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Abstract: Script is the structured knowledge representation of prototypical real-life event sequences. Learning
the commonsense knowledge inside the script can be helpful for machines in understanding natural language and
drawing commonsensible inferences. Script learning is an interesting and promising research direction, in which a
trained script learning system can process narrative texts to capture script knowledge and draw inferences. However,
there are currently no survey articles on script learning, so we are providing this comprehensive survey to deeply
investigate the standard framework and the major research topics on script learning. This research field contains
three main topics: event representations, script learning models, and evaluation approaches. For each topic, we
systematically summarize and categorize the existing script learning systems, and carefully analyze and compare the
advantages and disadvantages of the representative systems. We also discuss the current state of the research and
possible future directions.
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1 Introduction

Understanding is one of the most important
components of a human-level artificial intelligence
(AI) system. However, developing such a system
is far from trivial, because natural language comes
with its own complexity and inherent ambiguities.
To understand natural language, machines need to
comprehend not only literal meaning but also com-
monsense knowledge about the real world.

Commonsense knowledge includes certain inter-
nal logic and objective laws based on the develop-
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ment of events, which can be implicitly learned and
comprehended by humans in long-term daily-life ac-
tivities. After learning such knowledge, they can use
it to help understand the implicit information and
address the ambiguities of natural language. How-
ever, machines cannot perform such daily-life activ-
ities, and therefore lack commonsense knowledge,
which is one of the major obstacles to understanding
natural language and drawing human-like inferences.

Some researchers attempt to alleviate such bot-
tlenecks from the perspective of how humans remem-
ber and understand various real-life events. Ac-
cording to many psychological experiments, script
knowledge is an essential component of human cog-
nition and memory systems (Bower et al., 1979;
Schank, 1983; Tulving, 1983; Terry, 2006). From the
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perspective of cognitive psychology, humans use
schemas to organize and understand the world. A
schema is a mental framework that consists of a gen-
eral template for the knowledge shared by all in-
stances, and a number of slots that can take on dif-
ferent values for a specific instance. A script is a
special case of a schema that describes stereotypical
activities with a sequence of events organized in tem-
poral order (Rumelhart, 1980). When a person first
meets a prototypical activity, his/her episodic mem-
ory will store the events and the scenarios in which it
occurred in the form of a script (Tulving, 1983). The
psychological research has indicated that the activity
stored in episodic memory can be activated by some
particular external event (Terry, 2006). So, the next
time a similar or relevant event happens, the person’s
episodic memory will activate the old corresponding
script knowledge. Based on the script knowledge, the
person will soon understand the actions and the par-
ticipants of the scenario, and subsequently form the
expectations for possible upcoming events. The ex-
pectations can deeply affect the ability of humans to
comprehend specific scenarios and draw reasonable
inferences.

Since script knowledge is critical for humans to
remember and comprehend different scenarios, ma-
chines may also gain benefits by learning such knowl-
edge. It is this intention that motivates researchers
to introduce script learning to encode script knowl-
edge for machines. A trained script learning system
can process texts that describe daily-life events and
capture commonsense knowledge involving the ac-
tions and the entities that participate in it. Based
on this, it can also draw event-related inferences that
are reasonable but not explicitly stated in the texts.

1.1 Definition of script

A script is a structural knowledge representa-
tion that captures the relationships between pro-
totypical event sequences and their participants in
a given scenario (Schank and Abelson, 1977). In
other words, the script is a sequence of prototypi-
cal events organized in temporal order. These events
contain stereotypical human activities, such as eating
in a restaurant, cooking dinner, and making coffee.
For example, Fig. 1 shows two toy examples of the
“visiting restaurant” script and the “making coffee”
script.

Fig. 1 Scripts for visiting a restaurant and making
coffee. Each script includes a sequence of events for a
prototypical scenario

1.2 Objective of script learning

The objective of script learning is encoding the
commonsense knowledge contained in prototypical
events (also called “script knowledge”) in a machine-
readable format. Then the machine can use the for-
mat to draw event-related inferences, such as infer-
ring missing events, predicting subsequent events,
determining the order of the event chain, and distin-
guishing similar events.

The commonsense knowledge provided by the
script can help machines understand the practical
meanings of natural language and draw human-like
inferences. It will also play a crucial role in a wide
range of AI tasks, especially many natural language
processing (NLP) tasks, such as event prediction,
event extraction, understanding ambiguity resolu-
tion discourse, intention recognition, question an-
swering, and coreference resolution.

1.3 Framework of script learning

Note that this survey concentrates mainly on
the broad-domain script knowledge learned from nar-
rative event chains, which can be used to compare
and infer possible upcoming events in a specific con-
text, rather than those works attempting to con-
struct scenario-specific event schemas. Therefore,
the framework of script learning systems with which
we are concerned can be illustrated by the basic pro-
cess and a simple example in Fig. 2.
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Subsequent event

Script learning models for event encoding and matching

Leave(John, restaurant)

Leave(John, restaurant)

Pay(John, waitress)

Take(John, dog, walk)

Swim(John, pool)

Sleep(John, bed)

???

Event 1                             Event 2                         Event 3                            Event 4

Event 5                             Event 6                         Event 7                      Subsequent event

Walk(John, restaurant) Seat(John, chair) Read(John, menu) Order(John, meal)

Get(John, food) Eat(John, food) Make(John, payment) ???

NLP tools for event detection and extraction

“John walked into his favorite restaurant and sat on a chair. Later, he read the menu and ordered 
a meal. After 10 minutes, he got the food and ate it. After a while, he made payment and ...”
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Fig. 2 Framework of script learning which contains four stages. In the extraction stage, events are extracted
from raw texts. In the representation stage, events are represented by a structured form. In the model stage,
the structured representations are encoded and matched by script learning models, and the matching result is
outputted. In the evaluation stage, some evaluation approaches with specific tasks and corresponding metrics
are employed to test the performance of the models

According to the standard script learning set-
tings, our framework can be roughly divided into
four stages: extraction stage, representation stage,
model stage, and evaluation stage.

Script knowledge is often mentioned implicitly
in the unstructured narrative texts that describe
daily-life activities. The first task of script learn-
ing is employing NLP tools to detect and extract
events from the raw text (i.e., the extraction stage in
Fig. 2).

The output from the previous stage is then rep-
resented in a specific structure or neural networks to
form representations of events (i.e., the representa-
tion stage in Fig. 2). In this stage, events extracted
by NLP tools are regarded as the input, and struc-
tured representations of events as the output.

After that, the script learning models will en-
code the collected event representations, and mea-
sure the relationship between them using event
matching algorithms (i.e., the model stage in Fig. 2).
For this stage, the input is the structured event rep-
resentations, and the output is the matching results.
Notably, similarity or coherence scores are usually

adopted as the matching metrics.

Finally, some evaluation approaches with spe-
cific tasks and corresponding metrics are employed
to test the quality of event representations and the
performance of script learning models (i.e., the eval-
uation stage in Fig. 2). For this stage, the input
is event matching results, and the output is perfor-
mance, based on comparisons between prediction re-
sults and golden results.

Specifically, in Fig. 2, the extracted events are
represented by the structure predicate(subject, ob-
ject), while the evaluation is to judge whether the
model can correctly predict the subsequent event
from a candidate set, given the event chain that
occurred.

1.4 Organization of the survey

We can conclude from the above framework that
script learning primarily focuses on five aspects: the
text corpus used as a training dataset, the NLP tools
for detecting and extracting events, the representa-
tion form of script events, the models for encoding
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and matching events, and the evaluation approaches
for estimating the performance of the models.

There is no standard corpus for script learn-
ing, and a majority of related works extract events
from news articles by themselves. Therefore, we do
not discuss a corpus in detail in the main part of
the survey, but introduce such literature in future
research directions described in Section 6.2. In addi-
tion, event detection and extraction belong to other
independent NLP research directions, and there are
many off-the-shelf open-source NLP tools that can
be used conveniently. Consequently, in this survey,
we do not consider event detection and extraction ei-
ther. In summary, we focus mainly on three aspects,
i.e., event representations, script learning models,
and evaluation approaches.

The rest of the survey is also organized primarily
based on these research topics. Specifically, Section
2 briefly reviews the development history of script
learning; Section 3 introduces several typical event
representation structures; Section 4 introduces some
representative script learning models from seven cat-
egories; Section 5 introduces some common evalua-
tion approaches and corresponding metrics; Section
6 concludes the survey and some possible future re-
search directions are discussed. The organization of
these sections and some related specific items are
shown in Fig. 3.

Conclusions and future directions
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Fig. 3 Organization of the survey. We discuss
mainly three research topics, i.e., event represen-
tations, script learning models, and evaluation ap-
proaches. These topics and their related specific items
are introduced in Sections 3–5

Although script learning is quite a potential and
significant research direction, there are currently no
survey articles on the subject, to the best of our
knowledge. The contributions of this survey can be
summarized as follows:

1. We are the first to provide a comprehensive
survey that deeply investigates the standard frame-
work and major research topics in script learning.

2. We thoroughly summarize the development
process and the technique taxonomy of the script
learning system.

3. We carefully analyze and compare the most
representative works on script learning and discuss
some promising research directions.

2 Historical overview

In this section, we will provide a chronolog-
ical research script learning timeline. Based on
modeling methods, the script learning development
timeline can be roughly divided into three stages:
incipient rule-based approaches (1975–2008), early
count-based approaches (2008–2014), and recent
deep learning based approaches (2014–). Although
there are different ways of dividing this timeline, we
will follow the above division to briefly review the
script learning development process, because it can
better fit the chronological timeline.

2.1 Rule-based approaches (1975–2008)

Although script learning has attracted wide at-
tention in recent years, the use of script-related con-
cepts in AI research dates back to the 1970s, in
particular, the seminal works on schema by Rumel-
hart (1980), on frame by Minsky (1975), on semantic
frame by Fillmore (1976), and on scripts by Schank
and Abelson (1977). These works established the
core concepts of script learning.

The incipient script theory was primarily intro-
duced to construct story understanding and genera-
tion systems. The works in this stage often employed
quite complex rules (mostly handwritten) to process
events and used a set of separate models to treat dif-
ferent scenarios. Although these works showed some
abilities in script understanding and inferring, their
rule-based methods do not scale to complex domains
because they are characteristically domain-specific
and time-consuming to construct manually.
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2.2 Count-based approaches (2008–2014)

The trend of script learning was revived by
count-based methods, which can automatically learn
broad-domain script knowledge using statistical ap-
proaches to obtain co-occurrence counts from a large
text corpus.

Count-based script learning stems from the un-
supervised framework proposed by Chambers and
Jurafsky (2008). They ran a co-reference system and
a dependency parser to automatically extract event
sequences from raw text. Pairwise mutual informa-
tion (PMI) scores were employed to measure the re-
lationship between event pairs. They also pioneered
the use of <verb, dependency> pairs to represent
events and proposed the narrative cloze (NC) test to
evaluate script learning models.

Several researchers followed their model frame-
work and enhanced it in different ways, such as
using a skip bi-gram probability model to re-
place PMI (Jans et al., 2012), or proposing multi-
argument event representation v(es, eo, ep) to re-
place the <verb, dependency> pair (Pichotta and
Mooney, 2014).

In this period, there is still a set of works that
attempted to encode script knowledge by construct-
ing an event graph, which can express denser and
broader connections among events. As a general rule,
the nodes of the graph refer to the events, and the
edges refer to the relationships between events. Dif-
ferent models build script graphs differently: Regneri
et al. (2010) constructed a temporal script graph for
a specific scenario by learning from crowd-sourced
data; Orr et al. (2014) employed the hidden Markov
model (HMM) to construct transition script graphs;
Glavaš and Šnajder (2015) constructed event graphs
using a three-stage pipeline to extract anchor, argu-
ment, and the relationship between event pairs from
the text.

However, count-based methods determine the
probability of an event by calculating co-occurrence
counts, and learn only shallow statistical informa-
tion rather than deep semantic properties. There
are two main shortcomings: impoverished represen-
tations and sparsity issues. They treat events as
one fixed unit, consequently failing to consider the
compositional nature of an event and suffering from
sparsity issues, which seriously restricts the ability
of script learning systems to infer.

2.3 Deep learning based approaches (2014–)

The emergence of deep learning technology has
brought NLP to a new era; modern script learning
systems widely introduce neural networks and em-
beddings to counter the above shortcomings. The
embedding mitigates the sparsity issue and provides
a useful approach to compose predicates with their
arguments. Deep learning based models use word
embeddings to represent event components (i.e., a
predicate and its arguments) and obtain the embed-
ding of the entire event by composing the embed-
dings of its components, via a composition neural
network. The relationship between events can also
be measured based on vector distances in the embed-
ding space.

As for specific initial experimental works, Modi
and Titov (2014a, 2014b) first introduced embed-
ding methods to represent events; Rudinger et al.
(2015) tentatively trained a log-bilinear neural lan-
guage model (Mnih and Hinton, 2007) and attained
a remarkable improvement in NC tests; Granroth-
Wilding and Clark (2016) employed word2vec, the
vector-learning system of Mikolov et al. (2013), to
learn embeddings.

The aforementioned works showed that deep
learning based models were certainly more effective
for script learning tasks. Then, how to design a
capable neural network structure became the main
challenge at this stage. More advanced mechanisms
and more complex structures were introduced by the
follow-up work to make further improvements.

Particularly, as for more advanced mechanisms,
Pichotta and Mooney (2016a) first used a recurrent
neural network (RNN) based method, long short-
term memory (LSTM), to capture order information
of an event chain and express interactions between
long-term sequences. Hu et al. (2017) applied a
contextual hierarchical LSTM (CH-LSTM) that can
capture both the word sequence of a single event and
the temporal order of the event chain.

As for more complex structures, Wang ZQ et al.
(2017) incorporated the advantage of both LSTM
temporal order learning and traditional event pair
coherence learning, using LSTM with a dynamic
memory network (Weston et al., 2015). Lv et al.
(2019) employed self-attention mechanism (Lin ZH
et al., 2017) to extract event segments which have
richer semantic information than individual events



346 Han et al. / Front Inform Technol Electron Eng 2021 22(3):341-373

and introduce less noise than event chains.
Following the recent trend of using the pre-

trained language model BERT (Devlin et al., 2019),
a few novel works have introduced BERT as the ba-
sic word embeddings in script learning and obtained
significant improvements. For instance, Zheng et al.
(2020) replaced the traditional GloVe (Pennington
et al., 2014) with BERT, and proposed a unified
framework to integrate raw-text training, intra-event
training, and inter-event training. Li ZY et al.
(2019) introduced the transferable BERT (Trans-
BERT) training framework, which can transfer not
only general knowledge from large-scale unlabeled
data but also specific knowledge from various seman-
tically related supervised tasks.

Graph-based works also introduced neural net-
works and embeddings into their models during this
period. For example, Zhao et al. (2017) embed-
ded an abstract causality network into the vector
space and applied it into a neural network to make
stock market movement predictions; Li ZY et al.
(2018) constructed the scaled graph neural network
(SGNN) to model event interactions and learn event
representations.

Recently, some notable works have attempted to
encode richer script knowledge by introducing exter-
nal information, such as injecting fine-grained event
properties (Lee IT and Goldwasser, 2018), inject-
ing nuanced multi-relations (Lee IT and Goldwasser,
2019), and injecting additional commonsense knowl-
edge (Ding et al., 2019b).

3 Event representations

At the linguistic level, an event and its compo-
nents can be verbalized by free-form narrative texts.
We refer to the lexical realization of a script event
as an event description, which consists of verb pred-
icates and some noun phrases. The verb predicates
describe the actions, while the noun phrases describe
the related entities. We refer to the verb predicate
and its associated noun phrases as event components,
which can be extracted from event descriptions by
NLP tools. For example, the text “Tom brought
the book to Mary” is a description of the bringing
book event, containing four components: a predicate
“brought” and three noun phrases “Tom,” “book,”
and “Mary.” These components can be combined
with a specific structure to form the representation

of the event, such as bring(Tom, book, Mary).
The main aim of event representation is to repre-

sent the event with an appropriate structure, which
can include essential components of the event and
capture the implicit commonsense knowledge hiding
behind the text description. Event representation is
very important for script learning, because it spec-
ifies what we mean by an “event,” and because it
is the basic operational element of the subsequent
script modeling process.

In addition to the differences in representation
structure, different models have great differences in
representation forms. Some models use discrete rep-
resentations (i.e., treating the whole structured event
representation as an unbreakable atomic unit), while
others use distributed representations (i.e., treating
the event as a dense vector of real values). In this
section, however, we will focus mainly on the vari-
ous representation structures; the relevant features
of different representation forms will be discussed in
detail in Section 4.2 onward.

3.1 Protagonist representation

Chambers and Jurafsky (2008) first represented
a free-form event description as a structured <verb,
dependency> pair, which we refer to as a protago-
nist representation. They assumed that although a
script has several participants, there is a central ac-
tor, called the protagonist, who characterizes mainly
the whole event chain. They extracted the narrative
chain from texts, which involves a sequence of events
that share a common protagonist.

They represented events as <verb, depen-
dency> pairs, where “verb” refers to the predicate
verb describing the event, and “dependency” refers
to the typed grammatical dependency relationship
between the verb and the protagonist, such as “sub-
ject,” “object,” or “prepositional.” A narrative chain
contains a series of events, so it can be represented
as a chain of <verb, dependency> pairs, all related
to a single protagonist.

For example, the narrative text “Jessie killed a
man, she ran away and got arrested by the police
in the street” produces a chain for the protagonist
Jessie: (kill, subject), (run, subject), (arrest, object).

Chambers and Jurafsky (2008) made a prelim-
inary attempt to use a structured event representa-
tion, and their protagonist representation has been
adopted by various subsequent works (Chambers and
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Jurafsky, 2009; Jans et al., 2012; Rudinger et al.,
2015). However, it still has some flaws.

First, it solely concentrates on organizing event
chains around a central participator, the protago-
nist. Thus, a script that contains multiple partic-
ipants will redundantly produce many chains. For
example, the narrative text “Mary emailed Jim and
he responded to her immediately” yields two chains,
a chain for Mary, (email, subject) (respond, ob-
ject), and a chain for Jim, (email, object) (respond,
subject).

Second, it treats subject-verb and verb-object
separately. Thus, it lacks coherence between subject
and object; in other words, it does not express inter-
actions between different <verb, dependency> pairs
produced from the same event.

Take the above narrative as an example. There
is no connection between (email, subject) of Mary
and (email, object) of Jim, even though they are both
yielded from the same event “Mary emailed Jim.”

Third, it considers only the <verb, depen-
dency> pairs rather than other arguments; however,
sometimes the meaning of the verb changes drasti-
cally with different arguments.

For example, consider the following events: “Jim
performed a music” and “Jim performed a surgery.”
The same verb, “perform,” has quite different mean-
ings in these two events, but if using the protagonist
representation, they will obtain the same represen-
tation, namely <perform, subject>. Furthermore,
even if the meanings of the verbs are the same, the
meanings of the events will be changed with differ-
ent arguments. For example, if using the protagonist
representation, the event “go to the church” will be
the same as the event “go to sleep,” because they
both yield (go, subject).

3.2 Relational representation

Balasubramanian et al. (2013) addressed these
flaws by representing an event as a relational <Arg1,
Relation, Arg2> triple, inspired by the information
extraction system OLLIE (Mausam et al., 2012). We
refer to <Arg1, Relation, Arg2> as a relational rep-
resentation, where Arg1 and Arg2 are the subject
and object of the event description, respectively, and
Relation is the relation phrase between Arg1 and
Arg2. For instance, the event “He cited a new study
that was released by UCLA in 2008” produces three
tuples:

(1) (He, cited, a new study);

(2) (A new study, was released by, UCLA);

(3) (A new study, was released in, 2008).

A relational triple provides a more specific rep-
resentation method, which aids in maintaining coher-
ence between subject and object. Balasubramanian
et al. (2013) used it to induce open-domain event
schemas, which effectively overcame the coherence-
lacking issue of the event schemas proposed by
Chambers and Jurafsky (2009).

3.3 Multi-argument representation

Pichotta and Mooney (2014) proposed a simi-
lar approach, called multi-argument representation.
They represented an event as a relational atom
v(es, eo, ep), where v is the verb, and es, eo, and ep
are arguments of v, standing for subject relation, ob-
ject relation, and prepositional relation to the verb,
respectively. Any argument except v may be null
(represented by “-”), denoting that no word stands
in relation to the verb. For example, the text “Tom
brought the book to Mary” yields the representation
bring(Tom, book, Mary).

Multi-argument representation produces only a
single sequence for a document. Given the same text
as above, “Mary emailed Jim and he responded to her
immediately,” it yields only one chain: mail(Mary,
Jim, -), respond(Jim, Mary, -).

A multi-argument representation can involve
multiple entities and express a more specific mean-
ing of an event. It can also capture pair-wise entity
relations between events. In the example above, it
can directly model the fact that Tom responded to
Mary after Mary emailed him into a sequence chain,
while the <verb, dependency> solely captures two
discrete events.

Many subsequent works, such as Pichotta
and Mooney (2016a), Granroth-Wilding and Clark
(2016), Modi (2016), Wang ZQ et al. (2017), and
Lv et al. (2019), adopted this representation form.
Pichotta and Mooney (2016a) made slight improve-
ments in their multi-argument representation by
adding a preposition dimension, representing an
event as a 5-tuple (v, es, eo, ep, p), where p is the
preposition. So, the above text “Tom brought the
book to Mary” generates the representation (bring,
Tom, book, Mary, to).
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3.4 Fine-grained property representation

Lee IT and Goldwasser (2018) held the view
that fine-grained event properties, such as argument,
sentiment, animacy, time, and location, can poten-
tially enhance the event representation, so they sug-
gested a fine-grained property representation. They
represented an event as a 6-tuple <tok(e), subj(e),
obj(e), prep(e), f1(e), f2(e)>, which contains four
basic components and two fine-grained properties.

The basic components refer to the former 4-
tuple <tok(e), subj(e), obj(e), prep(e)>, where
tok(e) stands for the <predicate, dependency> pair,
which is the same as the protagonist representation.
The other three elements (i.e., subj(e), obj(e), and
prep(e)) are the same as the v(es, eo, ep) of a multi-
argument representation.

The two additional properties f1(e) and f2(e)

refer to the sentence-level sentiment and animacy
information, respectively. The sentence-level senti-
ment captures the overall tone of the event, consist-
ing of three polarity labels (i.e., negative, neutral,
and positive). The animacy information also con-
sists of three types (i.e., animate, inanimate, and
unknown), depending on whether the protagonist is
a living entity.

For instance, given the narrative text “Jenny
went to a restaurant and ordered a salad,” the fine-
grained property representation for the protagonist
Jenny will be <(go, subj), jenny, -, restaurant, neu-
ral, animate>, <(order, subj), jenny, salad, -, neural,
animate>.

3.5 More detailed information

Although similar event representation struc-
tures are used, different works may process details
in different ways.

Some works extract only the headword of entity
mentions, while other works extract the entire men-
tion span. For example, consider the following event:
“Jenny went into her favorite restaurant.” The for-
mer works may represent it as go (Jenny, restaurant),
while the latter works may see it as go (Jenny, her_
favorite_restaurant). The latter works can capture
more nuanced information, but have a greater risk of
sparsity.

When it comes to predicates, some works con-
sider only verbs, while other works also consider
predicate adjectives, because some adjectives may

play an important role in predicting the next event.
Consider two events: “Jerry was angry” and “Jerry
punched her son.” The predicate adjective “angry”
is crucial information to predict the follow-up event
correctly. These works will represent the predicate
adjective as an argument to the verb be or become,
e.g., “Jerry was angry” → be(Jenny, angry).

Some works also add more elements to predi-
cates, such as negation labels, particles, and clausal
complements (xcomp) (Lee IT and Goldwasser,
2019). With negation labels, the event “She does not
like the dinner” will result in the predicate “not_like”
rather than “like” alone. Also, because some verbs,
such as “go” and “have,” are meaningless, it is nec-
essary to include xcomp. In that case, the event
“She went shopping yesterday” yields the predicate
“go_shop” rather than “go” alone.

4 Script learning models

The script learning model is the core component
of the script learning system, and undertakes the
main tasks of encoding and matching events. Gen-
erally, models take the representations of the struc-
tured events as the input and take event-matching re-
sults as the output. A trained script learning model
can encode script knowledge involving the actions
and the entities that participate in the actions, and
calculate the matching results based on the encoded
script knowledge and event-matching algorithm. In
the next step, the matching results can be applied
to specific tasks to draw inferences that are com-
monsensible but not explicitly stated. In most cases,
the matching results refer to similarity or coherence
scores, which can somewhat measure the relationship
between events.

There are various ways to classify the exist-
ing script learning models; recalling from Section 2,
based on modeling methods, they can be roughly
divided into three categories: rule-based models,
count-based models, and deep learning based mod-
els. Rule-based models use complicated hand-
crafted rules to model script knowledge of specific
domains; count-based models use statistical count-
ing approaches to automatically learn broad-domain
script knowledge from a large text corpus; deep
learning based models introduce the neural network
and embledding to capture richer script knowledge
and overcome the sparsity issues.
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From the perspective of different structures used
to handle scripts, they can also be divided into three
other categories: event pair based models, event
chain based models, and event graph based models.
Pair-based models focus on calculating associations
between pairs of events by count- or vector-based
methods; chain-based models capture the order in-
formation and long-term context information of the
full event chain by RNN-based approaches; graph-
based models extract script knowledge by construct-
ing graph structures that can express denser and
broader connections among events.

In this section, we discuss some representative
models in detail, according to all of these six cate-
gories. Finally, we also introduce some other notable
works outside the above categories that attempt to
enhance traditional script learning models by inject-
ing external knowledge.

Notably, because these categories are divided
from various perspectives, there is some overlap be-
tween them inevitably. In addition, each script learn-
ing model may involve multiple categories, so when
discussing specific categories below, we may empha-
size some particular aspects.

4.1 Rule-based models

The handcrafted rule-based script learning mod-
els are the earliest use of script-related concepts in
AI research. The seminal works include schemas by
Rumelhart (1980), frames by Minsky (1975), seman-
tic frames by Fillmore (1976), and scripts by Schank
and Abelson (1977). Although these works estab-
lished the core concept of script learning and made
many beneficial attempts, they still have many obvi-
ous demerits and limitations. Below, we will briefly
introduce and discuss these incipient works.

Schema (Rumelhart, 1980) is a broad concept
of cognitive psychology and an important theoretical
source of the script. A schema is a mental framework
employed to organize and understand the world, and
consists of a general template and some slots. The
general template represents an abstract class con-
taining the knowledge shared by all instances, while
the slots can be filled in with different values to
form a specific instance of this class. For exam-
ple, a restaurant scenario has its own schema, which
includes a sequence of events that take place in a
restaurant, such as entering the restaurant, order-
ing food, eating food, paying the bill, and leaving

the restaurant. When we go to a restaurant, we can
activate the restaurant schema that is stored in our
memory, and anticipate the upcoming events.

A frame (Minsky, 1975) is a variation of the
schema, and is a data structure used in AI to rep-
resent knowledge about stereotyped situations. The
frame has a hierarchical structure containing four
different levels: syntactic surface frames, seman-
tic surface frames, thematic frames, and narrative
frames. Similar to the schema, the top levels (the-
matic frames and narrative frames) are fixed general
templates with slots for different situations. In con-
trast, the bottom levels (surface syntactic frames and
surface semantic frames) are specific instances that
fill in slots with different values.

A semantic frame (Fillmore, 1976) can be
roughly seen as a lexical-level Minsky frame, which
was proposed to capture the abstract description of
an individual activity and all of its possible roles.
A semantic frame includes a set of predicates that
can describe the main concept of the activity and
the corresponding semantic roles, which can describe
different entities involved in the activity. The same
activity can be expressed via different surface re-
alizations, with different predicates or sentence con-
structions. For example, consider the following three
sentences:

(1) Microsoft purchased the Canadian company
Maluuba.

(2) AI company Maluuba was bought by Mi-
crosoft on January 9, 2017.

(3) Microsoft purchased Maluuba for 30 million
dollars.

Although different in surface forms, the core se-
mantic meaning of them is similar, namely a com-
merce purchase activity. The purpose of the seman-
tic frame is to capture the core semantic meaning
across all the surface forms, by abstracting out the
information about the main activity. The semantic
frame also assigns proper semantic roles to the en-
tities involved in the activity (e.g., Microsoft is the
buyer role, and Maluuba is the role of the good). The
semantic roles can help understand the meaning of
the text by answering questions like “who did what to
whom and by what means?” They are also useful for
a lot of NLP tasks, such as question answering (Shen
and Lapata, 2007), document summarization (Khan
et al., 2015), and plagiarism detection (Osman et al.,
2012).
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The concept of script was first firmly proposed
by Schank and Abelson (1977) to explain how com-
monsense knowledge about daily human activities
can be used in language processing. They defined
scripts as structured knowledge representations cap-
turing the relationships between prototypical event
sequences and their participants in a given scenario.
In short, it is a sequence of prototypical events orga-
nized in temporal order. These events contain stereo-
typical human activities, such as eating in restau-
rants, cooking dinner, and making coffee.

To compare the relationship between the script
and the concepts mentioned before, we can see the
script as a specific schema or frame that focuses on
stereotypical events in a particular scenario. We can
also treat the script as multiple semantic frames, be-
cause it models a sequence of events rather than an
individual activity.

The incipient script theory was primarily intro-
duced to construct story understanding and genera-
tion systems (Schank and Abelson, 1977; Culling-
ford, 1978; DeJong, 1979; Schank, 1990). These
script systems employ mainly complex handcrafted
rules for modeling relations between events and use
a set of separate models to treat different scenarios.
Because rules are designed by humans, rule-based
systems are limited to the bounded designer experi-
ence, and are extremely time-consuming. Although
they could be applied in certain fields, their rule-
based methods were characteristically limited to a
few specific domains and did not scale to complex
ones.

Some potential end-to-end connectionist meth-
ods were subsequently proposed to model script
knowledge, such as DYNASTY (DYNAmic STory
understanding sYstem) (Lee G et al., 1992) and DIS-
CERN (DIstributed SCript processing and Episodic
memoRy Network) (Miikkulainen, 1992, 1993).
These works have some abilities in script understand-
ing and inferring, but more rules require more com-
puting power and more application scenarios require
more training data. Due to the weak computational
power and insufficient data at that time, the abilities
were limited and these works did not achieve good
generalization (Mueller, 1998; Gordon, 2001).

Nevertheless, these works are of great value to
the subsequent works. From the structure and op-
eration process of DISCERN, we can even see the
rudiments of modern script learning systems. The

input of DISCERN is a short narrative text about
a stereotypical event, and a “lexico” module is used
to map the input words into distributed represen-
tations. Then a “sentence parser” module processes
each input sentence word by word to form the repre-
sentation of the sentence. After that, a “story parser”
module composes all the sentence representations to
produce the representation of the story. Finally,
the story representation is inputted into a “story
generator” module and a “sentence generator” mod-
ule to generate corresponding sentences about the
story. The corresponding sentences can be used to
solve story-related problems such as retrieving infor-
mation, answering questions, and generating para-
phrases. All the modules are trained separately,
and subsequently trained jointly to fine-tune the
modules.

The idea of employing distributed representa-
tions and combining the component representations
to produce representations of the whole is simi-
lar to many modern deep learning based models.
These deep learning based models widely employ
distributed representations, and use embeddings to
represent words, sentences, and events. They also
create representations of a sentence by composing
the words in the sentence, and create representa-
tions of an event by combining its components. In
addition, the joint training and fine-tuning methods
used by DISCERN are generally used by recent deep
learning models. With improvements in computing
power, model structure sophistication, and the surge
of data volume, the ability to process and generalize
these deep learning based models is far greater than
that of DISCERN. We will discuss these models in
detail in Sections 4.3–4.5.

4.2 Count-based models

Count-based script learning models greatly re-
duce the defects of rule-based models by automati-
cally learning broad-domain script knowledge from a
large text corpus. The key idea of count-based mod-
els is to measure the relationship of event pairs using
statistical counting approaches.

Chambers and Jurafsky (2008) were the first to
introduce a count-based approach for learning statis-
tical script knowledge. They adopted PMI (Church
and Hanks, 1990) to calculate the relationship scores
over all the event pairs that occurred in the narrative
chains.
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As reviewed in Section 3.1, Chambers and Ju-
rafsky (2008) used protagonists to represent events.
They extracted the narrative chain from the corpus,
which is a script-like event sequence that shares a
common protagonist, and represented it as a series
of <verb, dependency> pairs, all related to a com-
mon protagonist. Specifically, for each document in
their training corpus, a coreference resolution was
used to identify all the entities, and a dependency
parser was used to identify all verbs that had a de-
pendency relation with an entity. They connected all
the <verb, dependency> pairs that shared the same
entity as a subject, object, or preposition, to form a
narrative event chain.

Chambers and Jurafsky (2008) followed the as-
sumption that verbs sharing coreferring arguments
are semantically connected. Thus, argument-sharing
verbs are more likely to participate in the same nar-
rative chain than verbs that are not sharing. There-
fore, they measured the relationships between event
pairs based on how often they shared grammatical
arguments, and how often two predicate verbs occur
in the same narrative chain.

PMI was adopted to calculate the specific scores
of the relations. Given an occurring narrative chain
C = (c1, c2, ..., cn), which contains n events, and a
candidate event e as the possible new event, every
event is represented as a <verb, dependency> pair.
The PMI of C and e is the sum of the PMIs between
the event e and each of the occurring events ci in C,
which can be formulated as

PMI(C, e) =
n∑

i=1

PMI (ci, e)

=

n∑

i=1

log
P (ci, e)

P (ci)P (e)
.

(1)

The numerator is defined by (taking c1 as an
example)

P (c1, e) =
C (c1, e)∑

ci

∑
ej
C (ci, ej)

, (2)

where C(c1, e) can be obtained by counting the co-
occurrence times of event pair (c1, e) in the training
data, regardless of the order.

The authors hypothesized that the most likely
new event had the highest PMI score, so they did
the above calculations for every candidate event in
the training corpus and then chose the one with

the highest PMI score as the prediction. The re-
sult can be obtained by maximizing the following
expression:

max
0<j<m

n∑

i=0

PMI (ci, ej) , (3)

where n is the number of events in the occurring
narrative chain, ei is the ith event of the narrative
chain, m is the number of candidate events in the
training corpus, and cj is the jth candidate event.

The work of Chambers and Jurafsky (2008) re-
vived the trend of script learning, but their unsuper-
vised framework still has some shortcomings. The
framework ignores the temporal order, which may
affect the performance, and has impoverished event
representation, which cannot deal with multiple-
argument events. Several researchers followed their
framework and enhanced it in different aspects.

The first essential extension work was done by
Jans et al. (2012). They introduced novel skip n-
gram counting methods, an ordered PMI model and
a bigram probability model, to replace the original
PMI.

Following the insight that semantically related
events do not have to be strictly adjacent, Jans et al.
(2012) used skip-grams rather than regular n-grams
to collect statistical data for the training model. The
skip-grams method can reduce the sparsity and in-
crease the size of the training data.

Particularly, the N -skip bigram strategy will
find all event pairs that occur with 0 to N events in-
tervening between them, from an event chain. Fig. 4
illustrates an example that contains event pairs col-
lected by 0-, 1-, and 2-skip bigrams.

After obtaining the statistical data, the au-
thors introduced two novel score functions to explic-
itly capture the temporal order information of event
pairs. The first one is the ordered PMI (OP) score, a
variation of the PMI, which explicitly takes into ac-
count the temporal order of event pairs in the chain.
OP assumes that, in addition to the events occur-
ring before the candidate events, the events occur-
ring after the candidate events are still considered.
So, given an insertion point, m, where the new event
should be added, we can calculate the OP score as
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(Saw, subject),    (Smiled, subject),    (Kissed, object),    (Blushed, subject)Event chain:

(Saw, subject),      (Smiled, subject)
(Smiled, subject),    (Kissed, object)
(Kissed, object),  (Blushed, subject)

(Saw, subject), (Kissed, subject) 
(Smiled, subject), (Blushed, subject) (Saw, subject), (Blushed, subject)

Event pair occurs adjacently Event pair occurs 
with one event intervening

Event pair occurs
with two events intervening

Zero-skip bigrams: (Saw, subject), (Smiled, subject);     (Smiled, subject),  (Kissed, object);    (Kissed, object), (Blushed, subject)Three pairs

One-skip bigrams: (Saw, subject), (Smiled, subject);    (Smiled, subject),  (Kissed, object);     (Kissed, object), (Blushed, subject)
(Saw, subject), (Kissed, subject);      (Smiled, subject),  (Blushed, subject)Five pairs

(Saw, subject), (Smiled, subject);     (Smiled, subject), (Kissed, object);     (Kissed, object), (Blushed, subject)

(Saw, subject), (Kissed, subject);    (Smiled, subject), (Blushed, subject);  (Saw, subject), (Blushed, subject)
Six pairs Two-skip bigrams:

Fig. 4 Event pairs collected by N -skip bigrams. 0-skip bigrams collect three event pairs that occur adjacently.
1-skip bigrams collect five event pairs, including three 0-skip bigrams plus two 1-skip bigrams whose event pair
occurs with one event intervening. 2-skip bigrams collect six event pairs, including three 0-skip bigrams and
two 1-skip bigrams mentioned above, plus a 2-skip bigram whose event pair occurs with two events intervening

follows:

OP(C, e)

=
m∑

i=1

OP(ci, e) +
n∑

i=m+1

OP(e, ci)

=

m∑

i=1

log
P (ci, e)

P (ci)P (e)
+

n∑

i=m+1

log
P (e, ci)

P (e)P (ci)
,

(4)

P (c1, e) =
C (c1, e)∑

c1

∑
ej
C (ci, ej)

. (5)

OP treats the co-occurrence of two events,
C(ci, e), as an asymmetric count (i.e., considering
its order), whereas the PMI of Chambers and Juraf-
sky (2008) treats it as symmetric (i.e., regardless of
the order).

The second score is the bigram probability
(BP) score, which employs conditional probabilities
P (e|ci) instead of P (ci, e) to compute the relational
scores of the candidate event. The BP score is for-
mulated as follows:

BP(C, e)

=

m∑

i=1

BP (ci, e) +

n∑

i=m+1

BP (e, ci)

=

m∑

i=1

logP (e|ci) +
n∑

i=m+1

logP (ci|e) ,

(6)

P (e|ci) = C (ci, e)

C (ci)
, P (ci|e) = C (e, ci)

C(e)
. (7)

The authors compared these two novel scores
with the PMI and observed that the 2-skip strategy

plus the bigram probability function achieved the
best empirical performance.

Another enhancement was made by Pichotta
and Mooney (2014), who proposed multi-argument
event representation v(es, eo, ep) to replace the im-
poverished <verb, dependency> representation. As
explained in detail in Section 3.3, the multi-argument
representation directly models the interactions be-
tween entities and consequently captures richer se-
mantic meanings.

The authors used the same 2-skip-bigram prob-
ability function as that in Jans et al. (2012), and
made some further changes to make it applicable
to their multi-argument representation. The previ-
ous works measured the relationships of event pairs
by simply counting the co-occurrence times of each
pair, but that is not sufficient for multi-argument
representation.

For example, if there are two co-occurring event
pairs, <ask(Mary, Bob, question), answer(Bob, -, -
)> and <ask(Jerry, Tom, question), answer(Tom, -,
-)>, we want to count two co-occurrence times of
event pair <ask(X , Y , Z), answer(Y , -, -)>, for all
distinct entities X , Y , and Z. However, if we keep
the entities as they are and calculate the raw co-
occurrence counts, we will count one time for pair
<ask(Mary, Bob, question), answer(Bob, -, -)>, and
another one time for pair <ask(Jerry, Tom, ques-
tion), answer(Tom, -, -)>.

Pichotta and Mooney (2014) reformed the
counting algorithm. They were motivated by the
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observation that the essential factor in capturing the
relationship between two events was their overlap-
ping entities. In short, the central idea of their algo-
rithm is that when counting the co-occurrence times
of an event pair, the algorithm adds the number of
co-occurrence times plus their overlapping entities.
This algorithm has simple calculations and can cap-
ture pair-wise entity relationships between events.

They employed two evaluation tasks, predicting
the verb with all arguments and predicting simpler
<verb, dependency> pairs. The empirical results
showed that modeling multi-argument events, in-
stead of modeling <verb, dependency> pairs, could
provide more power for both tasks.

Although both the representation and the per-
formance were improved, the essential computing
methods of the enhanced works were still based on
the count, which had common sparsity issues.

Count-based models use discrete event represen-
tations, treat the whole structured representation of
the event as an unbreakable atomic unit, and re-
gard the components of event as fixed parts of the
unit. The matching probability of an event pair is
estimated by calculating the co-occurrence counts
of two fixed event tuples. However, the underly-
ing symbolic nature of tuple matching greatly lim-
its the flexibility and generalization ability. Those
works fail to express the semantic similarity between
individual components of an event. For example,
given two events cook(John, spaghetti, dinner) and
prepare(Mary, pasta, dinner), since “cook” and “pre-
pare” and “spaghetti” and “pasta” are semantically
very similar, these two events should be semanti-
cally similar. However, count-based models would
not take the similarity between these components
into account, unless both events often occur in simi-
lar context.

In addition, count-based models measure the re-
lationship among events merely by calculating co-
occurrence counts of the entire event tuples. Conse-
quently, the event tuple pairs that are never simul-
taneously observed in the training corpus are given
zero probability (or a very small probability, if using
a smoothing method), even if some of them are se-
mantically probable. Therefore, count-based meth-
ods can make a respective good judgment about fre-
quent events, but are less successful with rare ones.
Moreover, count-based methods suffer from the curse
of dimensionality (Bengio et al., 2003), because they

rely on co-occurrence counts of events, but the num-
ber of instances required increases exponentially.

4.3 Deep learning based models

Recent deep learning based script learning mod-
els widely introduce neural networks and embedding
to counter the shortcomings of count-based models.
Embedding is a dense continuous vector of real val-
ues; it mitigates the sparsity issue and provides a
useful approach for composing a predicate with its
arguments.

In summary, as illustrated in Fig. 5, deep learn-
ing based models use embeddings to represent an
event and its components (i.e., predicate and its
arguments). The embedding of the entire event is
computed by composing the word embeddings of its
components, via a composition neural network. The
event-matching works are based mainly on calculat-
ing conference scores or similarity scores of event em-
beddings, which can somewhat measure the seman-
tic correlation between events. Both the parameters
of the compositional process for computing the event
embeddings and the parameters of the matching pro-
cess for computing the similarities are automatically
learned from the texts.

Cook(John, spaghetti, dinner) Prepare(Mary, pasta, dinner)
Event 1 Event 2

Compositional neural network Compositional neural network

Event matching algorithm

Similarity or coherence score

Event
embeddings

Word
embeddings

Text 
words

Fig. 5 Process of deep learning based models. An
event and its components are represented by embed-
dings. The embedding of an event can be obtained by
composing the word embeddings of its components,
via a composition neural network. The event match-
ing work is based on calculating conference scores or
similarity scores of event embeddings

Learning and exploiting embeddings to repre-
sent words is beneficial for a range of NLP tasks,
such as information extraction (Laender et al., 2002),
semantic role labeling (Erk and Padó, 2008), word
similarity analysis (Radinsky et al., 2011), word
sense disambiguation (Navigli, 2009), and word and
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spelling correction (Jones and Martin, 1997). The
distributional hypothesis (Harris, 1954), namely,
words that occur in the same context tend to have
similar meanings, is the foundation of word embed-
dings. The word embeddings are learned so they can
predict context words. Consequently, they encode
some degree of semantic and syntactic properties of
words: words that share similar contexts should be
close to each other in the embedding vector space.

There are some works that focus on learning em-
beddings of phrases using a compositional model to
compose the embeddings of individual words in the
phrase (Baroni and Zamparelli, 2010; Socher et al.,
2012). Motivated by them, Modi and Titov (2014a,
2014b) suggested that the embedding of an event
can also be learned using a compositional neural
network to compose the embeddings of individual
components of the event.

In their works, the event was no longer treated
as an unbreakable unit. Instead, it consisted of some
separable components that contain a predicate and
its arguments. All of the components were repre-
sented as embeddings, which were learned from pre-
dicting the prototypical event orderings. Because the
embeddings are in the same and genetic dimensional
vector space, we can easily obtain the embedding of
the entire event by composing the embeddings of its
components via a compositional neural network.

Similar to word embedding, event embedding
can encode the semantic and syntactic properties of
an event: the similar events should be close to each
other in the embedding vector space, while dissimilar
events should be far away from each other. With
these properties, event embedding can be used to
measure the relationship between almost any pair
of events by calculating the vector distance between
them, no matter whether they occurred together.

In addition, due to the continuous nature of
real values, the embedding representation pushes the
script learning system to learn the development pat-
terns instead of the exact sequences of events. This in
turn results in smooth modeling allowing the script
learning system to predict unobserved events.

Although the above improvements effectively
mitigated the sparsity issue of count-based models,
Modi and Titov (2014a, 2014b) chose the event or-
dering task to learn embeddings and evaluate mod-
els, rather than the NC task (Chambers and Juraf-
sky, 2008), which was regarded as the predominant

evaluation method at that time.
In fact, the NC task is essentially a language

modeling task. For language models, the goal is to
predict the center word by referring to the context
words, while for script learning models, the goal is to
predict the missing event by referring to the context
events, and all of the events are made up of words.
This observation strongly suggests the essential cor-
relation between neural language models and script
learning models. Following this, Rudinger et al.
(2015) did exploratory work training a log-bilinear
language model (LBL) (Mnih and Hinton, 2007) to
resolve script learning tasks. Their model achieved
a significantly better result than count-based models
in the NC task, which led them to conclude that for
script learning, either neural language models were
a more effective approach or the NC task was not a
suitable evaluation task. The event embeddings were
also learned during the training process but merely
regarded as a byproduct. The authors still consid-
ered the event as an unbreakable unit and directly
learned representation vectors of them, so their event
representations are distributed in external form but
discrete in essence.

The alternative conclusions of Rudinger et al.
(2015) were determined by subsequent works of Modi
(2016) and Granroth-Wilding and Clark (2016). The
performance of their neural network models over-
shadowed the previous count-based models, which
indicated that neural network based methods are
certainly more effective for script learning tasks. In
addition, two novel and more appropriate evaluation
tasks, the adversarial narrative cloze (ANC) task and
the multiple choice narrative cloze (MCNC) task,
were proposed to refine the NC test. We will discuss
the details of NC, ANC, and MCNC in Section 5.

Modi (2016) proposed a probabilistic composi-
tional model that had the same compositional neural
network as that in Modi and Titov (2014b) to pro-
duce event embeddings, and a neural network based
probabilistic model to encode the event sequence and
predict the missing event. Word2vec, the vector-
learning system of Mikolov et al. (2013), was also
introduced to learn word embeddings.

Specifically, given the event sequence with a
missing event (e1 → e2 → ... → ek−1 → ? →
ek+1 → ... → en), the model is trained by predict-
ing the missing event ek. During training, instead
of predicting the whole event at one time, the model
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predicts the next events by incrementally using the
context events and the previous prediction. As
shown in Fig. 6, the model first predicts the ver-
bal predicate of ek using the embedding of context
events. Then it predicts the position of the protag-
onist using the embedding of context events and the
embeddings of the verbal predicate, predicted in the
last step. In this way, the other arguments are pre-
dicted one by one. The authors considered this to be
a more natural way of predicting events, because the
verbal predicate information predicted before will in-
fluence the next possible arguments.

Notably, the model uses the embedding of the
previous prediction to make the next prediction, in-
stead of using gold embedding. In other words, if the
previous prediction is wrong, the model will use the
wrong embedding rather than the correct one stored
in the training dataset to make the next prediction.
The purpose of this design is to make the model
more robust to noise and partially recover from mis-
predictions during the testing period. The authors
also proposed a new testing task, the ANC task, to
overcome the demerits of the standard NC task.

Similar to Modi (2016), Granroth-Wilding and
Clark (2016) employed a compositional neural net-
work and word2vec. In addition, they introduced
a Siamese neural network to estimate the coherence
scores of two event pairs. They evaluated their model
using the MCNC task, a novel development of the

NC test. Their experimental results showed that
both the neural network and word2vec could yield
further empirical improvements.

The above works not only prove the significant
advantages of neural networks and embeddings in
learning script knowledge, but also construct the ba-
sic framework of deep learning based script learning
models. However, they focus only on learning associ-
ations between event pairs and ignore the temporal
order of the event chain, so they are incapable of
capturing order information and long-term context
information. The following works introduce more
advanced mechanisms, such as a recurrent neural
network and attentional neural network, to model
the full event chain. We will describe the details of
these models in Section 4.5.

4.4 Pair-based models

Event pair-based models refer to models that
focus on calculating associations between pairs of
events. Because these models concern only the re-
lations between event pairs, they are also known as
weak-order models. Pair-based models are the domi-
nant method in the literature before 2017 (Chambers
and Jurafsky, 2008; Jans et al., 2012; Pichotta and
Mooney, 2014; Granroth-Wilding and Clark, 2016).

The core idea of pair-based models is calculat-
ing the pair-wise event scores by various approaches.
These scores can somewhat measure the semantic

...

Verbal predicate                   Position of protagonist                     Argument 1                                 Argument 2       Prediction 
embeddings

Neural network Neural network Neural network Neural network 

Context 
embedding

Event
embeddings

e1                                                   ek 1 ek+1

...

Fig. 6 Process of incrementally predicting the next event. First, the verbal predicate is predicted using
context embedding. Then, the protagonist position is predicted using context embedding and the predicted
verbal predicate embedding. In this way, the other arguments are predicted one by one using the context
events and the previous prediction
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correlation and compatibility between two events,
namely, how strongly they are expected to appear
in the same chain. These approaches include tra-
ditional count-based methods, such as PMI (Cham-
bers and Jurafsky, 2008) or skip bigram probabili-
ties (Jans et al., 2012), and vector-based methods,
such as the Siamese network (Granroth-Wilding and
Clark, 2016) or vector distance.

In a harder situation, when measuring the re-
lations of event pairs that have subtle differences in
surface realizations, the event embeddings, produced
from widely used compositional neural networks, do
not work well. They usually combine event compo-
nents by concatenating or adding their word embed-
dings, and then applying a parameterized function
to map the summed vector into the event embed-
ding space. However, due to the overlap of words
and the additive nature of parameters, it is hard
to encode subtle differences in an event’s surface
realizations.

For example, the event pair “John threw bomb”
and “John threw football” is semantically far apart,
because they indicate entirely different scenarios
(i.e., sports and terrorism). However, because their
subject and predicate are the same, the embeddings
of them, produced by compositional neural networks,
are likely to be close in the vector space, which in-
correctly indicates that they are closely related. On
the contrary, the event pair “John threw bomb” and
“John attacked embassy” is semantically close. Even
though these two events have very different surface
forms, they do not share similar word vectors, so
their embeddings may be distinct, which incorrectly
indicates that they have a distant relation.

To distinguish the relations of such event pairs,
we need to understand deeper scenario-level seman-
tics, of which the interactions between the predi-
cate and its arguments are the key points. As the
above example shows, the interactions of “football”
or “bomb” with the predicate “threw” are what de-
termine the precise semantics of the scenario. Weber
et al. (2018) proposed a tensor-based composition
model to combine the subject, predicate, and ob-
ject, and then to produce the final event embedding.
Tensor-based composition models can capture multi-
plicative interactions between event components and
therefore represent deeper scenario-level semantics.
With this ability, the event embeddings are sensitive
to even a small change of a single component, which

will be effective for multiple event-related tasks.
When resolving standard event prediction tasks

(i.e., predicting which candidate event is most likely
to occur given a context event sequence), pair-based
models need to compute the correlation scores be-
tween a candidate event and a sequence of context
events. Generally, they will compute the scores be-
tween the candidate event and each individual event
in the chain, and then treat the average value of these
scores as the final correlation score between the can-
didate event and the whole event chain. Finally, the
candidate with the highest score is chosen as the final
prediction. We can see this process in Fig. 7.

Although the relationships between the candi-
date event and each event in the chain have been con-
sidered, pair-based models are still limited to event
pairs. They ignore the temporal order of events, and
thus lack the ability to capture order information
and long-term context information. As a result, im-
probable predictions may be produced by them. For
example, given event <die, subj>, pair-based models
may predict <live, subj> as the next event, simply
because these two events often co-occur or have a
high coherence score (Granroth-Wilding and Clark,
2016). This flaw will be countered by the event chain
based models proposed by subsequent works.

Regardless of the above flaw, pair-based mod-
els still have their respective strengths compared to
chain-based models. On one hand, they obviously
inject less noise when modeling event chains with
flexible order. On the other hand, because they are
simpler, they are less likely to suffer from over-fitting
issues and are less costly to employ. For these rea-
sons, many recent script learning models have chosen
to combine the advantages of pair- and chain-based
approaches (Wang ZQ et al., 2017; Lv et al., 2019).

4.5 Chain-based models

Event chain based models are introduced to
overcome the above-mentioned flaws. They use
RNN-based approaches to model the full event chain
and consider the temporal order information. The
basis of chain-based models is the RNN, which is
widely used for language models to express inter-
actions between long-term sequences via intermedi-
ate hidden states. The basic process of chain-based
models is shown in Fig. 8, in which an RNN provides
embeddings with order information, and the event
matching works are based on these embeddings.
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Fig. 7 Process of resolving the event prediction task by pair-based methods. First, calculate the scores between
the candidate event and each individual event in the chain. Then, calculate the average value of these scores
as the final score between the candidate event and the whole event chain. Finally, choose the candidate with
the highest score as the final prediction

Nevertheless, basic RNNs suffer from a van-
ishing and exploding gradient problem. During
the learning period, the gradient signal tends to
either approach zero or diverge as it propagates
through long time steps. So, LSTM (Hochreiter and
Schmidhuber, 1997) and gated recurrent unit (GRU)
(Chung et al., 2014) were devised to overcome this
problem. They employ more complicated hidden
units, which can provide encoded long-range prop-
agation of events without losing long-term historical
information.

A characteristic of script learning is that some
events will be highly predictive of events far ahead
in the chain, while some events are only locally pre-
dictive. Following this idea, Pichotta and Mooney
(2016a) first adopted the LSTM model for the task
of script learning. Their model represents an event
with five components (i.e., 5-tuple (v, es, eo, ep, p),
involving a verb predicate, subject, direct object,
prepositional relation, and preposition). At each
time step, one event component is inputted into the
LSTM model. After inputting the entire event chain,
the model will output the prediction of an additional
event, which is also a component at each time step.
Their work produced more accurate results, but it re-
quired handcrafted features to represent events and
linguistic preprocessing to extract these features. In
addition, it cannot predict additional events other
than a given candidate set.

Two notable improved studies were conducted
to overcome these shortcomings. The first one is
by Pichotta and Mooney (2016b), in which the raw
texts describing the previous event chain were di-
rectly used to predict the texts describing the miss-
ing event. The sentence-level RNN encoder-decoder
model of Kiros et al. (2015) was employed to produce
text predictions. Their word-level model trained by
raw text was compared with an identical event-level
model trained by structured event representations.
The experimental results of the evaluation showed
that, on the task of event prediction, there was only
a marginal difference between the word-level model
and the event-level model.

The second improved work was done by Hu et al.
(2017). They developed an end-to-end LSTM model
called CH-LSTM. Similar to Pichotta and Mooney
(2016b), they took the raw texts describing the pre-
vious event chain as the input, and directly generated
texts describing the possible next event.

CH-LSTM captures two-level structures of the
event chain. At the first level, a single event is en-
coded using word embeddings as the input, and they
are combined to produce event embedding as the
output. At the second level, the event chain is en-
coded using event embeddings as the input, and the
last hidden vector is outputted as the embedding
of the entire previous event chain. CH-LSTM uses
the event chain embedding to make a non-targeted
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Fig. 8 Process of chain-based models. Inputting each event embedding inside an event chain into a recurrent
neural network (RNN) can provide embeddings with order information via an intermediate hidden state. The
event-matching process based on these embeddings can capture long-term context information

(unknown) next event prediction, which can gener-
ate new events that do not even exist in the training
set.

Although the aforementioned works showed
that LSTM captured significantly more event chain
order information and made substantial experimen-
tal improvements compared to the previous methods,
it may still suffer from the over-fitting problem, be-
cause an event chain in a script has a flexible order.
To solve this issue, Wang ZQ et al. (2017) proposed
a novel dynamic memory network model to integrate
the advantages of chain-based temporal order learn-
ing and pair-based coherence learning. Fig. 9 shows
an overview of their model.

As we mentioned at the end of Section 4.4,
pair-based models are more practical when model-
ing event chains with flexible order, so Wang ZQ
et al. (2017) used pair-based methods to measure
the relationship between pairs of an occurring con-
text event and a subsequent candidate event. To
inject the order information, they represented events
as the hidden states of LSTM, and used them to
calculate the relation scores of event pairs.

In addition, considering the fact that the sig-
nificance of different events varies for inferring a
subsequent event, it is not appropriate to give an
equal weight to each event as in the previous meth-

ods. Therefore, a dynamic memory network (Weston
et al., 2015) was used to automatically induce differ-
ent weights for each event in the inferring task.

The work of Wang ZQ et al. (2017) inspires us to
resolve the script-related task by combining the ad-
vantages of pair- and chain-based models. Following
this inspiration, we can exploit the event segment,
which is a concept between individual events and
event chains, to make further improvements.

An event segment refers to a part of script that
involves several individual events in the same event
chain. As Fig. 10 shows, given a script, for example,
the script of restaurant visiting, there are various
event segments within the chain, such as continuous
event segment <“X read menu” “X order food” “X
eat food”> or discontinuous event segment <“X read
menu” “X order food” “X make payment”>.

We can observe that both the individual events
and the event segments are conducive to making
more accurate subsequent event predictions. In par-
ticular, the individual event “X make payment” has a
significant effect on predicting the subsequent event
“X leave restaurant.” Meanwhile, the event seg-
ment <“X read menu” “X order food” “X eat food”>
has a strong semantic relation with the subsequent
event “X leave restaurant.” The event segment has
a unique advantage; namely, it has richer semantic
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Fig. 10 Event segments of restaurant visiting. An
event segment refers to several individual events in
the same event chain. There are various event seg-
ments within an event chain, including a continuous
event segment and a discontinuous event segment

information than individual events and introduces
less noise than event chains, whereas previous ap-
proaches did not fully use them.

Lv et al. (2019) designed the SAM-Net model to
fill in this gap. SAM-Net uses an LSTM to capture

the order information of the event chain, and puts its
hidden states into a self-attention mechanism (Lin
ZH et al., 2017) to extract diverse event segments.
SAM-Net can combine the information of individual
events and the information of event segments. The
former refers to the relations between a subsequent
event and an individual event, while the latter refers
to the relations between a subsequent event and an
event segment.

Similar to Wang ZQ et al. (2017), SAM-Net con-
siders that different events or event segments may
have different semantic relations with the subsequent
event. So, two attention mechanisms (Luong et al.,
2015) were used to assign different corresponding
weights for each individual event and event segment.
The prediction of the subsequent event is based on
the combination of these two attention mechanisms.

The standard MCNC task showed that SAM-
Net apparently achieves better results compared to
the previous models, and the idea of exploiting an
event segment to draw more accurate inferences is
a potential direction. Nevertheless, there is still
no effective method for extracting event segments.
The self-attention mechanism used by SAM-Net can
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somewhat achieve this aim, but it is not accurate
enough. Therefore, follow-up improvement research
is anticipated.

4.6 Graph-based models

There is also a line of research that tries to ex-
press the relation between events and extract script
knowledge by constructing a graph-based organiza-
tion of events. As a general rule, the nodes of the
graph refer to the events, and the edges refer to the
relations between events; some edges may also have
weights to measure the degree of the relationship or
the transition probability between two events.

The graph structure is clearer and more intuitive
from the human interpretability perspective to some
extent. It is also closer to the organizational form of
event development in reality. As in the real world,
given any events, there are always many possible sub-
sequent events, so there are also many different event
chains occurring in the same scenario. When link-
ing all of these events and event chains together ac-
cording to their associations, a graph structure will
be formed. Compared with pair- and chain-based
models, graph-based models can express denser and
broader connections among events, which contain
richer script knowledge. In addition, once scripts
are represented in a graph structure, a variety of ex-
isting graph-based algorithms can be used to solve
script-related tasks.

The early work of Regneri et al. (2010) con-
structed the temporal script graph for specific sce-
narios from crowdsourced data. The data contains
many different descriptions focusing on a single sce-
nario. The scenario-specific paraphrase and tem-
poral ordering information were extracted using a
multiple sequence alignment (MSA) algorithm and
connected to form a script graph.

Orr et al. (2014) employed the hidden Markov
model (HMM) to construct a transition event graph.
Their model clustered event descriptions into dif-
ferent types and learned an HMM over the se-
quence of event types. The structure and pa-
rameters were learned based on the expectation-
maximization (EM) algorithm, and the script infer-
ences were drawn according to the state transition
probability.

Glavaš and Šnajder (2015) designed an end-to-
end system with a three-stage pipeline, which can
extract anchor, argument, and relation from natural

language text, and link them to construct the event
graph.

Here we discuss two more recent papers in detail.
Zhao et al. (2017) modeled cause-effect relations be-
tween events into a graph structure. They proposed
an abstract causality network on top of the specific
events to reveal high-level general causality rules.

General causality patterns can be helpful in pre-
dicting future events correctly and reducing the spar-
sity issue caused by the causalities between specific
events. The abstract causality network can discover
general causalities on top of the specific causalities.
For instance, the specific causality “a massive 8.9
magnitude earthquake hit northeast Japan on Fri-
day → A large number of houses collapsed” can be
abstracted to a more concise and general one: Earth-
quake → Houses collapsed.

The authors extracted event pairs with a causal-
ity relation from text snippets (in this paper, news
headlines), and represented them by a set of verbs
and nouns (e.g., “Hudson killed people”). The spe-
cific causality network is constructed by regarding
each specific event as a node, and the causality be-
tween specific event pairs as an edge. The abstract
causality network is constructed on top of the spe-
cific causality network. Particularly, the nouns of
specific events are generalized to their hypernyms in
WordNet (Miller, 1995) (e.g., the hypernym of the
noun “chips” is “dishes”), and the verbs of specific
events are generalized to their high-level classes in
VerbNet (Schuler, 2005) (e.g., the verb “kill” belongs
to the class “murder-42.1”). The nodes of the ab-
stract causality network are created by replacing the
original one with its generalization result, and the
edges are also generated according to the specific one.
For example, if there is an edge between the specific
event “Hudson killed people” and the specific event
“Hudson was sent to prison,” then there will also be
an edge between their corresponding abstract events,
namely, the abstract event “murder-42.1, people” and
the abstract event “send, prison”. After constructing
the abstract causality network, the event prediction
task can be formulated as a link prediction task on
the net. Given the cause (effect) event, the model
will produce a list of corresponding effect (cause)
events ranked by possibility.

Another notable graph-based model was intro-
duced by Li ZY et al. (2018). They constructed
a narrative event evolutionary graph (NEEG) to
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express connections among events, and a scaled
graph neural network (SGNN) to model event in-
teractions and learn event representations.

As shown on the left of Fig. 11, NEEG uses
the <verb, dependency> pair to stand for an event
(i.e., a node of event graph), and regards each <verb,
dependency> bigram as the relation between events
(i.e., an edge of event graph). Their edges also have a
weight that measures the transition probability be-
tween events and can be calculated from training
data.

The task of inferring subsequent events can be
solved by SGNN. Traditionally, a gated graph neu-
ral network (GGNN) was used to model the interac-
tions among events. GGNN needs to input the whole
graph, so it cannot effectively operate on a large-scale
graph. To remedy the issue, SGNN borrows the idea
of divide and conquer, and inputs a subgraph instead
of the whole graph. As shown on the right of Fig. 11,
the subgraph comprises only nodes of context events
(red nodes) and a subsequent candidate event (green
node), rather than all of the possible corresponding
events. A graph network with a series of GGNNs is
used to learn the representation of events. A Siamese
network (Granroth-Wilding and Clark, 2016) is em-
ployed to compute the relatedness scores of the con-
text and candidate events. The experimental re-
sults showed that their graph-based script learning
model achieves high performance in standard MCNC
tasks.
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Fig. 11 Brief framework of NEEG and SGNN. NEEG
regards <verb, dependency> pairs as nodes, and re-
gards <verb, dependency> bigrams as edges. SGNN
uses a subgraph instead of the whole graph as the
input, and uses a series of GGNNs and a Siamese
network to encode and match events. References to
color refer to the online version of this figure

4.7 External knowledge models

At the end of this section, we will discuss some
recent works that attempt to enhance traditional
script learning models by injecting external knowl-
edge, such as additional commonsense knowledge
about intent and emotion of event participants, fine-
grained properties of entities, or nuanced relations
between events. Although these models do not
strictly belong to one of the above-mentioned spe-
cific categories, they are enlightening and potentially
useful, and some of them also achieve quite good per-
formance.

Some fine-grained commonsense knowledge,
such as the purpose or mental state of event par-
ticipants, can be practical for understanding deep
semantic meanings and generating better event rep-
resentations. For instance, event “John threw bomb”
and event “Jerry attacked embassy” have the same
intent (i.e., bloodshed). This intent information can
help map the embeddings of these two events into
the neighbor vector space, even though they have
very different surface forms. As for emotion infor-
mation, consider the following events: “John threw
bomb” and “John threw football.” The former event
may elicit feelings of anger or dread, while the latter
may elicit feeling of joy. Based on this information,
their embeddings should be far apart in the vector
space, even though they are quite similar in the sur-
face form.

However, Ding et al. (2019b) found that the
event representation extracted from raw text lacks
this commonsense knowledge, which is an important
reason why it is difficult for script learning models
to discriminate between the event pairs with sub-
tle differences in their surface form. Hence, they
used two commonsense knowledge corpora, namely
Event2Mind (Rashkin et al., 2018) and ATOMIC
(Sap et al., 2019), as the training dataset. In ad-
dition to an event description, there are multiple
additional inference dimensions, produced by crowd-
sourcing, which are appended to each event in these
two corpora. These inference dimensions contain
richer commonsense knowledge, such as the cause
and effect of an event, intents, and mental states of
participants.

The authors leveraged intent and sentiment
knowledge to help models produce more accurate em-
beddings and inferences of events. Specifically, they
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used a neural tensor network to learn baseline event
embeddings and defined a corresponding loss func-
tion to incorporate intent and sentiment information.
Subsequently, the model jointly trained the combi-
nation of the loss functions on the event, intent, and
sentiment, using the training data with intent and
emotion labels. Experimental results showed that
external commonsense knowledge could enhance the
quality of event representations and improve the per-
formance of downstream applications.

Lee IT and Goldwasser (2018) proposed a
feature-enriched script learning model, featured
event embedding learning (FEEL), and injected fine-
grained event properties to enhance event embed-
dings. Following the idea that fine-grained event
properties and relevant contextual information, such
as argument, sentiment, animacy, time, or location,
can potentially enhance the event representations,
the authors injected two additional event properties,
sentence-level sentiment and animacy information of
the protagonist, into the script learning model.

The sentence-level sentiment captures the over-
all tone of the event, which can impact the prob-
ability of specific events. For example, the event
“Jack likes the food” indicates a positive sentiment,
increasing the possibility of “He tips the waiter” to
be the next event. Animacy information of the pro-
tagonist is also an important factor that affects fu-
ture events, because some events can be done only
by living entities, and some events’ meaning changes
greatly with different types of animacy (e.g., “Jack is
blue” and “the sky is blue”).

FEEL represents an event by a 6-tuple <tok(e),
subj(e), obj(e), prep(e), f1(e), f2(e)>, where f1(e)

and f2(e) refer to the sentence-level sentiment and
animacy information, respectively. A hierarchical
multitask model was used to jointly learn intra-
and inter-event objectives. The intra-event objec-
tive (or local objective) expresses the connections
between different components inside an individual
event, namely, allowing the tok(e), sub(e), obj(e),
prep(e), f1(e), and f2(e) to share information with
each other. The inter-event objective (or contextual
objective) expresses the relationship between two dif-
ferent events. The model was evaluated over three
narrative tasks, including the traditional MCNC task
and its two variants (MCNS and MCNE). The ex-
perimental results showed that these two properties
could contribute improvements.

In their later work, Lee IT and Goldwasser
(2019) made further improvement by introducing
fine-grained multi-relations between events, such as
Reason, Cause, and Contrast.

Previous models usually drew inferences based
on vector similarity scores between event embed-
dings. However, when making commonsensible infer-
ences, there are always many reasonable choices, so
using an event similarity alone is too coarse to sup-
port some relevant inferences. For instance, given
the event “Jenny went to her favorite restaurant,”
the high related possible events include “She was
very hungry,” “She ordered a meal,” and many other
choices. However, if we have more clues, for exam-
ple, given that the type of relation between these
two events is Reason, analogous to asking “Why did
Jenny go there,” then the event “She was very hun-
gry” will obviously be a more reasonable choice. In
the same way, if the type of relation is Temporal,
analogous to asking “What did she do after that,”
clearly, the event “She ordered a meal” will be a bet-
ter choice.

Considering that the nuanced types of relation-
ships between events can make commonsense infer-
ences more accurate, this paper presents a model
to encode multiple nuanced relations, rather than
only typical temporal relation or co-occurrence rela-
tions. As Fig. 12 shows, the authors extracted rela-
tion triplets (eh, r, et) from the corpus, which consists
of two related events (eh, et) and the relation type
between them (r), such as (eh=“Jenny went into her
favorite restaurant,” r=Reason, et=“She was very
hungry”). All of the eh, et, and r are represented
by embeddings, which can be jointly learned by the
model.

The relation embeddings contain 11 types of re-
lations, including a commonly used temporal relation
and a co-occurrence relation, plus nine additional
discourse relations. These discourse relations are in-
troduced by an annotated corpus, Penn Discourse
Tree Bank-2.0 (PDTB) (Prasad et al., 2008). The re-
lation embeddings are learned by translation-based
embedding models, which regard relations as trans-
lations in the embedding space. This paper adopted
two of translation-based embeddings, TransE (Bor-
des et al., 2013) and TransR (Lin YK et al., 2015),
to jointly learn embeddings for events and relations.

As for TransE, it embeds events and their rela-
tions in the same vector space, so that the distance
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Fig. 12 Multi-relational script learning. Relation
triplet (eh, r,et) are extracted from the corpus. It
consists of two related events (eh,et) and the rela-
tion type between them (r). All of the eh, et, and r

are represented by embeddings, which can be jointly
learned by the model

between event embeddings (|eh − et|) can directly
reflect their relations (r). The relatedness score be-
tween events is formulated as

ftrass(t) = ftranse (eh, et, r) = ‖eh − et + r‖pp , (8)

where eh, et, r ∈ R
dr are the embeddings from the

event composition network. This formulation is a
dissimilarity measure, with a lower score meaning a
stronger relatedness.

Considering that relation and event are two
completely different categories, it may not be appro-
priate to embed them into the same space. TansE has
limitations in dealing with reflexive, 1-to-N , N -to-1,
or N -to-N relations (Wang Z et al., 2014), so the
authors also adapted TransR to encoder relations.

TransR separates the embedding space of rela-
tion (r ∈ R

dr) and the embedding space of events
(eh, et ∈ R

de). When performing operations, event
embeddings can be mapped into the relation embed-
ding space by multiplying a relation-specific param-
eter matrix (M ∈ R

de∗dr). The relatedness score
between events is formulated as

ftrass(t) = ftranse (eh, et, r)

= ‖ehMr − etMr + r‖pp .
(9)

The model of Lee IT and Goldwasser (2019)
was evaluated using several tasks, including three
cloze tasks (MCNC, MCNS, MCNE), three relation-
specific tasks, and a related downstream task. The
results showed that the learned embedding could
capture relation-specific information and improve
performance for the downstream task.

5 Evaluation approaches

Essentially, the aim of the script learning system
is to encode script knowledge and use it to draw
reasonable inferences, so in the final process of script
learning, some evaluation approaches are needed to
test whether the model can effectively encode the
script knowledge and exploit it.

In this section, we will introduce some represen-
tative evaluation approaches with specific tasks and
corresponding metrics. The evaluation approaches
can be employed to measure the capabilities of the
script learning model by experimentally testing its
performance on the task.

5.1 Narrative cloze test

The cloze test (Taylor, 1953) is a classic way to
evaluate the language understanding ability of hu-
mans, by deleting a random word from a sentence
and having a human attempt to fill in the blank.

Chambers and Jurafsky (2008) extended this
approach to script learning and proposed the nar-
rative cloze (NC) test. The NC test evalu-
ates the inference ability of script learning mod-
els by holding out a single event from the event
chain and letting the model predict the miss-
ing event given the remaining events. For ex-
ample, given an event chain with a missing
event: (walk, subject) → (sit, subject) → (?) →
(serve, object) → (eat, subject) → (leave, subject),
the model is asked to predict the missing event (?)
using the information of the remaining events. Par-
ticularly, it needs to compute the probability of each
event in its entire event vocabulary and return a
prediction list of likely events ranked by probability.
The smaller the rank number of the correct event
is, the more accurate the prediction will be. Cham-
bers and Jurafsky (2008) used the average rank of all
correct events as an evaluation metric. Obviously, a
better performing model will have a lower average
rank.

However, this metric is partially irrational; that
is, it tends to punish the model with a long event
vocabulary. If a large model with a long vocabu-
lary and a small model with a short vocabulary both
predict the correct event at the bottom of the list,
then the large model will be more penalized than the
small one, because the guess list of the large model
is much longer.
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Therefore, Jans et al. (2012) suggested
Recall@N as a more reliable metric. It evaluates
the percentage of missing events that fall under top-
N predictions of the model. Specifically, if the rank
number of the correct event is smaller than N , mean-
ing that the first N events in the prediction list con-
tain the correct one, then one score will be given.
Recall@N is the average score of all predictions,
namely, the percentage of prediction lists with cor-
rect events in their first N events. Contrary to the
average rank metric, a better performing model will
have a higher Recall@N .

Despite some relief, Recall@N still penalizes se-
mantically reasonable predictions and solely awards
events with exactly the same surface form. There-
fore, Pichotta and Mooney (2014) introduced accu-
racy as a more robust metric, because it does not
regard the event as an unbreakable atomic unit, and
takes into account all of its components. Specifically,
one point will be given if the model’s top guess in-
cludes each component of the correct event. Then
the score will be divided by the total number of pos-
sible points to yield a value between 0 and 1. More
simply put, accuracy refers to the percentage of event
components that are correctly predicted.

The NC test constructed the basic form of main-
stream script learning evaluation methods, and it has
been adopted by various subsequent works (Jans et
al., 2012; Pichotta and Mooney, 2014, 2016a, 2016b;
Rudinger et al., 2015). Despite the popularity, it still
has two issues:

First, for any given event chains, there may be
multiple subsequent choices that are possible and
equally correct, but only one specific right answer.
The NC test will penalize wrong answers equally,
even if some of them are semantically plausible,
which is somewhat arbitrary.

Second, it requires searching the entire event vo-
cabulary; however, when considering complex event
structures, such as multi-argument events, the vo-
cabulary becomes extremely large, which leads to a
burden of large computation.

5.2 Adversarial narrative cloze task

Modi (2016) attempted to address these issues
by proposing the adversarial narrative cloze (ANC)
task. This research pointed out that it is more realis-
tic to evaluate script learning models that give credit
for predicting semantically plausible alternatives as

well.
In the ANC task, there are two event chains:

one is the correct chain, and the other is the same
but with one event replaced by random events. The
models need to discriminate between real and cor-
rupted event chains. Its form is as follows:

Correct chain:
(walk, subject) → (sit, subject)→ (eat, subject)

→ (leave, subject).
Incorrect chain:
(walk, subject) → (sit, subject)→ (eat, subject)

→ (swim, subject).

5.3 Multiple choice narrative cloze task

Granroth-Wilding and Clark (2016) also refined
the NC test and proposed the multiple choice nar-
rative cloze (MCNC) task, in which a multi-choice
prediction rather than a ranking list is used. Partic-
ularly, a series of contextual events are given, and the
model should choose the most likely next event from
a set of optional candidates. There is only one cor-
rect subsequent event in the candidate set, while the
other events are randomly sampled from the corpus
with their protagonist replaced by the protagonist of
the current chain. Its form is as follows:

Event chain: walk(X , restaurant)→ sit(X)→
order(X , food)→ __.

Optional choices:
C1: play(X , tennis).
C2: climb(X , mountain).
C3: ride(X , bicycle).
C4: eat(X , food).
C5: have(X , shower).
MCNC is a better fit for evaluating multi-

argument events, because it can evaluate models’
inference abilities without searching the entire event
vocabulary. The way to calculate the accuracy of the
MCNC task is also simpler and more intuitive, i.e.,
directly calculating the ratio of the correct predic-
tion to the total test. In addition, in principle, the
MCNC task can be completed by humans. Hence,
task results from humans would be a valuable base-
line for comparison with the model results.

5.4 Multiple choice narrative sequences task

The MCNC task is substituted for the NC task
by most of subsequent related works (Wang ZQ et al.,
2017; Li ZY et al., 2018; Weber et al., 2018; Lee IT
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and Goldwasser, 2019; Lv et al., 2019). However,
it does not capture the flow of the entire narrative
chain. Therefore, it is hard to draw an inference over
long event sequences. Lee IT and Goldwasser (2018)
proposed two novel multiple-choice variants gener-
alized from the MCNC task, to evaluate a model’s
ability to draw long sequence inferences instead of
only predicting one event.

The first one is multiple choice narrative se-
quences (MCNS), which samples options for all the
events on the chain, except for the first event used
as the starting point. Its form is as follows: walk(X ,
restaurant) → __ → __ → __ → __.

The model needs to make a multiple choice nar-
rative for every blank.

5.5 Multiple choice narrative explanation
task

Another variant is multiple choice narrative ex-
planation (MCNE), which gives both the first event
and the final event and predicts all the intermediate
events. Its form is as follows: walk(X , restaurant)
→ __ → __ → __ → leave(X , restaurant).

Note that regardless of the specific evaluation
approach, the basic goal is to evaluate the ability of
the script learning model to encode script knowl-
edge and draw reasonable inferences. Therefore,
the models with excellent evaluation performance
should have learned rich commonsense knowledge
and understood deep semantic meaning. Neverthe-
less, some researchers (Pichotta and Mooney, 2014;
Mostafazadeh et al., 2016; Chambers, 2017) found
an issue: some models are achieving high scores by
optimizing performance on the task itself, instead
of the learning process. For example, in the NC
task, directly giving the prediction of the ranked
list in accordance with the event’s corpus frequency
(e.g., always predicting common events “X said” or
“X went”) was shown to be an extremely strong
baseline.

5.6 Story cloze test

To alleviate the above issues, Mostafazadeh
et al. (2016) introduced the story cloze test (SCT),
an open task, to help models make a more com-
prehensive and deeper evaluation. They collected a
corpus full of commonsense short stories written in
five sentences. When performing an evaluation task,

four sentences are given as context, and models need
to choose one correct ending of the story from two
alternative sentences. For example:

“Karen was assigned a roommate in her first year
of college. Her roommate asked her to go to a nearby
city for a concert. Karen agreed happily. The show
was absolutely exhilarating.”

Given the above context, the model needs to
choose between two alternative sentences, “Karen be-
came good friends with her roommate” (right ending)
and “Karen hated her roommate” (wrong ending).

Although the purpose of SCT and NC is rel-
evant, there are some slight differences between
the story on which SCT focuses and the script
on which NC focuses. To some extent, the story
is a kind of complex script that consists of more
objections and multiple relations. SCT also calls
for stronger inferential capability and understand-
ing of the deeper-level story semantics, rather than
shallow literal or statistical information, because
it is asked to predict the entire sentence instead
of an individual event. The experiment results
also proved this. Mostafazadeh et al. (2016) chose
some of the state-of-the-art script learning meth-
ods at that time for evaluation, but the experi-
mental results showed that they all struggled to
achieve a high score on SCT, and most of them were
only slightly better than random or constant selec-
tion. This indicated that they have only learned
shallow language knowledge instead of deeper
understanding.

Recently, there have been a variety of works (Li
Q et al., 2018; Zhou et al., 2019; Li ZY et al., 2019) at-
tempting to resolve SCT, and some of them achieved
high scores. For example, the three-stage transfer-
able BERT training framework proposed by Li ZY
et al. (2019) achieved rather good results with accu-
racy greater than 90%.

6 Conclusions and future directions

In this section, we conclude the main contents
of this survey and briefly analyze the current script
learning situation. In addition, we discuss some pos-
sible directions for future research, because we be-
lieve script learning research still has great potential,
and there are many novel directions that need to be
explored in the future.
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6.1 Conclusions

This survey tried to provide a comprehensive re-
view and introduce some representative script learn-
ing works. We first briefly introduced some basic
script learning knowledge, including its definition,
aim, significance, process, focus, and development
timeline. Then we discussed in detail three main re-
search topics: event representations, script learning
models, and evaluation approaches. For each one, we
introduced some typical and representative works,
tried to compare their advantages and disadvantages,
and summarized their development process. In the
end, we discussed some possible directions for future
research.

In summary, script learning is a relatively small
but growing research direction with potential. It
aims at encoding the commonsense knowledge of
real life to help machines understand natural lan-
guage and draw commonsensible inferences. Script
learning systems have a long history and profound
psychological foundation, and are also crucial com-
ponents in constructing AI systems that are designed
to achieve human-level performance.

Despite its significance, it still has some draw-
backs and limitations, such as lacking a standard
and high-quality corpus, lacking systematic evalua-
tion frameworks, and lacking effective approaches for
extracting and encoding the most important infor-
mation of events. Or, more broadly, it lacks a deeper
understanding of the mechanisms of human cogni-
tion and comprehension of commonsense knowledge.
This knowledge is considered self-evident. On one
hand, it seems that everyone naturally knows it, and
therefore there is no need to explain it. On the other
hand, it seems that we are unable to present appro-
priate and effective proof at present. Hence, there is
still much work that needs to be done in the future.

For now, event chain based plus deep learning
based models are the most popular script learning
approaches. The trend in this direction is to further
improve them by introducing more advanced mech-
anisms and more complex structures. Most of these
works extracted events from the New York Times
(NYK) portion of the Gigaword corpus as a dataset
and evaluated their models by the MCNC test.

Furthermore, very recently, some other notable
works have attempted to enhance traditional script
learning models by constructing event graphs or in-

jecting external knowledge. Some new evaluation
frameworks, such as SCT, MCNS, and MCNG, and
several novel corpora, such as InScript, Event2Mind,
and ATOMIC, were also proposed. These innovative
works are very enlightening and have potential, and
some of them have achieved quite good performance.
We are looking forward to more revolutionary im-
provements shortly.

Finally, we list some representative script learn-
ing works, as well as their dataset, event representa-
tions, models, and evaluation approaches, in Table
1. Because these works have quite different experi-
mental setups, it is not likely that a fair comparison
can be conducted among them. Consequently, we do
not list the specific experimental results and detailed
processes, but only the main methods they used.

6.2 Future directions

6.2.1 Establishing a standard corpus and evaluation
system

There is no standard corpus or evaluation sys-
tem for script learning. The majority of related
works use NLP tools to automatically extract events
from the news articles in the New York Times (NYK)
portion of the Gigaword corpus, and the NC or
MCNC test is used to evaluate the extraction results.
However, this method has the following defects: the
types of chosen raw texts can vary widely, the qual-
ity of extraction results relies heavily on NLP tools,
and the content of texts may lack detailed informa-
tion about quite common and mundane normal life
events. In addition, Mostafazadeh et al. (2016) and
Chambers (2017) found that automatically generat-
ing event chains for evaluation may not test rele-
vant script knowledge. Some script learning models
that achieve high test scores tend to capture fre-
quent event patterns instead of script knowledge. If
there is no effective evaluation system, we cannot
accurately judge whether a model can really work.
Therefore, the establishment of a standardized cor-
pus and evaluation system is particularly important
for the development of script learning.

There are a few other works (Regneri et al.,
2010; Modi et al., 2017; Ding et al., 2019b; Lee
IT and Goldwasser, 2019) that attempt to solve
this issue using a crowdsourced corpus, such as
OMICS (Gupta and Kochenderfer, 2004), PDTB
(Prasad et al., 2008), InScript (Modi et al., 2016),
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Event2Mind (Rashkin et al., 2018), or ATOMIC
(Sap et al., 2019). These crowdsourced corpora have
advantages such as focusing on specific prototypi-
cal scenarios, containing rich script knowledge, hav-
ing structure representations, and having clear anno-
tated information. Specifically, the InScript Corpus
(Modi et al., 2016) was designed for script learning,
all of the relevant verbs and noun phrases were an-
notated with event types and participant types, and
it contained many subtle actions describing a par-
ticular scenario. These advantages can help models
effectively process data and learn script knowledge,
as well as avoid many of the problems caused by
unstructured texts (Chambers, 2017).

However, this is far from a trivial issue. On one
hand, the crowdsourced corpora require domain ex-
pertise, professional knowledge, and plenty of man-
ual annotation and quality control. Thus, they are
small in size but prohibitive in construction cost.
On the other hand, automatically understanding un-
structured natural texts is a vital goal and a neces-
sary capability of advanced AI systems. Therefore,
collecting a standard corpus that has both quantity
and quality and establishing an effective evaluation
system are important directions for future research.

6.2.2 Constructing the event graph

As we discussed in Section 4.6, the graph struc-
ture is clearer and more intuitive from the human
interpretability perspective, and to some extent, it is
also closer to the organizational form of event devel-
opment in reality. It can express denser and broader
connections among events, compared with the event
pair or event chain. In addition, once scripts are
represented in a graph structure, a variety of off-the-
shelf graph-based algorithms can be used to solve
event-related tasks. However, there are only a few
models that represent a script as graph structure and
use graph-based approaches to solve event-related
problems, so it is a research direction that deserves
more attention in the future.

For example, the event logic graph (ELG) pro-
posed by Ding et al. (2019a) is a potential event-
related knowledge base that aims to discover the
evolutionary patterns and logic of events. ELG in-
tegrates event-related knowledge into conventional
knowledge graph techniques, which have been pro-
gressing fast recently, and organizes event evolution-
ary patterns into a commonsense knowledge base.

The experimental results also show that ELG is ef-
fective for script-related tasks.

6.2.3 Using pre-trained language models

Recent works have shown that the two-stage
framework that includes a pre-trained language
model and fine-tuning operation can bring great im-
provements to many NLP tasks. Specifically, a lan-
guage model can be pre-trained on large-scale un-
supervised corpora, such as CoVe (McCann et al.,
2017), ELMo (Peters et al., 2018), BERT (Devlin
et al., 2019), or GPT (Radford et al., 2019), and
fine-tuned on target tasks, such as natural language
inference (NLI) or reading comprehension. The pre-
trained language models can learn universal language
representations, which can lead to better general-
ization performance and speed up convergence for
downstream NLP tasks. The pre-trained language
models can also avoid heavy work and the complex
process of training a model from scratch (Qiu et al.,
2020).

It is natural to think that script learning tasks
may also benefit from applying this framework. In
addition, these novel pre-trained models can re-
place the embedding learning systems that have been
widely used by script learning models for a long time,
such as word2vec (Mikolov et al., 2013), glove (Pen-
nington et al., 2014), or deepwalk (Perozzi et al.,
2014). This direction is of great research value but
there are only a few existing works. Here we briefly
introduce two representative works.

Li ZY et al. (2019) did relevant work that de-
signed a transferable BERT (TransBERT) training
framework to solve an SCT task. In addition to a
pre-trained BERT model, they introduced three se-
mantically related supervised tasks (including NLI,
sentiment classification, and next action prediction)
to further pre-train the BERT model. Zheng et al.
(2020) proposed a unified fine-tuning architecture
(UniFA), which is a scalable and stackable frame-
work consisting of four key components, i.e., BERT-
base-uncased, raw-text, intra-event, and inter-event
components, connected by a multi-step fine-tuning
method. With the merits of cascaded training, multi-
step fine-tuning can contribute to minimizing loss
and also avoid being trapped in local optima. They
also employed a scenario-level variational auto en-
coder (S-VAE) to implicitly represent scenario-level
knowledge. In particular, S-VAE regards the event
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chain as a dialog-generation process and further in-
troduces a stochastic latent variable to guide the
event representation.

6.2.4 Learning script by reinforcement learning

The script learning system is somewhat natu-
rally similar to the reinforcement learning frame-
work. The process of generating correct events one
by one through an event chain is similar to the situ-
ation wherein an agent traverses through the space
of events (Kaelbling et al., 1996; Li JW et al., 2016;
Sutton and Barto, 2018).

In the reinforcement learning setup, an agent
will search for all the possible states of the environ-
ment to achieve the highest rewards. The action of
the agent refers to changing the state, and a corre-
sponding reward will be given to the agent according
to whether the action is good or bad. The policy of
the agent refers to a sequence of actions taken by it,
and the optimal policy is the policy that achieves the
highest rewards.

In the script learning setup, each discrete state
can represent an event. The action of the agent may
refer to transferring to another event, based on cur-
rent and previous states. If the agent transfers to a
correct state (i.e., predicting the correct next event),
then it will obtain a reward. The optimal policy of
the agent may represent the prediction of the most
likely event chain.

Reinforcement learning can help with many
script learning tasks that are hard to solve now, for
example, the event segment extraction task. As we
mentioned in Section 4.5, Lv et al. (2019) used a
self-attention mechanism to solve this task, but this
approach is not accurate enough. We may design a
reinforcement learning framework in which an agent
traverses the event chain to extract the most valu-
able event segments. The state refers to whether the
corresponding event is part of the extracted event
segment, and the alternative action refers to chang-
ing the state and moving to the next event or keep-
ing the state and moving to the next event. After
traversing the whole event chain, the final extracted
event segment will be used to predict the next event,
and a corresponding reward will be given based on
the accuracy of the prediction.

6.2.5 Injecting external fine-grained knowledge

As we discussed in Section 4.7, some recent
works attempt to enhance traditional script learning
models by injecting external knowledge. They chose
fine-grained event properties, such as intent, senti-
ment, and animacy of event participants, or nuanced
relations between events, such as Reason, Temporal,
and Contrast.

These works indicate that fine-grained event
properties and relevant contextual information such
as argument, sentiment, animacy, time, or location,
can potentially enhance script learning models, so
other script learning models may also be improved
by injecting external fine-grained knowledge.

This knowledge, however, is not necessarily the
more the better. The experimental results of Lee IT
and Goldwasser (2018) showed that although each
property individually improves the performance, in-
cluding too many properties might hurt it. There-
fore, the questions of which and how many properties
to choose are appropriate and need further study.

6.2.6 Building an interpretable system

Although deep learning technology has devel-
oped rapidly and reached impressive performance in
many fields recently, its deep and complex nonlin-
ear architecture makes the decision-making process
highly non-transparent.

Deep learning models are known to be black
boxes, so it is hard to explain the reason behind
their decisions. As for deep learning based script
learning systems, the lack of interpretability exists
mainly in terms of two aspects: first, the output
of the script learning system (i.e., the event predic-
tion results) is hardly explainable to system users;
second, the operation mechanism of how machines
make a decision (i.e., the event encoding and match-
ing algorithm) can hardly be investigated by system
designers. Without letting users know why specific
results are provided, the system may be less effec-
tive in persuading users to accept the results, which
may further decrease the system’s trustworthiness.
Without letting designers know the mechanism be-
hind the algorithm, it will be difficult for them to
promote the system effectively.

In a broader sense, explainable artificial in-
telligence (XAI) (Arrieta et al., 2020) has re-
cently sparked wider attention from the general AI
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community. Many of the recent advances in ma-
chine learning have been trying to open the black
box. For instance, Koh and Liang (2017) introduced
a framework to analyze deep learning models based
on influence analyses; Pei et al. (2017) proposed a
white-box testing mechanism to explore the nature
of deep learning models. The interpretability-related
works will help us understand the exact meaning of
each feature in a neural network and how they in-
teract to produce the final outputs. However, the
research in interpretable script learning systems is
still in the initial stage, and there is much to be fur-
ther studied.
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