).

Two basic arrangements have been introduced
in the proposed binary variant of the ABC algo-
rithm. The first is to increase the convergence rate
and strengthen the exploration phase by considering
a variable number of bits for the neighborhood oper-
ator. Instead of using a fixed value in each iteration,
this value is determined by

dt = rand(0, α) + 0.1Dexp(−t/tmax) + 1, (12)

where α is the perturbation coefficient and it is a
random integer variable used to prevent exponential
decrease. dt is the number of updated bits. D refers
to the problem dimension. t and tmax are the cur-
rent and maximum iteration numbers, respectively.
dt tends to decrease in each iteration. Therefore, in
the first iteration, the exploration phase is strength-
ened by updating more bits of more selected solu-
tions while a candidate solution is generated. We
strengthen the exploitation phase by reducing the
number of bits processed when approaching the value
of tmax. At this stage, we aim to make changes in
more than one bit using a perturbation number and
to prevent the problem of getting stuck in a local
minimum. Since dt decreases throughout the itera-
tion process, we update more decision variables at
the initial stage. Toward the end of the iteration
process, fewer decision variables are updated. This
modification balances the exploration and exploita-
tion phases.

The proposed method employs the updated ver-
sion of Eq. (6) as a neighborhood operator. It uses
a neighbor or selected solution randomly when we
select parameter ϑ in Eq. (6) as 0.5. It does not
make any difference if the neighbor solution is better
or worse than the selected solution. This approach
weakens the exploitation phase because it involves a
more random process.

In our proposed variant, parameter ϑ is adap-
tively determined by

ϑ =

{
Qmax − Qmax−Qmin

tmax
t, Fit(xn) < Fit(xi),

0, otherwise,
(13)

where Qmax and Qmin are the upper and lower
bounds of a particular range, respectively. If the
neighbor solution is better than the current solution,
ϑ is assigned zero. The selected bit of the candi-
date solution is copied from the neighbor solution.

1084 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091

Otherwise, there is a low probability of copying from
the neighbor solution. If the neighbor solution is
better than the selected solution, state 2 occurs by
setting ϑ to be 0. Otherwise, ϑ is determined de-
pending on the iteration process. In the method, ϑ
decreases linearly with the iterations. Thus, a worse
solution at the beginning of the search is also allowed.

We create IbinABC by adding the two major
modifications to binABC. Algorithm 1 presents the
pseudocode of IbinABC.

Algorithm 1 IbinABC
1: Set the parameters (N , tmax, Qmax, Qmin, α, limit)
2: Generate the initial population
3: Memorize the best solution
4: while termination criteria are not met do
5: for each employed bee do
6: Select the neighbor using Roulette-Wheel selection
7: Determine ϑ using Eq. (13)
8: Determine dt using Eq. (12)
9: for i = 1 : dt do

10: Apply the neighborhood operator using Eq. (6)
11: end for
12: Evaluate the candidate solution
13: if the candidate solution is better than the

selected solution then
14: Set the current solution as the candidate solution

and reset the trial
15: else
16: Increase the trial
17: end if
18: end for
19: for each onlooker bee according to the probability do
20: Select the neighbor using Roulette-Wheel selection
21: Determine ϑ using Eq. (13)
22: Determine dt using Eq. (12)
23: for i = 1 : dt do
24: Apply the neighborhood operator using Eq. (6)
25: end for
26: Evaluate the candidate solution
27: if the candidate solution is better than the selected

solution then
28: Set the current solution as the candidate solution

and reset the trial
29: else
30: Increase the trial
31: end if
32: end for
33: if there exists a food source exceeding limit then
34: Choose one and replace it with the new solution

and reset the trial
35: end if
36: Memorize the best solutions
37: end while

5 Uncapacitated facility location
problem

In this section, we introduce a binary optimiza-
tion problem named UFLP, which is used to show the
effectiveness of the proposed variant. UFLP aims to
find the locations of customers whose demands are
previously determined and the locations where po-
tential facilities can be built. Each facility has a
setup cost and transportation cost between the cus-
tomer and facility. The main purpose of the problem
is to locate the facilities to be built with a minimum
total cost and to determine the location of the facil-
ities used by customers. The problem is called “un-
capacited” as the facilities are assumed to have the
service capacity to meet all the customer demands.

To mathematically define UFLP, let m and n

be the number of potential facilities to be built and
the number of customers, respectively. Let S be the
shipment cost matrix and Si,j be the transportation
cost between facility i and customer j. Let F be the
setup cost vector. Fi represents the initial installa-
tion cost of facility i. yi,j and xi,j are binary decision
variables defined as follows:

yi,j =

{
1, if customer j is served by facility i,

0, otherwise,
(14)

and

xi,j =

{
1, if facility i is built,

0, otherwise.
(15)

The objective function is given by

min f =

n∑
i=1

m∑
j=1

Si,jyi,j +

n∑
i=1

Fixi

s.t.

n∑
i=1

yi,j = 1, j = 1, 2, · · · ,m,

yi,j ≥ xi, i = 1, 2, ..., n, j = 1, 2, · · · ,m,

yi,j , xi ∈ {0, 1}.
(16)

The vector x used as the decision variable in
UFLP determines whether the facilities are built or
not. If a potential facility is built at its location, then
the corresponding decision variable takes the value
of 1; otherwise, it takes the value of 0. Since all
decision variables of the problem are binary, UFLP
belongs to the class of binary integer programming

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1085

problems.
OR-Library is a collection of problem instances

for a variety of combinatorial optimization problems.
Table 2 lists some problem instances including the
number of facility locations and the number of cus-
tomers in OR-Library (Beasley, 1990).

Table 2 OR-Library UFLP dataset description

Problem instance Problem size Optimal value

Cap71 16 × 50 932 615.75
Cap72 16 × 50 977 799.40
Cap73 16 × 50 1 010 641.45
Cap74 16 × 50 1 034 976.98
Cap101 25 × 50 796 648.44
Cap102 25 × 50 854 704.20
Cap103 25 × 50 893 782.11
Cap104 25 × 50 928 941.75
Cap131 50 × 50 793 439.56
Cap132 50 × 50 851 495.33
Cap133 50 × 50 893 076.71
Cap134 50 × 50 928 941.75
CapA 100 × 1000 17 156 454.48
CapB 100 × 1000 12 979 071.58
CapC 100 × 1000 11 505 594.33

6 Experimental results

In this section, we discuss the success of the
IbinABC algorithm in solving UFLP and give an
extensive comparison with the existing methods for
the same problem.

6.1 Parameter tuning

We first conducted a parameter tuning pro-
cess for the experimental study. To determine the
best algorithm parameters, we tested several val-
ues of Qmax, Qmin, limit, and the number of in-
dividuals in the population (N). Accordingly, we
created 24 implementations consisting of three per-
mutations of Qmax and Qmin (Qmax = 0.5 and
Qmin = 0.3, Qmax = 0.5 and Qmin = 0.1, Qmax = 0.3

and Qmin = 0.1), four different values of limit
(0.5ND, ND, 2ND, and 4ND), and two values of N
(20 and 40), where D is the problem dimension. We
determined the parametric values via a preliminary
study. We tested these 24 implementations on prob-
lem instances CapA, CapB, and CapC for 80 000
function evaluations by running 30 times. Other
problem instances have not been taken into the test
environment because they are easier to solve, and the
results are not distinctive.

Table 3 summarizes the computational results of
the 24 implementations tested on the CapA problem
instance. The summary of the results over 30 runs
consists of the average minimum cost value, the worst
minimum cost value, the best minimum cost value,
the standard deviation of the cost values, and the
number of hits with optimal values. Gap represents
the average gap between the optimal value and the
obtained mean value for 30 different runs, and it is
calculated using

Gap =
Mean− Optimum

Optimum
× 100%, (17)

where “Mean” and “Optimum” denote the average of
the best values over 30 different runs and the optimal
value, respectively.

From Table 3, the optimal value for 10 imple-
mentations was achieved in 30 runs, that is, in each
run. We obtained these optimal values 4 times for
N = 20 and 6 times for N = 40. However, we
achieved the optimal value 2, 1, 3, and 4 times, re-
spectively, for different limit values in Table 3. The
optimal value was reached 2, 2, and 6 times, respec-
tively, for different Q values in Table 3.

Table 4 summarizes the results for the CapB
problem instance after 30 runs. According to the
table, the best solutions were obtained for N = 40,
Qmax = 0.3, and Qmin = 0.1. When the limit pa-
rameter was analyzed, the best results were obtained
when limit = ND and limit = 4ND. Twenty-four
hits, i.e., the number of runs with the optimal value,
were achieved for N = 20, Qmax = 0.3, Qmin = 0.1,
and limit = 2ND.

Table 5 summarizes the results for the CapC
problem instance after 30 runs. From the table, the
optimal value was achieved in 9 out of 30 runs when
N = 40, limit = ND, limit = 0.5ND. Thirteen hits
were achieved for N = 20, Qmax = 0.3, Qmin = 0.1,
and limit = 2ND.

From Tables 3–5, the best parameter values were
determined as N = 20, Qmax = 0.3, Qmin = 0.1, and
limit = 2ND. We used the computational results
obtained using these parameters for comparison with
the other algorithms.

Fig. 1 shows the convergence graphs of the re-
sults obtained after 30 runs of different implemen-
tations for the CapA problem instance. Each sub-
figure was obtained for different values of Q, limit,
and population. The first four and last four figures

1086 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091

were obtained for N = 20 and N = 40, respectively.
For N = 20, if the limit value was not selected prop-
erly, there will be a problem of late local convergence
and falling into a local minimum (limit = 0.5ND and
limit = ND). Clearly, Qmax = 0.3 and Qmin = 0.01

with the other limit values had faster convergence,
and the optimal values were achieved. We can ob-
serve that there was a decrease in the convergence
rate for the other values of Q. Moreover, Qmax = 0.3

and Qmin = 0.01 had higher convergence speed for
N = 40 and all values of limit compared to the other
values of Q. Fig. 2 shows the convergence graphs of

the results obtained after 30 runs of different imple-
mentations for the CapC problem instance. The con-
figuration Qmax = 0.3 and Qmin = 0.01 had higher
convergence speed for N = 40.

6.2 Comparison of methods

In this subsection, we compared the methods in
the literature that are applied to UFLP with a cer-
tain success with the proposed method. We obtain
the methods and results to be used for comparison di-
rectly from Kiran and Gündüz (2013) and Korkmaz

Table 3 Parameter tuning for the CapA problem instance

Limit Metric
N = 20 N = 40

Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1} Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1}

0.5ND

Mean 17 211 513.98 17 211 416.95 17 202 659.73 17 156 454.48 17 157 257.31 17 156 454.48
Std 118 060.08 121 645.08 124 472.71 0 4397.31 0
Gap 0.321 0.320 0.269 0 0.005 0
Hit 23 22 23 30 29 30

ND

Mean 17 158 862.99 17 177 089.92 17 162 797.73 17 157 257.31 17 163 600.57 17 156 454.48
Std 7349.05 57 841.98 34 743.44 4397.31 34 869.86 0
Gap 0.014 0.120 0.037 0.005 0.042 0
Hit 27 25 29 29 28 30

2ND

Mean 17 157 257.31 17 156 454.48 17 156 454.48 17 157 257.31 17 157 257.31 17 156 454.48
Std 4397.31 0 0 4397.31 4397.31 0
Gap 0.005 0 0 0.005 0.005 0
Hit 29 30 30 29 29 30

4ND

Mean 17 158 862.99 17 156 454.48 17 156 454.48 17 156 454.48 17 162 797.73 17 156 454.48
Std 7349.05 0 0 0 34 743.44 0
Gap 0.014 0 0 0 0.037 0
Hit 27 30 30 30 29 30

Table 4 Parameter tuning for the CapB problem instance

Limit Metric
N = 20 N = 40

Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1} Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1}

0.5ND

Mean 13 040 252.87 13 026 593.82 13 015 214.76 13 000 993.81 12 997 280.3 12 985 106.11
Std 54 956.31 61 875.43 45 090.86 33 861.62 31 331.36 15 256.78
Gap 0.471 0.366 0.278 0.169 0.140 0.046
Hit 9 14 12 18 17 22

ND

Mean 13 017 483 13 014 189.49 12 995 042.72 12 993 104.83 13 000 429.62 12 986 432.62
Std 47 236.15 43 546.89 38 948.36 32 061.70 33 164.37 20 707.79
Gap 0.296 0.271 0.123 0.108 0.165 0.057
Hit 15 15 22 23 18 25

2ND

Mean 12 996 226.12 12 992 661.06 12 988 144.53 12 993 190.01 12 992 449.05 12 988 220.02
Std 31 866.51 28 794.20 23 762.93 26 057.15 28 303.10 20 970.35
Gap 0.132 0.105 0.070 0.109 0.103 0.070
Hit 20 20 24 20 21 22

4ND

Mean 12 989 864.89 12 997 800.6 12 998 207.46 12 992 871.59 13 001 931.86 12 987 621.8
Std 24 533.19 33 722.88 32 646.16 27 174.68 34 542.24 23 511.75
Gap 0.083 0.144 0.147 0.106 0.176 0.066
Hit 22 17 21 21 16 25

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1087
G

ap
 (%

)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

1000 30002000 40000 1000 30002000 40000

1000 30002000 40000 1000 30002000 40000
Number of iterations

500 15001000 20000 500 15001000 20000

500 15001000 20000

(g) (h)

(e) (f)

(c) (d)

(a) (b)

500 15001000 20000

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Number of iterations

Number of iterations Number of iterations

Number of iterations Number of iterations

Number of iterations Number of iterations

10-5

100

105

10-5

100

105

10-5

100

105

10-5

100

105

10-5

100

105

10-5

100

105

10-2

102

104

100

10-2

102

104

100

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Fig. 1 Parameter tuning on the CapA problem instance: (a) 0.5ND for N = 20; (b) ND for N = 20; (c) 2ND

for N = 20; (d) 4ND for N = 20; (e) 0.5ND for N = 40; (f) ND for N = 40; (g) 2ND for N = 40; (h) 4ND

for N = 40 (References to color refer to the online version of this figure)

1088 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091
G

ap
 (%

)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

G
ap

 (%
)

1000 30002000 40000 1000 30002000 40000

1000 30002000 40000 1000 30002000 40000
Number of iterations

500 15001000 20000 500 15001000 20000

500 15001000 20000

(g) (h)

(e) (f)

(c) (d)

(a) (b)

500 1500 20000

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Number of iterations

Number of iterations Number of iterations

Number of iterations Number of iterations

Number of iterations Number of iterations

10-2

102

104

100

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

Qmax = 0.3, Qmin = 0.1
Qmax = 0.5, Qmin = 0.1
Qmax = 0.5, Qmin = 0.3

10-2

102

104

100

10-2

102

104

100

10-2

102

104

100

10-2

102

104

100

10-2

102

104

100

10-2

102

104

100

10-2

102

104

100

1000

Fig. 2 Parameter tuning on the CapC problem instance: (a) 0.5ND for N = 20; (b) ND for N = 20; (c) 2ND

for N = 20; (d) 4ND for N = 20; (e) 0.5ND for N = 40; (f) ND for N = 40; (g) 2ND for N = 40; (h) 4ND

for N = 40 (References to color refer to the online version of this figure)

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1089

Table 5 Parameter tuning for the CapC problem instance

Limit Metric N = 20 N = 40
Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1} Q = {0.5, 0.3} Q = {0.5, 0.1} Q = {0.3, 0.1}

0.5ND

Mean 11 537 949.08 11 531 590.6 11 526 389.19 11 519 621.62 11 524 032.61 11 512 198.34
Std 36 722.90 27 329.10 29 639.45 16 432.87 22 406.63 9798.03
Gap 0.281 0.226 0.181 0.122 0.160 0.057
Hit 1 4 7 4 6 9

ND

Mean 11 524 585.71 11 522 732.29 11 515 450.4 11 515 816.97 11 521 586.29 11 515 181.83
Std 24 926.34 16 770.08 10 456.57 12 328.59 17 861.71 10 868.37
Gap 0.165 0.149 0.086 0.089 0.139 0.083
Hit 2 4 6 9 5 4

2ND

Mean 11 514 048.28 11 516 527.21 11 512 756.39 11 519 689.91 11 521 590.87 11 514 458.39
Std 10 001.90 11 814.39 11 326.02 13 314.59 14 937.16 11 717.41
Gap 0.073 0.095 0.062 0.123 0.139 0.077
Hit 4 7 13 6 4 7

4ND

Mean 11 516 659.14 11 520 120.18 11 514 276.73 11 523 715.66 11 520 523.78 11 513 374.05
Std 13 096.58 15 931.59 10 349.29 20 569.69 15 529.49 12 098.64
Gap 0.096 0.126 0.075 0.158 0.130 0.068
Hit 6 6 6 3 3 8

and Kiran (2018). For a fair comparison between the
proposed method and other methods, the size of the
population was set to 40 and the maximum number
of iterations was set to 2000. Table 6 lists the pa-
rameters used in the methods. We implemented the
proposed method in the C programming language,
and the others were implemented in different plat-
forms. Since the proposed method is faster than the
methods in the literature, there will not provide a fair
comparison in terms of CPU time (thus we neglect
it).

We present the comparison of the IbinABC
algorithm with the other ABC algorithm variants

Table 6 Parameter configuration of ABC variants

Method Population size
Maximum number

of iterations
Limit

binABC 40 2000 0.25ND

DisABC 40 2000 2.5ND

ABCbin D 1000 0.5ND

IbinABC 20 4000 2ND

in Table 7. According to the table, the proposed
method was superior to the other methods for some
problem instances. The proposed method obtained
the optimal values for all runs except CapB and

Table 7 Comparison with the other binary variants of ABC

Problem binABC DisABC ABCbin IbinABC
instance Gap Std R S Gap Std R S Gap Std R S Gap Std R

Cap71 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap72 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap73 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap74 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap101 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap102 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap103 0.00 0.00 1 − 0.00 0.00 1 − 0.01 85.67 4 − 0.00 0.00 1
Cap104 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
Cap131 0.00 0.00 1 − 0.62 2337.64 4 − 0.20 1065.73 3 − 0.00 0.00 1
Cap132 0.00 0.00 1 − 0.09 813.37 4 + 0.02 213.28 3 + 0.00 0.00 1
Cap133 1215.00 200.24 4 − 0.03 359.03 2 + 0.07 561.34 3 + 0.00 0.00 1
Cap134 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1 − 0.00 0.00 1
CapA 2.96 236 833.50 3 + 0.15 74 782.61 2 − 3.17 268 685.20 4 + 0.00 0.00 1
CapB 2.51 9143.13 2 + 3.30 109 738.50 4 + 2.82 88 452.80 3 + 0.07 23 762.93 1
CapC 2.58 82 312.70 3 + 4.70 95 778.78 4 + 2.04 78 162.20 2 + 0.06 11 326.02 1

Mean 1.53 1.93 2 1

1090 Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091

CapC problem instances. However, it had a very low
Gap value compared to other methods. The method
produced very successful results not only for small-
size problem instances but also for large-size ones.
Clearly seen in the table, the proposed method was
the best among the other methods we compared.

We also compared the IbinABC algorithm
with some state-of-the-art meta-heuristic algorithms
(GA, binary artificial algae algorithm (binAAA), and
binary PSO) and presented the results in Table 8. As
can be seen in the table, the results for the CapA,
CapB, and CapC problem instances were distinctive.
The binAAA and IbinABC algorithms can compete
on these three problem instances. The IbinABC al-
gorithm achieved more hits for CapB and CapC than
the binAAA algorithm and yielded results closer to
the optimal value. We also performed a Wilcoxon
signed rank test for all compared methods to show
statistical significance at the 95% confidence level.
If the p-values are greater than 0.05, it means that
the difference between the results of the compared
methods is not statistically significant, as indicated
by “−” in column S of Tables 7 and 8. Moreover, if
the difference between the results of the compared
approaches is statistically significant, it is indicated
with “+” in column S of Tables 7 and 8. As shown
in the tables, the significant difference can be seen
in all CapB and CapC problem instances, while no

significance is indicated in the other problem case.
It is because CapB and CapC are the most difficult
problems to solve, which can help make a difference
in the performance of algorithms. Looking at ranks
of CapB and CapC, it is apparent that IbinABC
significantly outperforms all the other approaches.
We list the rank values of the methods in column R
of Tables 7 and 8.

7 Conclusions

In this paper, we have proposed a binary variant
of the ABC algorithm to successfully apply the ABC
algorithm to binary optimization problems. The
proposed method aims to increase the convergence
rate by updating some decision variables in each
iteration and to prevent the problem of getting
stuck in a local minimum. Another modification
is the use of adaptive parameters in XOR-based
logical operators. We have conducted a preliminary
study to determine these parameters experimentally
and obtained the best configuration. We have
discussed the success of the proposed binABC
algorithm in solving UFLP and presented an exten-
sive comparison with some existing methods. The
proposed method showed the best performance in all
problem instances of UFLP taken from OR-Library.
According to the computational tests, the proposed

Table 8 Comparison with state-of-the-art methods

Problem GA-SP BPSO binAAA IbinABC
instance Gap Std Hit R S Gap Std Hit R S Gap Std Hit R S Gap Std Hit R

Cap71 0.00 0.00 30 1 − 0.000 0.000 30 1 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap72 0.000 0.000 30 1 − 0.000 0.000 30 1 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap73 0.067 899 19 4 + 0.024 634 26 3 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap74 0.000 0.000 30 1 − 0.009 500 29 4 + 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap101 0.068 421 11 4 + 0.043 428 18 3 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap102 0.000 0.000 30 1 − 0.010 321 28 4 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap103 0.064 505 6 4 + 0.049 521 14 3 + 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap104 0.000 0.000 30 1 − 0.041 1432 28 4 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap131 0.068 720 16 3 + 0.171 1505 10 4 + 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap132 0.000 0.000 30 1 − 0.058 1055 21 4 − 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap133 0.091 685 10 4 + 0.083 690 10 3 + 0.000 0.000 30 1 − 0.000 0.000 30 1
Cap134 0.000 0.000 30 1 − 0.195 2594 18 4 + 0.000 0.000 30 1 − 0.000 0.000 30 1
CapA 0.046 22 451 24 3 − 1.691 319 855 8 4 + 0.000 0.000 30 1 − 0.000 0.000 30 1
CapB 0.584 66 658 9 3 + 1.403 135 326 5 4 + 0.248 39 224 15 2 + 0.070 23 762 24 1
CapC 0.705 51 848 2 3 + 1.622 115 156 1 4 + 0.295 29 766 1 2 + 0.062 11 326 13 1

Mean 2.3 3.3 1.1 1.0

Durgut / Front Inform Technol Electron Eng 2021 22(8):1080-1091 1091

method is superior to the other methods.

Compliance with ethics guidelines
Rafet DURGUT declares that he has no conflict of

interest.

References
Akbari R, Hedayatzadeh R, Ziarati K, et al., 2012. A multi-

objective artificial bee colony algorithm. Swarm Evol
Comput, 2:39-52.
https://doi.org/10.1016/j.swevo.2011.08.001

Askarzadeh A, 2016. A novel metaheuristic method for
solving constrained engineering optimization problems:
crow search algorithm. Comput Struct, 169:1-12.
https://doi.org/10.1016/j.compstruc.2016.03.001

Beasley JE, 1990. OR-Library: distributing test problems
by electronic mail. J Oper Res Soc, 41(11):1069-1072.
https://doi.org/10.1057/jors.1990.166

Chuang LY, Chang HW, Tu CJ, et al., 2008. Improved
binary PSO for feature selection using gene expression
data. Comput Biol Chem, 32(1):29-38.
https://doi.org/10.1016/j.compbiolchem.2007.09.005

Crawford B, Soto R, Astorga G, et al., 2017. Putting con-
tinuous metaheuristics to work in binary search spaces.
Complexity, 2017:8404231.
https://doi.org/10.1155/2017/8404231

Gogna A, Tayal A, 2013. Metaheuristics: review and appli-
cation. J Exp Theor Artif Intell, 25(4):503-526.
https://doi.org/10.1080/0952813X.2013.782347

Hakli H, Kiran MS, 2020. An improved artificial bee colony
algorithm for balancing local and global search behav-
iors in continuous optimization. Int J Mach Learn
Cybern, 11(9):2051-2076.
https://doi.org/10.1007/s13042-020-01094-7

He YC, Xie HR, Wong TL, et al., 2018. A novel binary ar-
tificial bee colony algorithm for the set-union knapsack
problem. Fut Gener Comput Syst, 78:77-86.
https://doi.org/10.1016/j.future.2017.05.044

Holland JH, 1992. Genetic algorithms. Sci Amer, 267(1):66-
73. https://doi.org/10.1038/scientificamerican0792-66

Hussain K, Salleh MNM, Cheng S, et al., 2019. Metaheuristic
research: a comprehensive survey. Artif Intell Rev,
52(4):2191-2233.
https://doi.org/10.1007/s10462-017-9605-z

Jia DL, Duan XT, Khan MK, 2014. Binary artificial bee
colony optimization using bitwise operation. Comput
Ind Eng, 76:360-365.
https://doi.org/10.1016/J.CIE.2014.08.016

Karaboga D, Basturk B, 2007. A powerful and efficient
algorithm for numerical function optimization: artificial
bee colony (ABC) algorithm. J Glob Optim, 39(3):459-
471. https://doi.org/10.1007/s10898-007-9149-x

Karaboga D, Gorkemli B, 2011. A combinatorial artificial
bee colony algorithm for traveling salesman problem.
Int Symp on Innovations in Intelligent Systems and
Applications, p.50-53.
https://doi.org/10.1109/INISTA.2011.5946125

Karaboga D, Gorkemli B, Ozturk C, et al., 2014. A compre-
hensive survey: artificial bee colony (ABC) algorithm

and applications. Artif Intell Rev, 42(1):21-57.
https://doi.org/10.1007/s10462-012-9328-0

Kashan MH, Nahavandi N, Kashan AH, 2012. DisABC: a
new artificial bee colony algorithm for binary optimiza-
tion. Appl Soft Comput, 12(1):342-352.
https://doi.org/10.1016/J.ASOC.2011.08.038

Kennedy J, Eberhart R, 1995. Particle swarm optimiza-
tion. Proc Int Conf on Neural Networks, p.1942-1948.
https://doi.org/10.1109/ICNN.1995.488968

Kiran MS, 2015. The continuous artificial bee colony al-
gorithm for binary optimization. Appl Soft Comput,
33:15-23. https://doi.org/10.1016/J.ASOC.2015.04.007

Kiran MS, Gündüz M, 2013. XOR-based artificial bee colony
algorithm for binary optimization. Turk J Electr Eng
Comput Sci, 21:2307-2328.
https://doi.org/10.3906/ELK-1203-104

Korkmaz S, Kiran MS, 2018. An artificial algae algorithm
with stigmergic behavior for binary optimization. Appl
Soft Comput, 64:627-640.
https://doi.org/10.1016/J.ASOC.2018.01.001

Lorena AC, de Carvalho ACPLF, Gama JMP, 2008. A review
on the combination of binary classifiers in multiclass
problems. Artif Intell Rev, 30(1-4):19.
https://doi.org/10.1007/s10462-009-9114-9

Mallipeddi R, Suganthan PN, Pan QK, et al., 2011. Differ-
ential evolution algorithm with ensemble of parameters
and mutation strategies. Appl Soft Comput, 11(2):1679-
1696. https://doi.org/10.1016/J.ASOC.2010.04.024

Mirjalili S, Lewis A, 2016. The whale optimization algorithm.
Adv Eng Softw, 95:51-67.
https://doi.org/10.1016/J.ADVENGSOFT.2016.01.008

Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer.
Adv Eng Softw, 69:46-61.
https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007

Rajasekhar A, Lynn N, Das S, et al., 2017. Computing
with the collective intelligence of honey bees—a survey.
Swarm Evol Comput, 32:25-48.
https://doi.org/10.1016/J.SWEVO.2016.06.001

Rechenberg I, 1978. Evolutionsstrategien. In: Schneider B,
Ranft U (Eds.), Simulationsmethoden in der Medizin
und Biologie. Medizinische Informatik und Statistik,
Vol 8. Springer, Berlin, Heidelberg, p.83-114.

Santana CJJr, Macedo M, Siqueira H, et al., 2019. A
novel binary artificial bee colony algorithm. Fut Gener
Comput Syst, 98:180-196.
https://doi.org/10.1016/J.FUTURE.2019.03.032

Storn R, Price K, 1997. Differential evolution—a simple and
efficient heuristic for global optimization over continu-
ous spaces. J Glob Optim, 11(4):341-359.
https://doi.org/10.1023/A:1008202821328

Talbi EG, 2009. Metaheuristics: from Design to Implemen-
tation. John Wiley & Sons, Hoboken, New Jersey,
USA.

Wu GH, Mallipeddi R, Suganthan PN, 2019. En-
semble strategies for population-based optimization
algorithms—a survey. Swarm Evol Comput, 44:695-
711.
https://doi.org/10.1016/J.SWEVO.2018.08.015

	Introduction
	Artificial bee colony algorithm
	Binary artificial bee colony
	binABC
	DisABC
	ABCbin

	Improved binary artificial bee colony
	Uncapacitated facility location problem
	Experimental results
	Parameter tuning
	Comparison of methods

	Conclusions

