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Abstract: As the fifth-generation (5G) mobile communication system is being commercialized, extensive studies on
the evolution of 5G and sixth-generation (6G) mobile communication systems have been conducted. Future mobile
communication systems are evidently evolving toward a more intelligent and software-reconfigurable functionality
paradigm that can provide ubiquitous communication, as well as sense, control, and optimize wireless environments.
Thus, integrating communication and localization using the highly directional transmission characteristics of mil-
limeter waves (mmWaves) is a promising route. This approach not only expands the localization capabilities of a
communication system but also provides new concepts and opportunities to enhance communication. In this paper,
we explain the integrated communication and localization in mmWave systems, in which these processes share the
same set of hardware architecture and algorithms. We also provide an overview of the key enabling technologies and
the basic knowledge on localization. Then, we provide two promising directions for studies on localization with an
extremely large antenna array and model-based (or model-driven) neural networks. We also discuss a comprehensive
guidance for location-assisted mmWave communications in terms of channel estimation, channel state information
feedback, beam tracking, synchronization, interference control, resource allocation, and user selection. Finally, we
outline the future trends on the mutual assistance and enhancement of communication and localization in integrated
systems.

Key words: Millimeter-wave; Integrated communication and localization; Location-assisted communication;
Extremely large antenna array; Reconfigurable intelligent surface; Artificial intelligence; Neural
networks
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1 Introduction

Millimeter-wave (mmWave) band communica-
tions are expected to play a pivotal role in the
fifth-generation (5G) and upcoming sixth-generation
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(6G) mobile communication systems (Andrews et al.,
2014; Boccardi et al., 2014; Rappaport et al., 2019).
The mmWave band offers an extremely wide band-
width and can boost peak data rates. However,
mmWave signals have inherently large path-loss and
are sensitive to blockage. Hence, large antenna
arrays and highly directional transmission should
be combined to compensate for the severe penetra-
tion path-loss (Akdeniz et al., 2014; Heath et al.,
2016; Xiao M et al., 2017). Emerging techniques,
such as the extremely large antenna array (ELAA)
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(Amiri A et al., 2018; Han Y et al., 2020; Wang
HQ et al., 2020), ultra-dense networks (UDNs) (Ge
et al., 2016), reconfigurable intelligent surface (RIS)
(Han Y et al., 2019b; Wu and Zhang, 2020; Tang
et al., 2021), and artificial intelligence (AI) (LeCun
et al., 2015; Wang TQ et al., 2017; Xu and Sun,
2018; He HT et al., 2019), further enhance the cov-
erage and capability of the mmWave communication
system. Hence, providing ubiquitous connectivity
with ultra-high throughput, ultra-low latency, and
ultra-high reliability is promising (Bi, 2019; Latva-
Aho and Leppänen, 2019).

The highly directional transmission makes local-
ization a greatly desirable feature of mmWave com-
munication systems (Lemic et al., 2016). Although
the location is available from the second-generation
(2G) to the 5G mobile communication systems, the
accuracy is limited to a range of several hundred
meters to several meters (del Peral-Rosado et al.,
2018). The aforementioned key technology enablers
will empower the mmWave communication systems
with very fine range, Doppler, and angular resolu-
tions to achieve centimeter-level localization. There-
fore, localization will be built-in and will reuse the in-
frastructure and resources that are used for wireless
communications. Thus, localization is easy and cost-
effective to deploy and is beneficial to support flex-
ible and seamless connectivity. The highly accurate
location information can be used to provide location-
based services, such as navigation, mapping, social
networking, augmented reality, and intelligent trans-
portation systems. Additionally, location-assisted
(or location-aware) communications can be realized
by the obtained location information to improve the
communication capacity and network efficiency (di
Taranto et al., 2014).

Although considerable advantages in integrat-
ing communication and localization in mmWave sys-
tems have been predicted, studies in this field have
just started (Ali et al., 2020; Xiao ZQ and Zeng,
2020). Localization and communication are still
studied separately. Integrating localization and com-
munication in mmWave systems will disrupt the tra-
ditional algorithm and protocol design and revolu-
tionize the way of communication. Many challenges
need to be solved urgently, including the exchange
of information, sharing resources, and performance
trade-offs between communication and localization.
Xiao ZQ and Zeng (2020) presented a holistic survey

on the basis of wireless localization and how wireless
localization and communication interplay with each
other in various network layers. Ali et al. (2020)
motivated the use of infrastructure-mounted sensors
(which will be part of future smart cities) to aid
in establishing and maintaining mmWave vehicular
communication links. In this study, we present a
progressive vision on integrating communication and
localization by sharing the same mmWave hardware
and software architectures. We discuss in detail the
advancement in the architecture and algorithm de-
sign of mmWave communication systems for local-
ization and how location assists the communication
links in different ways. We also summarize some
promising future research directions to help materi-
alize the integrated communication and localization
in mmWave systems over the next few years.

2 Integrated communication and local-
ization

The mmWave, massive multiple-input multiple-
output (MIMO), and UDN techniques have driven
the development of low-complexity transceiver ar-
chitectures and new signal processing techniques
(Brady et al., 2013; Akdeniz et al., 2014; Heath et al.,
2016; Zeng and Zhang, 2016; Xiao M et al., 2017;
Akyildiz et al., 2018; Yang J et al., 2018, 2020; Yang
X et al., 2019). The evolution of these technolo-
gies has inspired numerous potential applications
in mmWave communication systems, such as auto-
matic vehicle and augmented reality. Highly accu-
rate localization can also be achieved in mmWave
MIMO communication systems by leveraging distin-
guishable multi-path components provided by the
mmWave channel, without installing additional ded-
icated infrastructure (Lemic et al., 2016; Wymeersch
et al., 2017; Shahmansoori et al., 2018; Mendrzik
et al., 2019; Zhou BP et al., 2019). The mmWave
bands offer larger bandwidths than the presently
used sub-6 GHz bands. Hence, higher resolution
of the time of arrival (ToA) and frequency of ar-
rival (FoA) can be achieved. In addition, large an-
tenna arrays and highly directional transmission en-
hance the resolution of the angle of arrival (AoA)
and angle of departure (AoD). The sparsity of the
mmWave channel in beamspace can be used to re-
duce the complexity of signal processing and cost
of hardware, which also simplifies the elimination



Yang et al. / Front Inform Technol Electron Eng 2021 22(4):457-470 459

of non-line-of-sight (NLoS) path interference for lo-
calization. Moreover, by leveraging distinguishable
multi-path components and geometric relationships
between the NLoS paths and scatterers, mmWave
MIMO communication systems can turn multi-path
channels “from foe to friend.” Therefore, the localiza-
tion in mmWave communication systems is expected
to achieve centimeter-level accuracy.

However, to fully realize high-throughput
wireless communications, many challenges in the
mmWave bands need to be addressed. For instance,
large path-loss and high blockage probability are still
key factors restricting the development of mmWave
communications, especially in high-mobility scenar-
ios. Therefore, frequent beam training and effective
beam tracking are indispensable to maintain direc-
tional communications, and these processes compli-
cate the link establishment and introduce a large
overhead. One possible solution to support high mo-
bility is integrating communication and localization
in mmWave communication systems. Therefore, the
location can be used more flexibly to assist the beam
training and prediction processes.

The integrated communication and localization
technique involves a high degree of integration of
advanced technologies in communication and local-
ization at the level of hardware architecture and al-
gorithm system by sharing the infrastructure and
time-frequency-space resources of wireless commu-
nications. Coordinating communication and local-
ization can be empowered by the information in-
teraction capability of the high-rate and low-delay
mmWave communication systems. The joint design
of communication and localization breaks the tradi-
tional pattern of separate operations and achieves
high-throughput communication and highly accu-
rate localization in one system. Hence, the chan-
nel state information (CSI) obtained by channel es-
timation not only is the basis of communication
but also captures the side information of displace-
ments and movements of the transmitter, receiver,
and surrounding scatterers. As shown in Fig. 1,
the integrated communication and localization in
the mmWave systems is based on the CSI or CSI-
related parameters. Then, the mutual assistance
and enhancement of communication and localization
can be realized iteratively, in which more reliable
communication provides more accurate measure-
ments required by localization. In addition, more

Channel state information in mmWave systems
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Fig. 1 Integrated communication and localization in
millimeter-wave (mmWave) systems
BS: base station; RIS: reconfigurable intelligent surface

precise location estimate reduces communication
overhead.

2.1 Signal and channel models

In a MIMO wireless communication system with
NT transmit antennas and NR receive antennas, the
received signal at time t can be expressed as follows:

y(t) = H(t) ∗ x(t) + n(t), (1)

where H(t) ∈ CNR×NT is the channel impulse re-
sponse matrix, x(t) ∈ CNT is the transmitted signal
vector, n(t) ∈ CNR is the noise vector, and “∗” de-
notes the convolution operator. Here, we take the
channel with one base station (BS) as an example,
and it is applicable for mmWave communication net-
works with multiple BSs.

In wireless communications, the electromag-
netic wave that carries the communication informa-
tion interacts with the propagation environment in
accordance with Maxwell’s equations. For exam-
ple, the received signal strength (RSS) is depen-
dent on the path-loss model, which roughly reflects
the distance between the receiver and the transmit-
ter. Given that RSS is easily obtained, this param-
eter has been widely used in localization methods
based on either trilateration or fingerprinting. How-
ever, the unstable fluctuating nature of RSS dete-
riorates the accuracy of localization. In particular,
RSS is affected by small-scale fading and body shad-
owing. Hence, we focus on the fine-grained infor-
mation provided by CSI, in which the CSI ampli-
tude and phase are affected by the displacements
and movements of the transmitter, receiver, and sur-
rounding scatterers. Therefore, the CSI can be used
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for not only communication but also localization via
mathematical modeling or machine learning (ML)
algorithms.

The multi-path time-varying channel impulse
response for a mmWave MIMO system is given as
follows (Bölcskei et al., 2006; Matz and Hlawatsch,
2011):

H(t) =

L∑

l=0

αlaR(θ
az
l , θel

l )a
T
T(φ

az
l , φel

l )δ(t− τl)e
j2πνlt,

(2)
where L is the total number of discrete propaga-
tion paths, αl, (θaz

l , θel
l ), (φaz

l , φel
l ), τl, and νl are

the complex attenuation factor, AoAs, AoDs, ToA,
and Doppler frequency associated with the lth path,
respectively, and aR(·) ∈ CNR and aT(·) ∈ CNT

are the steering vectors of the receive and trans-
mit antenna arrays, respectively (Molisch, 2005).
Time-frequency-spatial domain CSIs are provided
by mmWave communication systems, with orthog-
onal frequency-division multiplexing and orthogo-
nal time-frequency-space modulation. According to
Eq. (2), the multi-path information needed for local-
ization, e.g., AoAs, AoDs, ToAs, and Doppler fre-
quencies, can be effectively obtained by advanced
parameterized channel estimation algorithms (Ma-
mandipoor et al., 2016; Badiu et al., 2017; Han Y
et al., 2019a).

2.2 Enabling technologies

Various emerging technologies, such as ELAA,
RIS, and AI, are extensively discussed as promis-
ing technologies to boost mmWave communication
capabilities with high throughput, massive connec-
tivity, high reliability, and low latency. At the same
time, advanced enabling technologies are enhancing
the localization capability of mmWave communica-
tion systems.

2.2.1 ELAA techniques

ELAA techniques drive the antenna deployment
towards larger apertures and greater numbers than
those of commercial cellular systems, and this phe-
nomenon can boost spatial diversity and enhance
communication coverage. Moreover, as the antenna
dimension continues to increase, the user-equipment
and significant scatterers are likely to be located in
the near field of the array. Consequently, the spher-
ical wave phenomenon emerges. The inherent phase

shifts in the space caused by spherical waves provide
new opportunities for localization in ELAA systems
(Zhou Z et al., 2015; Hu et al., 2018).

2.2.2 RIS techniques

RIS consists of tunable unit cells and has re-
cently drawn significant attention because of its su-
perior capability in manipulating electromagnetic
waves. In particular, RIS-assisted wireless communi-
cations have great potential to significantly enhance
the performance and coverage in a cost-effective and
energy-efficient manner by the proper programming
of the reflection coefficients of the unit cells. There-
fore, RIS is promising in extending the wireless
communication range, facilitating NLoS communi-
cations, and providing low-cost cooperative localiza-
tion opportunities (He JG et al., 2020).

2.2.3 AI techniques

AI has received considerable attention because
of its promising learning ability in solving complex
problems, which can alleviate modeling issues. Deep
learning has been widely recognized as the current
representative general advance of AI and has shown
performance advantages in many aspects. State-of-
the-art computer vision techniques can be embed-
ded in the integrated mmWave communication and
localization systems by considering CSI matrices as
images. Learning methods based on hybrid data and
models have also emerged to reduce the training data
and enhance the robustness of the algorithm (Xu and
Sun, 2018; He HT et al., 2019).

The mentioned key technology enablers present
exciting new opportunities for the integration of
communication and localization in mmWave sys-
tems. This phenomenon brings challenges to the
traditional design principles. The introduction of
ELAA and RIS will invalidate traditional channel
models. New channel models are required to be
dynamic and consistent across frequencies, space,
and materials. Moreover, the use of thousands or
more active antenna elements will generate a pro-
hibitive cost in terms of hardware implementation,
energy consumption, and complexity of signal pro-
cessing. Subarray and beamspace hardware architec-
tures and the corresponding signal processing tech-
niques need further enhancement. Moreover, real-
time energy-efficient AI/ML techniques should be
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developed to achieve high-throughput communica-
tion and highly accurate localization with limited
data and in adaptive environments. To achieve high-
throughput and low-latency communication together
with centimeter-level localization accuracy, mutual
assistance and enhancement between communication
and localization in an integrated mmWave system
becomes essential.

3 Localization inmmWave communica-
tion systems

Localization in a mmWave communication sys-
tem aims to estimate the location, velocity, and ori-
entation of the user-equipment or agent nodes to-
gether with possible scatterers on the basis of a set
of wireless reference signals transmitted or received
by the BSs or anchor nodes. Deployment of local-
ization by reusing the infrastructure that is used
for mmWave communications is convenient and cost-
effective. This process recycles real-time CSI that is
already processed at the receiver in communication
systems, as shown in Fig. 1. For single-point localiza-
tion, no additional equipment is required. However,
for multi-point localization, a data fusion center is re-
quired to fuse the channel parameters obtained from
multiple BSs. Moreover, contrary to solutions based
on sensor, video, and wireless fidelity (WiFi), local-
ization in mmWave communication systems is not
intrusive or sensitive to lighting conditions. In addi-
tion, this process has unprecedented time-frequency-
spatial resolution. The high throughput offered by
mmWave communication links can be leveraged to
quickly and reliably share map and location infor-
mation among different devices. Localization tech-
niques can be categorized from various perspectives,
as summarized in Wen et al. (2019) and Xiao ZQ and
Zeng (2020), and popular classifications are listed as
follows:

1. Direct and indirect localization
Direct localization converts directly the received

waveform to estimate a location, avoiding the er-
ror propagation but involving a highly complex pro-
cess (Jeong et al., 2016; Garcia et al., 2017). By
contrast, indirect localization, which is more popu-
lar, applies the principle in which the channel pa-
rameters, such as RSS, AoA, ToA, time difference
of arrival (TDoA), FoA, and frequency difference
of arrival (FDoA), are first extracted from the re-

ceived waveform and grouped as functions of the
location parameters. Then different estimators are
used to determine the user positions (Ho and Xu,
2004; Einemo and So, 2015; Amiri R et al., 2017a,
2017b). However, the intermediate error carried by
the two-step method deteriorates the accuracy of
localization.

2. Uplink and downlink localization
Uplink localization is performed in the BS or at

the central unit (Han YJ et al., 2016; Yang J et al.,
2019; Zhao et al., 2020). This process is also named
network-based or cloud-based localization. All time-
consuming and complex computing operations are
performed in the BS or at the central unit, which
is appealing for resource-limited agent devices. The
locations of all agent nodes are shared by anchor
networks, which facilitate location-aware communi-
cations. However, the privacy and security of the
location are critical issues. Downlink localization,
also named device-based or edge-based localization
(Abu-Shaban et al., 2018; Shahmansoori et al., 2018;
Mendrzik et al., 2019), is executed on the agent
nodes, and this process has an inherent mechanism
to protect the privacy of users. However, the agent
nodes have high hardware requirements for accurate
localization.

3. Model-based and data-based localization
Model-based localization exploits the geometric

properties of the angle and range measurements to
locate the agent nodes (Amiri R et al., 2017a; Gar-
cia et al., 2017; Shahmansoori et al., 2018; Mendrzik
et al., 2019), e.g., multilateration and multiangu-
lation. A serious flaw of model-based localization
lies in the difficulty in accurately modeling complex
multi-path environments. Data-based localization
uses database matching methods or standard neural
network architectures to ease modeling issues (Wang
XY et al., 2015; Decurninge et al., 2018; Studer et al.,
2018; Rizk et al., 2019; Ferrand et al., 2020). This
process requires an offline training step to extract
unique geotagged signatures from the collected data
in the area of interest and an online localization
step to match online measurements against the pre-
recorded signatures in the database. The main limi-
tations are the high time-and-resource consumption
and the lack of theoretical guidance of the neural
network design.

In the following subsections, we provide two
promising research directions of localization in
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the mmWave communication systems, namely, the
new hardware architecture and the new algorithm
system.

3.1 Localization with ELAA

The radiation field of an antenna array is di-
vided into the near field and far field regions via
the Rayleigh distance (Kraus and Marhefka, 2002;
Molisch, 2005), which is given as R = 2D2/λ, where
D is the maximum dimension of the antenna array
and λ is the wavelength. When the distance between
the user (or scatterer) and the BS is smaller than the
Rayleigh distance, the user (or scatterer) is located
in the near field region, where the spherical wavefront
over the antenna array is observed. For example, a
uniform linear array (ULA) of 1 m that operates at
30 GHz corresponds to a Rayleigh distance of ap-
proximately 200 m and nullifies the uniform plane
wavefront model usually assumed in previous studies
on wireless communications. As the antenna dimen-
sion continues to increase, the range of the radiative
near field of the antenna array expands, and the user
and significant scatterers are likely to be located in
the near field of the array.

According to Friedlander (2019) and references
therein, the standard response model for a large ULA
with spherical wave is as follows:

as(φ, θ, d0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0
d1

e−j 2πλ (d1−d0)

d0
d2

e−j 2πλ (d2−d0)

...
d0
dm

e−j 2πλ (dm−d0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where φ and θ denote the azimuth and elevation an-
gles of the source with respect to the reference point,
respectively, d0 is the distance from the source to
the reference point, and di (i = 1, 2, . . . ,m) is the
distance from the source to the ith antenna. With
a fixed space between antennas, di (i = 1, 2, . . . ,m)

is determined by index i and parameters (φ, θ, d0).
Eq. (3) is compatible with conventional plane-wave
models. The underlying parametric model (3) al-
lows the characterization of a path with a new pa-
rameter, i.e., the distance between the source and
the reference point, in addition to the conventional
parameters characterizing a path under the plane-
wave assumption. Therefore, the near field effects

facilitate the exploitation of the wavefront curvature
to jointly estimate the range and direction of the
source. This process can improve the accuracy of
location and possibly remove the need for explicit
synchronization between reference anchors (Fig. 2).

Several studies have started to investigate the
localization potential with advanced large antenna
arrays to realize joint communication, control, and
localization in mmWave communication systems
(Yin et al., 2017; Dardari and Guidi, 2018; Hu et al.,
2018; Friedlander, 2019; Wymeersch, 2020). An al-
gorithm based on maximizing the space-alternating
generalized expectation to estimate the locations of
scatterers in the last hops of the propagation paths
was proposed in Yin et al. (2017), in which a large-
scale ULA was used in a receiver to measure the
channel. The advantages of near field in local-
ization and synchronization over the far field were
shown in Wymeersch (2020) from a Fisher infor-
mation perspective, where the Fisher information
provided from wavefront curvature was more pro-
nounced than that from the spatial wideband. Fried-
lander (2019) listed the limitations of the standard
array response model (3), which sometimes signifi-
cantly differs from the model based on the electro-
magnetic theory and does not consider the charac-
teristics of the near field source, such as the type and
orientation of the transmit antennas. These charac-
teristics may have a profound impact on the signals
received by the array. More accurate models are re-
quired when attempting to perform high-resolution
localization of closely spaced signals. In addition to
ULA and uniform planar array (UPA), the poten-
tial for positioning with a large intelligent surface or

u1 (Ф1, θ1, d1)

u2 (Ф2, θ2, d2)

x
y

z

x
y

z

Fig. 2 Localization with extremely large antenna
arrays
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RIS (Hu et al., 2018) and lens antenna array (Dar-
dari and Guidi, 2018) has been exploited. Hu et al.
(2018) derived the closed-form Fisher information
matrix and Cramér-Rao lower bounds to position a
terminal with and without the unknown phase φ pre-
sented in the analog circuits of the RIS. Dardari and
Guidi (2018) investigated the possibility of directly
positioning with a single large lens antenna array by
retrieving information from the wavefront curvature.

The use of thousands of active antenna ele-
ments, or more, in the ELAA systems will generate
prohibitive cost in terms of hardware implementa-
tion, energy consumption, and complexity of signal
processing (van der Perre et al., 2018). One effec-
tive solution to significantly reduce the complexity
of the system and the cost of implementation caused
by the large number of active antennas and users
is to partition the antenna array into a few disjoint
subarrays (Amiri A et al., 2018; Han Y et al., 2020;
Wang HQ et al., 2020). Another method is using
the energy-focusing property of an extremely large
lens antenna array denoted as “ExLens,” which can
fully use the aperture offered by large antenna ar-
rays (Yang J et al., 2021). The complexity of sig-
nal processing and cost of the radio frequency (RF)
chain could be significantly reduced without notable
degradation of performance in mmWave and mas-
sive MIMO systems by using lens antenna arrays
(Brady et al., 2013; Zeng and Zhang, 2016). Elec-
tromagnetic lenses can provide variable phase shift-
ing for electromagnetic rays at different points on
the lens aperture to achieve angle-dependent energy-
focusing property. Therefore, lens antenna arrays
can transform the signal from the antenna space to
the beamspace (the latter has lower dimensions) to
reduce RF chains significantly. Recent studies have
confirmed that the beamspace is one of the promis-
ing enablers for communication and localization in
mmWave communication systems (Latva-Aho and
Leppänen, 2019).

3.2 Localization with model-based neural
networks

To overcome the disadvantages of localization
methods based on pure data or model, a localiza-
tion method has been proposed based on hybrid data
and model, i.e., localization with model-based neu-
ral networks. With the proposed technique, a neural
network topology with theoretical localization foun-

dations can be designed, and the network structure
can be explained and predicted (Xu and Sun, 2018;
He HT et al., 2019). At present, the localization by
combining neural networks with geometric models is
rarely reported. The model-based neural network
approach obviously retains the advantages of the
model-based approach (determinacy and theoretical
soundness) and powerful learning ability of the data-
based approach. It also overcomes the difficulties in
accurate modeling and avoids the large requirement
for time and computing resources. Localization with
model-based neural networks comprises three parts,
namely, measurement model, localization algorithm,
and neural network (Fig. 3).

Measurement 
      model

Localization 
  algorithm

 Neural 
network Output

      CSI
      RSS
      AoA
ToA/TDoA
FoA/FDoA
       ...

     Geometrical
Database matching
   Dead-reckoning
              ...

      DNN
      CNN
      RNN
        ...

 Location
  Velocity
Clock bias
Orientation
        ...

Fig. 3 Localization with model-based neural networks
CSI: channel state information; RSS: received signal strength;
AoA: angle of arrival; ToA: time of arrival; TDoA: time dif-
ference of arrival; FoA: frequency of arrival; FDoA: frequency
difference of arrival; DNN: deep neural network; CNN: con-
volutional neural network; RNN: recurrent neural network

3.2.1 Measurement models

Measurement models are constructed based on
the domain knowledge in localization developed over
several decades of intense research, but these models
need only to provide a very rough and broad defi-
nition of the solution, thereby reducing the pressure
for accurate modeling. In particular, the localiza-
tion model can be established using the CSI matrix
(Liu et al., 2019; Ma et al., 2019), RSS (Sallouha
et al., 2017), AoA (Wang Y and Ho, 2015), ToA,
TDoA, FoA, and FDoA measurements (Ho and Xu,
2004; Dardari et al., 2009). Channel parameters re-
lated to RSS, AoA, ToA, TDoA, FoA, and FDoA
have an underlying geometric relationship with loca-
tion parameters. For example, for the LoS path, the
relationship is as follows:

τ0 =
||u− b||

vc
+ ω, (4)

where τ0 is the ToA of the LoS path, u is the location
of the user, b is the location of the BS, vc is the
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signal propagation speed, and ω is the unknown clock
bias between the BS and user. For the single-bounce
NLoS path, the relationship is as follows:

τl =
||u− sl||+ ||sl − b||

vc
+ ω, (5)

where τl is the ToA of the lth NLoS path and sl
is the location of the lth scatterer. The selection
of measurements is a trade-off between performance
and cost. RSS can be conveniently collected with-
out extra hardware. However, the localization ac-
curacy is low, because the parameters of the path-
loss model are unknown and fluctuate in complex
environments. Some measurements, such as AoA,
ToA, TDoA, FoA, and FDoA, can be used to achieve
high localization accuracy but require extra hard-
ware or modifications of nodes. The AoA requires
a large antenna array and advanced phase detec-
tion for accurate angular measurement. The ToA
needs precise timing among users and BSs. It is
also common to use hybrid measurements for bet-
ter localization performance. Moreover, data from
sensors, such as gyroscope, magnetometer, acceler-
ator, and map, can be fused with wireless signals
to enhance the resolution of localization. All mea-
surements suffer from deterministic and stochastic
measurement errors. The deterministic errors can
be calibrated by offline or online methods. The
stochastic errors should be modeled as stochastic
processes.

3.2.2 Localization algorithms

Localization algorithms are designed to solve
the localization problems based on the aforemen-
tioned model and domain knowledge. The localiza-
tion tasks are not trivial given that the relations are
nonlinear and nonconvex functions of u, u̇, sl, and
ṡl. The main localization algorithms are geometrical
algorithms, database matching, and dead-reckoning,
as summarized in Zekavat and Buehrer (2011), Wen
et al. (2019), Li et al. (2020), and Xiao ZQ and Zeng
(2020). The geometrical localization algorithms in-
clude multilateration (Dardari et al., 2009), multi-
angulation (Wang Y and Ho, 2015), and multiangu-
lateration (Amiri R et al., 2017b). These algorithms
involve mainly nonlinear and linear location estima-
tors. The nonlinear estimators directly solve the
problems by minimizing a cost function, such as non-
linear least squares, weighted nonlinear least squares,

and maximum likelihood estimators. These nonlin-
ear estimators usually have satisfactory localization
accuracy but are time-consuming if the grid or ran-
dom search is applied. By contrast, linear estima-
tors, such as linear least squares and weighted linear
least squares estimators, can approximate the non-
linear equations into a set of linear equations. Thus,
these estimators can find efficient solutions quickly
but with degraded localization accuracy compared
with nonlinear estimators. Database matching algo-
rithms use the measurements as fingerprints to find
the closest match, and these algorithms are suitable
for complex scenarios that are difficult to parameter-
ize (Niu et al., 2015; Guo et al., 2018). The geomet-
rical and database localization algorithms can be in-
tegrated to reduce the consumption of resources and
computational load, thereby achieving a robust per-
formance (Kodippili and Dias, 2010; Li et al., 2019).
Recent developments in deep learning have resulted
in its great potential for the integrated model-based
and data-based localization methods (Xu and Sun,
2018; He HT et al., 2019).

3.2.3 Neural networks

Neural networks are generally constructed by
unfolding an iterative algorithm to deep neural net-
works and replacing linear approximate operations
in the model by classic neural networks. In Yang
J et al. (2019), localization by neural network as-
sisted weighted linear least squares was established
by introducing neural networks into the developed
weighted linear least squares model to learn higher-
order error components. Thus, the performance of
the estimator has been improved, especially in a
highly noisy environment. Introducing learnable pa-
rameters is also a feasible mechanism. For exam-
ple, the parameters in the RSS model are uncertain
and closely coupled with the environment; therefore,
neural networks can be embedded to learn particu-
lar parameters. The environmental adaptability of
the algorithms can be improved by adding a small
amount of training data. Hence, the depth of the
neural networks is determined by the convergence
rate of the algorithm family. The parameter space
of the deep network is determined by the parameter
constraints. The topology of the deep network is de-
termined by the algorithms, and the deep network
can be trained by back-propagation. In addition,
unsupervised learning, reinforcement learning, and
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federated learning can be organically combined with
the localization models.

4 Location-assisted mmWave commu-
nications

The electromagnetic properties in the mmWave
frequency bands determine the high directionality of
mmWave communications. Therefore, the location
information (including velocity) is connected with
all aspects of mmWave communications, e.g., free
space path-loss, Doppler shift, channel quality, beam
directions, blockages, and interference levels. Tradi-
tional mmWave communications are totally based on
the estimated CSI, thereby requiring highly frequent
beam training and channel estimation processes to
overcome the large path-loss and high blockage prob-
ability experienced by mmWave signals, especially in
high-mobility scenarios. Motivated by the highly
accurate location information obtained by commu-
nication systems, the traditional CSI-based commu-
nication solutions can be turned into hybrid CSI-
and location-based solutions. The location infor-
mation can be harnessed to speed up and enhance
beam training and tracking processes, which im-
proves the CSI accuracy and reduces communication
overhead.

Some recent works have researched the assis-
tance of location in communications (di Taranto
et al., 2014; Garcia et al., 2016; Maschietti et al.,
2017; Muppirisetty et al., 2018; Rezaie et al., 2020).
A location-aided beamforming strategy was pro-

posed to speed up the channel estimation process
and achieve ultra-fast initial access between nodes
(Garcia et al., 2016). The approximate locations of
mobile devices were used to provide good estimates
of the channel statistics, and then pilot contamina-
tion avoidance schemes can be designed according to
the spatial separability (Muppirisetty et al., 2018).
Location-aided beam alignment methods exploit the
user location and prior knowledge of the propagation
environment to identify the beam directions that are
more likely to maximize the beamforming gain, al-
lowing for a reduction of the beam training overhead.
A robust beam alignment framework was proposed
to exhibit resilience with respect to the noisy spatial
information due to mobility and other imperfections
in the estimation process (Maschietti et al., 2017).
A deep neural network based beam selection method
was proposed by leveraging the position and orienta-
tion of the receiver to recommend a shortlist of the
best beam pairs, which is applicable to pedestrian
applications with arbitrary orientation of the user
handset (Rezaie et al., 2020).

Existing works focused mostly on channel esti-
mation and beam alignment. In the following sub-
sections, we will summarize the aspects of mmWave
communications which can be enhanced with loca-
tion assistance (Fig. 4).

4.1 Channel estimation

First, location information can be used to re-
fine the channel parameters, thereby improving the

Hybrid CSI- and location-based designs

Channel estimation
Location information 
    and partial CSI

CSI feedback
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Beam tracking

BS
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moving prediction
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  Direction
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Fig. 4 Location-assisted millimeter-wave communications

BS: base station; CSI: channel state information
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channel estimation performance. Moreover, al-
though small-scale fading decorrelates over very
short distances, the distance-dependent path-loss
and the obstacle-caused shadowing correspond to
the location of transceivers and obstacles. This phe-
nomenon implies that coarse CSI can be predicted
from the side information from the location and en-
vironment, and this prediction can be complemented
with instantaneous small-scale information, thereby
reducing communication overheads. The predicted
CSI can be considered as a prior distribution on the
channel quality for possible uses. The challenge is
the requirement of flexible CSI predictive engines,
which should be able to learn and adapt in different
radio propagation environments.

4.2 CSI feedback

Given that coarse CSI can be predicted from
the side information from the location and envi-
ronment, the CSI feedback mechanisms can also be
transformed from state-of-the-art mechanisms to the
location- and environment-aware adaptive feedback
mechanisms to reduce the feedback delay. Feedback
location information with some instantaneous chan-
nel information supplement can substantially reduce
feedback overhead without compromising the data
rate.

4.3 Beam tracking

Supporting ultra-fast and high-rate data ex-
changes among moving users and between users and
infrastructure can hardly be accomplished in tradi-
tional mmWave communications due to the unac-
ceptable overhead. By contrast, using spatial move-
ment coherence in combination with location and ve-
locity prediction, the coarse beam directions at the
next time slot can be predicted to greatly narrow
down the beam search area. In particular, the loca-
tion information can significantly speed up the beam
tracking process with a low overhead.

4.4 Synchronization

Synchronization can be aided through a priori
location information, which determines the potential
window to exploit the synchronization signals from
different BSs.

4.5 Interference control

The location of the transceivers also provides
useful information about the interference level to be
experienced at a specific location, time, and fre-
quency. Hence, the moving user can accordingly
adjust the transmission power, frequency, or beam
direction to reduce the interference from other users.
This process is very important in mmWave commu-
nication systems with densified and heterogeneous
wireless networks, in which the system performance
is largely constrained by the interference.

4.6 Resource allocation

The channel capacity and outage can be pre-
dicted using the spatial movement coherence in com-
bination with location and channel prediction. Tech-
niques for location-assisted resource allocation can
reduce overheads and delays beyond traditional time
scales due to their ability to predict channel quality.
The communication rate is adapted to not exceed the
predicted capacity, or extra spectrum resources can
be pre-allocated to support the unexpected surge of
communication traffic demand. Temporary BSs can
also be used to provide communication links in un-
favorable signal outage zones.

4.7 User selection

Location information is also beneficial in reduc-
ing the overhead associated with user selection mech-
anisms. The easiest way is allowing BSs to make
decisions based solely on the users’ locations. Fu-
ture trends will consider the terrains and layout of
blockages, enabling the users to avoid or escape from
unfavorable signal dead zones.

Location-awareness bears great promise to the
mmWave communication revolution in terms of re-
ducing delay and feedback overhead, improving link
reliability, and maintaining high-throughput com-
munications. To maximize the use of such side infor-
mation of locations, efforts are still needed in devel-
oping a data fusion mechanism to combine the pa-
rameters extracted from multiple BSs, synchroniza-
tion among mmWave networks, redesigning the com-
munication protocol by considering location informa-
tion, designing adaptive combination mechanisms to
complement the location information with instanta-
neous CSI, investigating the performance trade-offs
between mmWave localization and communication,
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constructing advanced protocols for information in-
teraction between localization and communication
layers, and forming a new frame structure to allo-
cate time-and-frequency resources for the localiza-
tion function.

5 Future trends

Current mmWave communication systems are
designed for wireless communications, not for local-
ization applications. Hence, high-throughput com-
munication and high-accuracy localization via the
integrated mmWave communication and localization
systems require additional studies.

5.1 Hardware impairments

At the mmWave frequency bands, risks of in-
creased phase noise and non-linearity of communica-
tion systems exist. These conditions could affect the
signal quality and result in channel estimation er-
rors and hence influence the functionality. Hardware
impairments should be considered in communication
and localization algorithm design. The uniqueness
of the hardware impairments of each device can also
be used for identification, thereby turning waste into
wealth.

5.2 Cross layers

The communication layer or localization layer
is currently studied separately. Novel waveform de-
signs should be devised to enable convergent commu-
nication and localization in mmWave systems, which
efficiently satisfy the trade-offs between the commu-
nications and localization requirements and share re-
sources in the time, frequency, and space domains.
Dynamic medium-access control protocols and radio
resource management algorithms will be needed to
allocate the radio resources according to the needs
of different communication and sensing services. A
high degree of information sharing and adaptive com-
bining mechanisms should be adopted among com-
munication and localization layers.

5.3 Cross devices

Single technology cannot currently meet the
requirements of ubiquitous communications, high-
resolution localization, and high energy efficiency of
future cellular networks while operating at a high fre-

quency range, under high mobility, with multiple tar-
gets, and amid cluttered communication scenarios.
Therefore, multi-domain information collected from
mmWave networks, sub-6 GHz networks, sensor net-
works, wireless local area networks (WLANs), satel-
lites, unmanned aerial vehicles (UAVs), and radar
systems should be integrated by the upgrade of data
fusion technology. Interference management and
cancellation techniques will be redesigned in such a
heterogeneous network, together with the large dif-
ference in transmission powers needed for reliable
communication and localization.

6 Conclusions

In summary, we reviewed the background on
and explored the motivation behind the integrated
communication and localization methodology in
mmWave communication systems. We explicitly
stated that the signal and channel models are the
basis of communication and provided the necessary
parameters and information for localization. We ex-
plained the enhancement of mmWave communica-
tion systems considering both communication and
localization in terms of several key enabling tech-
nologies, such as ELAA, RIS, and AI, together with
the forthcoming challenges. Then, we provided an
overview of the basic knowledge of localization and
proposed two concrete, feasible, and promising re-
search directions for localization in mmWave com-
munication systems. These directions include local-
ization with ELAA based on a new hardware ar-
chitecture and localization with model-based neural
networks based on a new algorithm system. We dis-
cussed location-assisted mmWave communications
by summarizing the opportunities in all aspects of
mmWave communications, including channel estima-
tion, CSI feedback, beam tracking, synchronization,
interference control, resource allocation, and user se-
lection. Finally, we concluded with the future trends
in the integration of communication and localization
in mmWave systems in the context of hardware im-
pairments, system designs, and algorithm updates,
for cross communication and localization layers and
various devices in heterogeneous networks.
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