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Abstract: Representation of orientation is important in a six-degree-of-freedom grating interferometer but only a few studies have 
focused on this topic. Roll-pitch-yaw angles, widely used in aviation, navigation, and robotics, are now being brought to the field 
of multi-degree-of-freedom interferometric measurement. However, the roll-pitch-yaw angles are not the exact definitions the 
metrologists expected in interferometry, because they require a certain sequential order of rotations and may cause errors in 
describing complicated rotations. The errors increase as the tip and tilt angles of the grating increase. Therefore, a replacement 
based on fused angles in robotics is proposed and named “fused-like angles.” The fused-like angles are error-free, so they are more 
in line with the definitions in grating interferometry and more suitable for six-degree-of-freedom measurements. Fused-like angles 
have already been used in research on the kinematic model and decoupling algorithm of the six-degree-of-freedom grating  
interferometer. 
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1  Introduction 
 

The grating interferometer has already stepped 
onto the six-degree-of-freedom (six-DOF) stage, 
using laser wavelength and grating pitch to measure 
translational and angular motions simultaneously. 
Besides high thermal inertia and low environmental 
sensitivity, six-DOF grating interferometers are usu-
ally smaller than laser interferometers because all the 
reading heads can be located on one side (Hu et al., 
2019). Many different types of six-DOF grating in-
terferometers have been proposed in the past years to 
fulfill the rigorous requirements of high-precision 

apparatus such as photolithography machines (de 
Jong et al., 2009; Li et al., 2014; Hsieh and Pan, 2015). 
More recently, research has gradually focused on the 
algorithms behind the optical structures of the reading 
heads. For example, Ye et al. published a couple of 
articles introducing error-free or ultraprecise algo-
rithms for multi-DOF grating interferometers (Ye et 
al., 2018, 2019). 

Orientations of the grating have usually been 
described in terms of roll-pitch-yaw angles (RPY 
angles). Being widely used in aviation and navigation, 
RPY angles are a certain type of Euler angle. With the 
help of rotation matrices, it is easy to calculate the 
rotation results on chips or by codes. However, dif-
ferent from the conventional RPY definition in avi-
onics, the roll, pitch, and yaw angles for grating in-
terferometers are custom-defined. For example, 
Cheng and Fan (2011) used yaw-roll-pitch to express 
rotations about the x, y, and z axes, while the order 
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used by Hsieh and Pan (2015) is yaw-pitch-roll. In 
other words, the definitions of RPY angles used in 
grating interferometry have a wider range than those 
in avionics. Thus, to be unambiguous, we use  
“custom-RPY angles” in this paper to describe those 
used in grating interferometry.  

However, it is known that the matrix multiplica-
tions do not satisfy the commutative law. This means 
that when describing complicated rotations around 
multiple axes continually or simultaneously, custom- 
RPY angles are valid only with a pre-determined 
rotation order. Namely, different orders will lead to 
different orientations, although the corresponding 
values are the same. However, what we expect from a 
measurement system is a certain state of orientation, 
not a series of rotation angles. Thus, custom-RPY 
angles may cause inconvenience in building an ac-
curate model of a six-DOF grating interferometer, and 
even errors when measuring the angular motions. 

To overcome these disadvantages and meet the 
requirements of six-DOF grating interferometers, we 
began to give a novel definition for describing ori-
entations instead of the roll, pitch, and yaw repre-
sentation. We accidentally found that the fused angles, 
proposed by Allgeuer and Behnke (2015, 2018) for 
representing the orientation of a balancing body, are 
similar to the expected representations in six-DOF 
grating interferometry. Using the projections of the 
vectors for definitions and considering the actual 
requirements in six-DOF interferometers, we pro-
posed “fused-like angles” to describe the orientation 
of the measured grating. This method can avoid the 
confusion caused by the custom-RPY angles and 
provide a clear and exact state of the orientation 
without the rotation order. The definition of the 
fused-like angles, the examples in describing orien-
tations in six-DOF grating interferometers, and their 
advantages and applications are introduced and ana-
lyzed in the following sections. 
 
 
2  Fused-like angles 

2.1  Custom-RPY angles and their problems in 
describing the complicated rotations of grating 
interferometers 

First, we define custom-RPY angles for de-
scription as was done in previous studies on grating 

interferometers. As Fig. 1 shows, the main moving 
direction of a linear grating is defined as the x direc-
tion, which could be regarded as the front and rear. 
Rotation about the x axis is defined as the roll angle. 
Then the rotations about the y and z axes are defined 
as pitch and yaw angles, respectively. A six-DOF 
grating interferometer usually has a two-dimensional 
planer grating. To distinguish x and y directions, we 
still use linear gratings in Fig. 1 (and Fig. 6 below). 
 
 
 
 
 
 
 
 
 
 

 
 
On one hand, when expressing single-DOF ro-

tations, results can be calculated by the corresponding 
rotation matrix in Eqs. (1)–(3): 
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where θ, φ, and ψ represent the roll, pitch, and yaw 
angles, respectively. The custom-RPY angles are 
exact in handling cases with single-DOF rotations, for 
example, the tolerance analyses of grating interfer-
ometers (Cheng and Fan, 2011; Chang et al., 2019). 

On the other hand, there is neither clear expres-
sion nor explanation of the complicated rotations in a 
grating interferometer, although researchers have 
already launched studies on six-DOF measuring sys-
tems. It is necessary to clarify whether custom-RPY is 
intrinsic or extrinsic. 

Fig. 1  Description of custom-RPY angles in this study 
In grating interferometry, the normal vector of the grating is
usually regarded as the z axis 
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It is easy to calculate the extrinsic rotation by 
left-multiplying these three matrices with a certain 
order: 

 

( , , ) ( ) ( ) ( ).z y xR R R R                  (4) 
 

Fig. 2 demonstrates the steps of the left multi-
plications in Eq. (4). The initial coordinate system is 
denoted by lowercase letters x, y, and z, two transition 
coordinate systems are denoted with prime marks, 
while the terminal one is denoted by capital letters X, 
Y, and Z. 

 
 

 
 
 
 
 
 
 

 

However, in six-DOF grating interferometers, 
only the initial and terminal coordinate systems are 
physically defined. The transition ones are not entities 
in a real measuring system. Thus, it is difficult to 
determine the exact values of these angles with the 
coordinate systems xyz and XYZ. 

As for the intrinsic rotations, the results can be 
calculated by matrices from Rodriguez’s formula or 
with the help of the equivalence of extrinsic ones.  
Fig. 3 demonstrates the steps of the intrinsic custom- 
RPY angles. The denotations of coordinate systems 
are the same as those in Fig. 2. 

The same problem, angles being defined with 
transition coordinate systems, exists in Fig. 3. The 
reason is that both the extrinsic and intrinsic rotations 
use matrix left-multiplication to calculate the attitude, 
so no matter what the order is, the latter angle is de-
fined based on the previous rotation. 

What we need to clarify is that we are not 
denying the effectiveness of the custom-RPY angles 
in describing active rotations, but using custom-RPY 
angles in six-DOF grating interferometry will cause 
some problems when representing passive orienta-
tions. For one thing, the rotation order should be 
pre-determined. A different order will lead to different 
rotation results, although the values are the same. For 
another thing, it may cause errors in tracing to the 
benchmarks. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
As Fig. 4 shows, the benchmarks of a typical 

six-DOF grating interferometer are the laser wave-
length and grating pitches. In ideal cases without 
mounting errors, the wavelength is always parallel to 
the z axis of the initial coordinate system (perpen-
dicular to the ground), while the pitches of the planar 
grating are always parallel to the X and Y axes of the 
terminal coordinate system. Since the benchmarks are 
located in two different coordinate systems, the final 
six-DOF results of the grating should be transferred to 
the initial coordinate system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Taking the laser wavelength in the initial coor-

dinate system as an example, for a certain reading 
head, the Abbe principle tells us that the wavelength 
should be in line with the z-axis displacements. Sim-
ilarly, to measure an angle with two differential dis-
placements, the measured angle should be on a plane 
parallel to the differential displacements. Otherwise, 

Fig. 4  Benchmarks of a typical six-DOF grating 
interferometer 
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Fig. 2  Schematic of three rotation steps of extrinsic custom-
RPY angles 

Fig. 3  Schematic of three rotation steps of intrinsic custom-
RPY angles 
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the inconsistency will cause an error (like the Abbe 
error). 

From the analysis above, it is necessary to find 
another representation of the orientations. The ex-
pected representation should be a set of three inde-
pendent angles without rotation orders and be con-
sistent with the benchmarks. 

2.2  Fused-like angles 

The problems mentioned above also exist in 
robotics. In 2015, P. Allgeuer and S. Behnke first 
published an article about fused angles. It is helpful in 
working with rotations within major planes, not about 
the rotating axes, such as analyzing the balancing 
state of a body (Allgeuer and Behnke, 2015, 2018). 
The highlight of the fused angles is that the angles are 
defined with projections. Using the notations in Figs. 2 
and 3, the fused roll and pitch are angles between the 
projections of the z axis and Z axis. It also has a tilt 
angle and a sign flag to distinguish the hemisphere. 

Application in six-DOF grating interferometry is 
far away from that in robotics. The differences in-
clude that the ranges of the roll and pitch angles are 
quite small and the grating is impossible to turn over 
during measurement. Also, the Gimbal lock will not 
appear. So, considering the actual cases in interfer-
ometry and based on the projection definitions, we 
propose the “fused-like angles” to represent the ori-
entation for six-DOF grating interferometers. 

Ignoring the unused components, the fused-like 
angles have only three angles defined by two vectors: 
the normal vector of the grating and an auxiliary 
vector on the grating surface. As Fig. 5 shows, the 
normal vector is used to represent the fused-like roll 
and pitch, and the auxiliary vector is used to represent 
the fused-like yaw. Fig. 5 also illustrates that when 
 

 
 
 
 
 
 
 
 
 
 
 

describing single rotations, the fused-like angles are 
the same as the other two representations. The vectors 
are all in the major planes of the initial coordinate 
system. Because only the upper hemisphere is con-
sidered, the ranges of fused-like roll and pitch are 
(−π/2, π/2), while the fused-like yaw has a full range 
in (−π, π]. Such ranges are suitable for all type of 
gratings, including linear, planar, radial, and circular 
ones. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 illustrates the cases with complicated ro-

tations. As Fig. 6a shows, when the normal vector of 
the grating is out of the major planes, the fused-like 
roll and pitch can be defined as follows: 

Roll: The fused-like roll θ is the angle between 
the z axis and vector Zx (the projection of the Z axis on 
the yz plane). 

Pitch: The fused-like pitch φ is the angle be-
tween the z axis and vector Zy (the projection of the Z 
axis on the xz plane). 

The angles can be expressed by simple trigo-
nometric formulae: 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Two vectors for defining the three fused-like angles 
Zero points are determined by the vectors as well 
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2 3arctan( / ),Z Z                      (5) 

1 3arctan( / ),Z Z                       (6) 
 

where normal vector Z is represented as Z=[Z1 Z2 Z3]
T 

in the initial coordinate system. 
In the reverse direction, vector Z can be easily 

determined by fused-like roll and pitch: 
 

 Ttan tan 1 . Z                 (7) 
 

A parallel symbol is used in Eq. (7) because such 
a form is simple and easy to understand but the vector 
is not normalized. When the grating rotates about the 
Z axis for a certain angle, as Fig. 6b shows, the 
fused-like yaw can be defined as follows: 

Yaw: The fused-like yaw ψ is the angle between 
the y axis and the projection of auxiliary vector Yz on 
the xy plane. 

Similarly, supposing Y=[Y1 Y2 Y3]
T, the formulae 

of the yaw angle and auxiliary vector Y are expressed 
as 

1 2 2 1

1 2 2

1 2 2 1

arctan( / ),         0,  0,

π arctan( / ),           0,

2π arctan( / ),  0,  0,

Y Y Y Y

Y Y Y

Y Y Y Y


  

  
    

     (8) 

 Tsin cos .kY Y                 (9) 
 

Eq. (8) has a similar form to function atan2, but 
we still use basic trigonometric functions for clarity. 
Only the first and second items of vector Y are in-
volved in the projection definition so that the third 
item Y3 is undefined. It can be calculated from the fact 
that vectors Y and Z are perpendicular to each other: 

 

3 sin tan cos tan .Y                  (10) 
 

After locating vectors Y and Z, the other one, the 
X axis of the grating, can be easily calculated by cross 
product. Then, the orientation of the grating has been 
completely represented by Eqs. (5)–(10). 

 
 

3  Conversion between the fused-like and 
custom-RPY angles 

3.1  Relationship between fused-like and intrinsic 
custom-RPY angles 

As we introduced above, fused-like and custom- 
RPY angles are two different representations of the 

same object; to simulate the angle differences of these 
two representations, it is important to analyze the 
conversion between them. This process is like using 
custom-RPY angles to find a certain orientation de-
termined by the fused-like angles. 

Comparing the rotation steps shown in Figs. 2 
and 3, it is clear that the intrinsic rotation is the better 
choice because the extrinsic ones will lead to iterative 
calculation. Detailed rotations about three axes from 
the RPY angles to the fused-like angles are illustrated 
in Fig. 7. There are four parts: the left one is the initial 
state, while the following three show every step of the 
rotations. Axes of the initial coordinate system, re-
sults of the first and second rotations, and the target 
coordinate system are marked as xyz, x′y′z′, x″y″z″, 
and XYZ, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
In the initial state, the coordinate system is still 

in the starting orientation and the target coordinate 
system XYZ can be directly found by the fused-like 
angles. Then, after the first rotation about the x axis at 
roll angle θ, the coordinate system reaches the orien-
tation denoted with one prime mark. The current 
normal vector of the grating, z′, is parallel to the 
projection vector Zx, which means that the fused-like 
roll and custom-RPY roll are the same. Actually, no 
matter what the rotation orders are, the first rotation 
will always be the same as that of the corresponding 
fused-like angles, because only one rotation matrix is 
left-multiplied. However, the difference occurs during 
the next rotation since the second matrix is also mul-
tiplied. The custom-RPY pitch is the angle about the 
y′ axis between vectors z′ and Z (highlighted by the 
shaded area), and this is different from the projection- 
involved definition above. To be unambiguous, a 
prime mark is added and the custom-RPY pitch can be 
expressed as 

Fig. 7  Connecting the intrinsic custom-RPY angles and
fused-like angles with three sequential rotations 
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 sgn ( ) arccos( ),y    z Z z Z           (11) 

 

where sgn() is the sign function, and subscript y 
means that the sign of the y (second) item determines 
the result. Likewise, the angle of the third rotation is 
different and the custom-RPY yaw is 
 

 sgn ( ) arccos( ).z     y Y y Y         (12) 

 

With the help of Eqs. (11) and (12), the fused- 
like angles can be implemented by rotation matrices 
and the corresponding RPY angles. Numerical results 
can reflect the differences more clearly. The curves in 
Fig. 8 show the difference in pitch angles with dif-
ferent roll angles. Since the rotation angle at the wafer 
stage is only about several micro-radians, the unit of 
the vertical axis in Fig. 8 (and Fig. 9 below) is set as 
mrad. When the roll angles increase by one order of 
magnitude, the difference of magnitude between pitch 
angles will enlarge by two orders. 
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Similar conclusions can be drawn from the 

curves in Fig. 9, showing the difference between the 
fused-like and RPY yaw angles. For each curve in  
Fig. 9, the roll and pitch angles are equal. Most of the 
data are negative but several near zero are positive, so 
the data are appropriately processed to fit the loga-
rithm curves. The curves tell that the difference is 
related to the roll and pitch angles. Namely, the more 
the grating deviates from the initial state, the larger 
the differences will be. 

Currently, the ranges of roll and pitch angles for 
a six-DOF grating interferometer for a photolithog-

raphy machine are about several mrad. It can be seen 
from Fig. 8 that the difference in pitch angles will be 
no larger than 1 nrad. Although this value is negligi-
ble, it will affect the six-DOF grating interferometry 
in two ways. For one thing, as the developing ranges 
of angles go higher, the difference will exceed the 
angular resolution and cause errors. For another thing, 
the existence of the difference is an obstacle in 
building the accurate kinematic model of the six-DOF 
grating interferometer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Addable feature of fused-like angles 

The fused-like angles are designed for grating 
interferometry, the incremental measurement method. 
The displacements measured by grating interferome-
ters are the sum of phases at every instant. Thus, the 
addable fused-like representation is more suitable 
than the custom-RPY angles in the application for 
grating interferometers.  

To describe the sum of the angles, the addition is 
used only in fused-like representations: 

 

 T0 1 0 1tan( + ) tan( + ) 1 ,   Z        (13) 

 T0 1 0 1 3sin( + ) cos( + ) ,Y   Y      (14) 

 
where the subscripts are used to distinguish these two 
addends. When using custom-RPY angles, the cal-
culation is very complicated: 
 

 1 1 1 0 0 0( , , ) ( , , ) .R R     Z z          (15) 

Fig. 9  Difference between the fused-like and RPY yaw 
angles (−|custom-RPY yaw−fused-like yaw|) with differ-
ent roll and pitch angles  
Roll and pitch angles are the same for each curve 

−10−14

−10−13

−10−12

−10−11

−10−10

−10−9

−10−8

−10−7

−10−6

−10−5

−10−4

−10−3D
iff

er
en

ce
 b

e
tw

e
en

 y
a

w
 a

n
g

le
s

 (m
ra

d
)

Nanoradian scale

0
Yaw angle (rad)

Roll and pitch angles

Picoradian scale

−2π −π 2ππ

10−1 mrad

100 mrad

101 mrad

102 mrad

10−2 mrad

Fig. 8  Difference between the fused-like and RPY pitch
angles (custom-RPY pitch−fused-like pitch) with different
roll angles 



Chang et al. / Front Inform Technol Electron Eng   2021 22(12):1677-1684 1683

However, complexity is not the most severe 
problem. As discussed above, the rotation axes of 
RPY angles are not fixed, so even for the same angle, 
there is not a fixed standard for addition. To put it 
simply, θ0 plus θ1 is not equal to θ0+θ1 in the custom- 
RPY angles. 

Fig. 10 offers a graphic explanation. Suppose 
that the grating has sequential rotations implemented 
by rotation matrices, and the roll, pitch, and yaw an-
gles are all set as 1 mrad in every step. The orientation 
of the grating is represented by the fused-like angles. 
The expected angles are shown as the black dashed 
line, but all the solid curves for actual results have 
deviations. In addition, these solid curves are not 
straight—the deviations become higher as the cumu-
lative angles increase. It shows that custom-RPY 
angles with changing rotation axes may not be suita-
ble for the six-DOF grating interferometer, but the 
fused-like angles could overcome this disadvantage. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

4  Conclusions 
 

In this paper, we proposed a representation 
method for describing the orientations in a six-DOF 
grating interferometer as the replacement for the 
currently used custom-RPY angles. The method is 
composed of three angles whose definitions involve 
projections of vectors. This idea comes from the fused 
angles in robotics; thus, we name the proposed 
method “fused-like.” With the fused-like angles, the 
orientation of the measured grating can easily be 
described by basic trigonometric functions. 

Note that we are not criticizing the Euler angles 
and the rotation matrices but just introducing a better 
representation for application to six-DOF grating 

interferometry. Different features make the two rep-
resentations suitable for different uses. The fused-like 
angles have no rotation order and the addition and 
subtraction of the fused-like angles are commutative. 
These factors make it helpful in describing the ori-
entation of the grating in six-DOF interferometry. The 
RPY angles are calculated by rotation matrices with a 
certain order, so they have better performance in 
handling sequential single-axis rotations, such as the 
articulated arm coordinate measuring machine 
(AACMM). A brief comparison is listed below. 

The fused-like angles are based on a fixed co-
ordinate system, while the RPY angles are based on 
changing rotation axes. The fused-like angles can be 
defined by single trigonometric functions but the RPY 
angles are calculated by rotation matrices. Thus, the 
fused-like angles are addable and independent of each 
other; the calculation of RPY angles is not commuta-
tive or coupled. 

The fused-like angles can make an accurate 
representation of the measured grating, only with the 
round-off error in the computer. They have already 
been used in building the kinematic model and de-
riving the error-free decoupling algorithm of the 
six-DOF grating interferometer. We believe that the 
proposed fused-like angles have potential in similar 
six-DOF measuring instruments such as laser inter-
ferometers or capacity transducers, but the specific 
definitions might be slightly different because of the 
difference in locations of their benchmarks. 
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