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A combination weighting model based on iMOEA/D-DE*
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Abstract: This paper proposes a combination weighting (CW) model based on iMOEA/D-DE (i.e., improved multiobjective
evolutionary algorithm based on decomposition with differential evolution) with the aim to accurately compute the weight of
evaluation methods. Multi-expert weight considers only subjective weights, leading to poor objectivity. To overcome this shortcoming,
a multiobjective optimization model of CW based on improved game theory is proposed while considering the uncertainty of
combination coefficients. An improved mutation operator is introduced to improve the convergence speed, and thus better
optimization results are obtained. Meanwhile, an adaptive mutation constant and crossover probability constant with self-learning
ability are proposed to improve the robustness of MOEA/D-DE. Since the existing weight evaluation approaches cannot evaluate
weights separately, a new weight evaluation approach based on relative entropy is presented. Taking the evaluation method
of integrated navigation systems as an example, certain experiments are carried out. It is proved that the proposed algorithm
is effective and has excellent performance.
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1 Introduction

The shortcomings of traditional testing methods,
i.e., sometimes testing is impossible to carry out and
the subjective indices cannot be evaluated, can be
overcome by the evaluation method applied to inte‐
grated navigation systems. Therefore, this field has
attracted increasing attention from scholars (Wang XL
et al., 2017). The evaluation results can discern the
differences between various systems, thereby provid‐
ing technical support for decision makers and offer‐
ing guidance for system optimization. The integrated

navigation system contains a lot of indices with dif‐
ferent attributes and multi-level characteristics. Indi‐
ces with complex features put forward higher require‐
ments for evaluation methods. The means to widen
the application of the evaluation method to an inte‐
grated navigation system requires further studies.

Combination weighting (CW) is one of the key
tools of evaluation methods, and the accuracy of CW
directly affects the evaluation result. Scholars have
carried out a lot of research on CW, and the solutions
include mainly the direct approach (Jiao et al., 2016;
Cheng et al., 2019a; Zhu et al., 2019; Lv et al., 2020;
Pan et al., 2020), single objective model approach
(Xu and Cai, 2012; Liu and Hu, 2015; Dai and Niu,
2017; Zhou RX et al., 2017; Zhang ZC and Chen,
2018), multiobjective model approach (Shi et al.,
2012; Yin et al., 2016; Cheng et al., 2019b), and CW
approach based on game theory (GT) (Lai et al.,
2015; Sun LJ et al., 2016; Li AH, 2017; Yang et al.,
2018; Dong et al., 2020).
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In previous studies, the improved analytic hier‐
archy process (AHP) was employed to compute the
subjective weight (SW), the enhanced entropy method
(EM) was used to compute the objective weight (OW),
and the weighted sum approach (WSA) was applied
to establish the CW model. The combination coeffi‐
cients (CCs) were set according to the preference of
decision makers (Pan et al., 2020). SW was computed
by AHP, the correlation method was used to compute
the OW, and two different weights were combined
by the WSA. CCs were determined by the variation
coefficient of each weight based on AHP (Lv et al.,
2020). Generally, SW and OW were computed by
AHP and EM, respectively. WSA was used to com‐
bine different weights, and the difference between
various methods is in the solutions of CC (Jiao et al.,
2016; Cheng et al., 2019a; Zhu et al., 2019). The in‐
fluence of CC on evaluation results was analyzed,
and CCs were selected by subsequent results (Jiao
et al., 2016). CCs were directly set in some studies
(Cheng et al., 2019a; Zhu et al., 2019). In the above
literature, WSA was employed to establish the CW
model based on SW and OW. The solutions of CCs
are simple and have low precision.

The direct approach has poor accuracy, and there‐
fore the single objective model approach was proposed
to solve the problem. To reflect the consistency of
subjective and objective information, where SW was
obtained by matter-element analysis and OW was ac‐
quired by EM, a single objective model was present‐
ed by combining index values with weights, and
CCs were obtained by solving the model (Dai and
Niu, 2017). In a different approach, SW was comput‐
ed by AHP, and OW was computed by the rough
EM. A single objective model was established based
on the minimum deviation, and CCs were computed
by the cooperative game method (Zhang ZC and
Chen, 2018). Alternatively, OW was obtained by the
rough set method, and SW was derived by AHP.
Combined with the scheme value, a linear objective
model was proposed based on the principle of maxi‐
mizing variance. Therein, CCs were computed by
the Lagrange multiplier method (LMM) (Liu and
Hu, 2015). For the multi-expert weight, the weight‐
ed arithmetic average operator was used to trans‐
form weights into CW. From the perspective of mini‐
mizing group disharmony, a nonlinear optimization

model based on deviation function was established,
and the model was computed by the genetic algo‐
rithm (Xu and Cai, 2012). In a further study, SW and
OW were obtained by fuzzy AHP and the projection
pursuit method, respectively. The single objective model
was established based on the principle of the mini‐
mum relative entropy, and the model was computed by
LMM (Zhou RX et al., 2017). The above literature
shows that the single objective model approach must
use the index values, and that the model is most com‐
monly computed by LMM. The accuracy of the index
depends on the dimensionless method. So, the accu‐
racy of the single objective model approach is low, and
it is not suitable for the complex optimization model.

A double-objective model of CW was subse‐
quently proposed, which was transformed into a single-
objective optimization model by WSA. LMM was
employed to compute CCs (Yin et al., 2016). Consid‐
ering the randomness of the weight itself and the con‐
sistency between weight vectors, a nonlinear multi‑
objective model of CW was also established. The
model was transformed into a single objective model
by WSA. An improved particle swarm optimization
(PSO) algorithm was proposed to compute CCs (Shi
et al., 2012). A different multiobjective model was es‐
tablished by expert weights, and the model was based
on the uncertainty of CCs and the consistency of
weights. WSA was used to transform the model into a
single objective model, and the modified differential
evolution (DE) algorithm was applied to compute CCs
(Cheng et al., 2019b). When the multiobjective model
is transformed into a single-objective model, it is diffi‐
cult to obtain model coefficients accurately. This is a
shortcoming of the multiobjective model approach. In
comparison with the single-objective model, the multi‐
objective model of CW can express the relationship
between different weights in a comprehensive way.

The CW model based on GT was further estab‐
lished, and the condition of the optimal first order was
used to compute CCs based on the differential prop‐
erty of matrix (Lai et al., 2015). Furthermore, fuzzy
AHP and EM were used to compute SW and OW
respectively, and the CW model was established
based on GT. Therein, CCs were computed by the dif‐
ferential property of matrix (Sun LJ et al., 2016). In
another model, SW and OW were computed by AHP
and EM, respectively. Two weights were combined
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into CW based on GT, and CCs were computed based
on the differential property of matrix (Yang et al.,
2018). Aiming at the problem that traditional CW
based on GT may obtain negative weights, an im‐
proved combination weighting method based on GT
(ICWGT) was proposed, where CCs were computed
by LMM (Li AH, 2017). Dong et al. (2020) obtained
CW by the idea of GT, which was combined with
SW and OW. SW was obtained by interval AHP, and
OW was acquired by information entropy. The condi‐
tion of the optimal first order was used to compute
CCs. The above studies demonstrated that the GT-
based CW approach is a new idea in CW, which is
essentially a single-objective model approach. Based
on the above literature, it is clear that the uncertainty
of CCs in a CW model should be considered.

In the past decades, many intelligent algorithms
have been applied to multiobjective optimization
problems. Many scholars have focused on intelligent
algorithms for a multiobjective optimization model
of CW (Shi et al., 2012; Cheng et al., 2019b). The
multiobjective optimization problem was transformed
into several scalar optimization subproblems. The sub‐
problems were optimized at the same time, which
could generate a highly uniform distribution of solu‐
tions. This method was named multiobjective evolu‐
tionary algorithm based on decomposition (MOEA/D)
(Zhang QF and Li, 2007). Li H and Zhang (2009)
proposed the further developed MOEA/D-DE, a com‐
bination of MOEA/D and DE algorithm, which has
the ability to deal with the complex Pareto front
(PF). Simulation results showed that this new algo‐
rithm is better than MOEA/D. The MOEA/D and DE
algorithm subsequently became the most popular of
these new intelligent algorithms.

When a multiobjective optimization model is
nonlinear and contains an equality constraint, the
convergence of the DE algorithm is insufficient. Das
and Suganthan (2011) reviewed the basic concepts of
discrete evolutionary algorithm and presented its appli‐
cations for multiobjective, constrained, large-scale,
and uncertain optimization problems. Ye et al. (2013)
summarized existing problems of the DE algorithm,
and reported the main issue that it is necessary to
choose suitable parameters to ensure the success of the
algorithm. Al-Dabbagh et al. (2018) pointed out that
the performance of the DE algorithm dependeds on

the control parameters which determine the solution
quality and search efficiency. Current studies have
focused on how to optimize the control parameters.
Zhang CM et al. (2014), for example, proposed an
adaptive adjustment strategy of F and CR, where F
represents the mutation control parameter and CR
represents the crossover control parameter, and the
parameters were obtained adaptively by the fitness
value. Moreover, Fan and Yan (2016) presented an
adaptive DE algorithm, which was used to control the
partition evolution of parameters and the adaptive
mutation strategy. The mutation strategy was auto‐
matically adjusted with the population evolution, and
parameters were evolved in their own partition to find
the near-optimal value adaptively. Li YZ et al. (2020)
presented an improved DE algorithm based on a dual
mutation strategy to reduce the influence of the muta‐
tion strategy and parameter selection on the DE algo‐
rithm. Wu et al. (2013) introduced both an improved
mutation operator and a parameter adaptive strate‐
gy in the DE algorithm. Ding et al. (2020) described
an adaptive strategy that can adaptively select the dif‐
ferential mutation operator with the population evolu‐
tion. In the above literature, the latest achievements
in MOEA/D and DE algorithm were summarized. The
CW model with nonlinear characteristics contains an
equality constraint, which puts forward higher require‐
ments for the robustness of intelligent algorithms.

The solutions of CW were systematically desc‑
ribed in the literature, and their advantages and disad‐
vantages were subsequently analyzed. Each of them
may provide a new idea for solving the multiobjec‐
tive optimization problem of CW. The purpose of
this paper is to propose a multiobjective optimization
model of CW based on improved MOEA/D with dif‐
ferential evolution (iMOEA/D-DE). First, a multi‑
objective optimization model of CW based on improved
GT is developed to overcome the poor objectivity
of the multi-expert weight. Second, due to the CW
model being nonlinear and containing an equality
constraint, MOEA/D-DE has the disadvantage of
poor convergence. Therefore, inspired by Wu et al.
(2013), an improved mutation operator is intro‐
duced, and a new adaptive mutation constant and
crossover probability constant are proposed. Finally,
a new weight evaluation approach is presented to
evaluate CW.
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2 Multiobjective optimization model of CW

Cheng et al. (2019b) proposed a multiobjective
optimization model of the multi-expert weight, which
is based on the uncertainty of CCs and the weight
consistency. The multi-expert weight was composed

of expert weights, and had poor objectivity. A double-

objective constrained optimization model was devel‐

oped to overcome these drawbacks, and an improved
adaptive penalty function was described to handle

the constrained problem, but the penalty coefficient
was difficult to obtain accurately (Cheng et al., 2021).

In this paper, an improved GT is introduced and a

new multiobjective model of CW is proposed to

address this limitation. The equality constraint included

in the CW model makes the solution more complex,

and thus the multiobjective optimization method is
introduced to deal with this constraint.

2.1 Multiobjective optimization model

2.1.1 CW model based on improved GT

The CW model based on GT aims to seek a bal‐

ance between the weights of different weight methods,
so as to minimize the deviation between CW and each

weight. Suppose that n weighting methods are used
to compute the weight value. A weighting method con‐
tains the SW method (Cheng et al., 2019a) and the

OW method (Dai and Niu, 2017). Each weight is wi=

(wi1, wi2, …, wim), i=1, 2, …, n, and m is the number
of indices. Let CCs of CW be k1, k2, …, kn. Then CW

can be obtained by WSA:

W = w1 k1 + w2 k2 + … + wn kn =∑
i = 1

n

w i ki , (1)

where ki≥0 and∑
i = 1

n

ki = 1.

To minimize the deviation between CW and each
weight, the CW model based on GT is established:

min





 




∑
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n
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2

, j = 1, 2,…, n, (2)

where ||·||2 is the 2-norm of a matrix.

According to the differential property of the ma‐
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A set of solutions {k1, k2,…, kn} can be obtained by

solving Eq. (3). After normalization, k *
i = ki ∑i = 1

n ki

can be obtained. Subsequently, CW is

W * =∑
i = 1

n

w i k
*
i . (4)

CW depends on Eq. (4), while the result of this
formula depends on Eq. (3). Therein, negative results
may be obtained, resulting in a negative weight. There‐
fore, a CW model based on improved GT is intro‐
duced (Li AH, 2017). The new CW model is

f1 ( k ) = min
k1, k2,…, kn

∑
i = 1

n |

|

|
||
||

|

|
||
|∑

j = 1

n

kjw iw
T
j − w iw

T
i , (5)

where |·| is the absolute value and k=(k1, k2,…, kn).
The constraint of Eq. (5) is

∑
i = 1

n

ki = 1, (6)

where n indicates the number of weights.

2.1.2 Uncertainty of CW

Based on mathematical statistics, the real weight
value of each index is a random value. The weight
values of different weighting methods are sample
values of the true weight. Different weighting methods
bring uncertainty to CW. The Shannon information
entropy is usually used to describe this uncertainty
(Shi et al., 2012). The uncertainty of CW is (Cheng
et al., 2019b)

max f2 ( k ) = −∑
i = 1

n

ki ln ki . (7)

Since 0≤ki≤1 and the objective function f2 con‐
tains “ln” function, the minimum value of CC cannot
be taken as 0, but is assumed to be 0.01. The con‐
straint of the uncertain model is the same as in Eq. (6),
but the value range of ki becomes 0.01≤ki≤1.
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2.1.3 A new multiobjective optimization model of
CW

Considering that CW is based on improved GT
and the uncertainty of CW, the multiobjective optimi‐
zation model of CW is proposed as

min F ( k ) = ( )f1 ( k ) , f2 ( k ) , (8)

∑
i = 1

n

ki = 1, (9)

where F(k) is the objective function.
Eq. (7) is a maximum optimization model, while

model (5) is a minimum optimization model. Two mod‐
els with different characteristics cannot be linked
together to form a multiobjective optimization model.
Hence, model (7) is converted into a minimum model.
Next, it is combined with Eq. (5) to obtain Eq. (8).
Eq. (9) is the common constraint of f1 and f2, and the
value range of ki is 0.01≤ki≤1.

2.2 CW based on the multiobjective optimization
method

The constraints in the multiobjective optimiza‐
tion model make the solving process rather difficult.
Wang Y et al. (2009) summarized the progress of
constraint processing technology in the optimization
model. Among the solutions, the multiobjective opti‐
mization method transforms the constraint into objec‐
tive functions, and these functions are treated as dif‐
ferent objective functions, which can overcome the
drawback of difficulty to accurately obtain the pen‐
alty coefficient. In this study, the multiobjective opti‐
mization method is used to deal with the constraint.

The CW model contains an equality constraint,
which is usually transformed into an inequality con‐
straint (Wang Y et al., 2009):

|

|
|
||
|∑

i = 1

n

ki − 1
|

|
|
||
| − δ ≤ 0, (10)

where δ is a tolerance value of equality constraint,
and is generally a small positive number of 0.001 or
0.0001. In general, the degree to which the CC violates
the equality constraint can be expressed as

f3( )k = max
ì
í
î

|

|
|
||
|∑

i = 1

n

ki − 1
|

|
|
||
| − δ, 0

ü
ý
þ

, (11)

where f3(k) is the infeasibility degree of k. Through
combining Eq. (11) with Eq. (8), the multiobjective
optimization method is used to transform them into a
multiobjective optimization model with three objec‐
tive functions. Therefore, the three-objective optimi‐
zation model of CW is formulated as

ì
í
î

ïï
ïï

min F ( k ) = ( )f1 ( k ) , f2 ( k ) ,

max f3 ( k ) ,
(12)

where k =(k1, k2, … , kn), and f3 is called the feasible
solution.

3 CW model based on iMOEA/D-DE

In Section 2, the multiobjective optimization model
of CW is presented. The CW model is nonlinear and
contains an equality constraint, which makes it difficult
to be solved. The MOEA/D-DE (Li H and Zhang,
2009), an improved algorithm of MOEA/D, is capable
of dealing with the problem with complex PF. The CW
model puts forward a higher requirement for the dis‐
tribution and convergence of the MOEA/D-DE algo‐
rithm, and thus an iMOEA/D-DE algorithm is proposed.

3.1 iMOEA/D-DE

3.1.1 Classical MOEA/D-DE

The main idea of MOEA/D is to break down the
multiobjective optimization model into several scalar
subproblems, and use their neighborhood information
problems to optimize all subproblems simultaneously.
The DE operator and polynomial mutation operator
are used to generate new solutions. The important for‐
mulas of MOEA/D-DE are as follows:

1. Use the Tchebycheff approach to aggregate
function values, which are obtained by decomposition
operation:

min g te ( |k λ, z* ) = max
1 ≤ i ≤ m

{| fi ( k ) − z *
i | λ i} , (13)

where z* is the reference point, z *
i = min{ }fi ( k ) , the

weight vector satisfies λ=(λ1, λ2, …, λm), λi≥0, and m=3
represents the number of objective functions.

2. Determine the renewal range and produce new
individuals:
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P =
ì
í
î

B ( i ) , rand < δ1,

{ }1, 2,…, N , otherwise,
(14)

where δ1 denotes the probability that parent solutions
are selected from the neighborhood, rand is a random
mumber within [0, 1], N is the population size, and
B(i)={i1, i2, …, iT}, and, λi1, λi2,…, λiT are the nearest T
vectors of λi.

The DE operator and polynomial mutation oper‐
ator are used to generate new individuals:

ȳk =
ì
í
î

ïï

ïï

xr1

k + F × ( )xr2

k − xr3

k , for probability CR,

xr1

k , for probability 1 − CR,

(15)

yk =
ì
í
î

ïï
ïï

ȳk + σk × ( )bk − ak , for probability pm,

ȳk , for probability 1 − pm,

(16)

σk =

ì

í

î

ïïïï

ïïïï

( )2 × rand
1

η + 1 − 1, rand < 0.5,

1 − ( )2 − 2 × rand
1

η + 1 , otherwise.

(17)

In Eq. (15), CR denotes the crossover probability
with a value range of 0–1, and F is a scalar number
with a value range of 0‒1. Let r1=i, randomly select
r2 and r3 from P, and use the DE operator to generate
ȳ ; ȳk is the kth element in ȳ. Three individuals x r1, x r2,

and x r3 are selected from their parents; xi
k is the kth ele‐

ment of xi. In Eqs. (16) and (17), pm is the mutation
rate, η stands for the distribution index, and ak and bk

are the lower and upper bounds of the kth decision
variable, respectively.

3.1.2 Improved mutation operation

The DE/rand/1 operator is used in the differen‐
tial mutation stage of MOEA/D-DE (Li YZ et al.,
2020), in which the operator is beneficial to global
search, but not conducive to improving the conver‐
gence rate of the algorithm. Various operators have
different characteristics and are suitable for differ‐
ent problems. In the CW model, the existence of
equality constraint leads to a very small proportion
of the feasible region in the search space and a
large degree of dispersion, and the constraint re‐
quires the operator to have a better global and con‐
vergence rate. Therefore, the improved mutation

operation is introduced in the differential mutation
stage (Wu et al., 2013).

Based on the DE/rand/1 operator, the idea of im‐
proved mutation operation is to sort three individuals
by their fitness values, which are randomly selected
from their parents. Assume that the order is xa, G, xb, G,
and xc, G. Taking the optimal xa, G as the mutation refer‐
ence vector and the difference between the suboptimal
and the worst individual (xb, G−xc, G) as the difference
vector, the improved mutation operation is obtained
as follows:

V i, G + 1 = xa, G + F ( )xb, G − xc, G . (18)

It is known that the improved mutation opera‐
tion takes xb, G−xc, G as the difference vector, which is
beneficial to improve the convergence rate. Hence,
Eq. (15) can be updated to

ȳk =
ì
í
î

ïï
ïï

xa
k + F × ( )xb

k − xc
k , for probability CR,

xr1

k , for probability 1 − CR.

(19)

3.1.3 Adaptive strategy with self-learning ability

In MOEA/D-DE, F and CR are both constant
values in the DE operator, and remain the same during
the evolution process. They have an important impact
on the performance of the algorithm, and parameter
selection is usually associated with the problem. The
CW model with the equality constraint is nonlinear,
which makes the model more difficult to be solved,
and the constant values of F and CR are hard to adapt.
Taking the adaptive idea from the literature (Wu et al.,
2013), a new adaptive strategy is proposed. According
to the state of population evolution, an adaptive strat‐
egy with self-learning ability is formulated, which is
independent of the optimization problem. As shown in
Fig. 1, F and CR are coded simultaneously with the
individuals. In each generation, xi, G has a correspond‐
ing Fi, G and CRi, G value. The initial values of F and
CR are randomly selected within the scope of their
respective values. In the process of evolution, if a
better individual cannot be produced in five genera‐
tions, it indicates that the relevant parameters are not
suitable and need to be reset. If one or more better
individuals are produced within five generations, the
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relevant parameters should be retained. The parameter
with the most reserved times is the most appropriate
parameter. Obviously, inappropriate parameters are
constantly reset, and the ultimate goal is the most appro‑
priate parameter that is consistent with the basic idea
of the evolutionary algorithm.

Based on the above idea, a parameter adaptive
strategy with self-learning ability is proposed:

Fi, G + 1 =
ì
í
î

Fmax − rand × ( Fmax − Fmin ), c = 0,

Fi, G, otherwise,
(20)

CR i, G + 1 =
ì
í
î

CRmin + rand × (CRmax − CRmin ), c = 0,

CR i, G, otherwise,

(21)

where c represents the number of optimal individuals
generated in the five generations, Fmax and Fmin are the
maximum and minimum values of F respectively, and
CRmax and CRmin are the maximum and minimum values
of CR respectively.

In the CW model, the existence of equality con‐
straint makes the feasible region more discrete, which
requires better diversity in the initial stage of evolu‐
tion. With regards to F, to maintain the diversity of
individuals, F is required to decrease from Fmax. As
the algorithm iterates, F is required to decrease to
avoid damage to the optimal solution to retain valu‐
able information. The decrease amplitude is the value
of Fmax−Fmin.

The value of CR determines whether the muta‐
tion vector or the target vector is used in the cross‐
over operation (Zhang CM et al., 2014). When a better
individual is produced, the test vector should take the
variation vector with a greater probability; thus CR
should be taken at a larger value. On the contrary, if
the test vector takes the target vector with higher

probability, CR should take a smaller value. In the
early evolution, the feasible solutions are widely dis‐
tributed and there are bad individuals, and hence CR
should be taken at a smaller value. Therefore, CR
increases gradually from CRmin, and the decrease
amplitude is the value of CRmax−CRmin.

In the process of evolution, if a better individual
cannot be produced within five generations, then c is
equal to 0 and a new F is produced using rand until a
better individual is produced. As the algorithm iter‐
ates, F and CR are gradually changed towards the best
solution. The complexity of the CW model makes F
and CR change dynamically. Thus, F and CR have
self-learning ability.

3.1.4 Flow of iMOEA/D-DE

The MOEA/D-DE is combined with improved
mutation operation and the adaptive strategy with
self-learning ability to obtain the iMOEA/D-DE
algorithm.

Step 1: The population size is N, the number of
neighborhood weight vectors of each weight vector
is T, the probability of selecting parent individuals
from neighborhood is δ1, the child solution number
replaced is nr, and the maximum number of iterations
is Gmax.

Step 1.1: For i=1, 2, …, N, set B(i)={i1, i2, …, iT},

where λi1, λi2,…, λiT are the nearest T weight vectors
of λi.

Step 1.2: Generate the initial population P with
scale N randomly, assuming that FVi=F(xi). The ini‐
tialization reference point is z=(z1, z2, … , zm), where
m is the number of objective functions.

Step 2: According to Eq. (14), select the update
matching/updating range.

Step 2.1: Suppose that r1=i and that two indices
r2 and r3 are randomly selected from P. Three individ‐
uals are then sorted by gte to obtain the variation
reference and difference vectors.

Step 2.2: Judge whether the new optimal indi‐
viduals are generated within the five generations, that
is, whether the parameter c is greater than zero. F and
CR are adaptively adjusted by Eqs. (20) and (21),
respectively. If c is greater than zero, it is assigned
zero value. According to DE and the polynomial muta‐
tion operator, a new solution y is generated by param‐
eter pm.

x1,G

... ... ...

x2,G

xN,G

F1,G

F2,G

FN,G

CR1,G

CR2,G

CRN,G

Fig. 1 Adaptive coding format
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Step 2.3: Judge y, and if it exceeds the feasible
region, it will be randomly selected in the feasible
region. If zj > fi( y), set zj=fi( y), j=1, 2, …, m.

Step 2.4: Suppose that ca=0.
(1) If ca=nr or P is an empty set, then turn to

step 3; otherwise, randomly select index j from P;
(2) If gte( )y|λj, z ≤ gte( )x j|λj, z is satisfied, then

FVj=F( )x j , ca=ca+1, and c=c+1;
(3) Remove j from P and proceed to step 1.
Step 3: Judge whether the program termination

condition is met; if it is not, go to step 2.
Step 4: Output the objective function value and

the optimal solution set.

3.2 A new weight evaluation approach

To evaluate the rationality of the CW model, the
weight evaluation approach must be used. Existing
weight evaluation approaches, however, have some
drawbacks: (1) Using the weight value and the index
value to compute the deviation function, the result is
affected by the accuracy of the index conversion
method (Shi et al., 2012); (2) The weight evaluation
approach and scheme ranking are linked together
(Song and Yang, 2004), which is not applicable to the
problem with the weight only. Hence, it is necessary
to propose a new weight evaluation approach for CW.

CW combines SW and OW. When CW is obtai‑
ned, CW and each weight are independent, and can be
regarded as independent discrete distributions. From
the perspective of CW and each weight, the deviation
between two distributions should not be too large
and should tend to be consistent; the relative entropy
can represent the deviation between two distributions.
Definition 1 (Zhou YF and Wei, 2006) Assuming

that xi≥0, yi≥0 (i=1, 2, …, n), ∑i = 1

n xi = 1, and∑i = 1

n yi=1, then h ( x, y ) =∑i = 1

n xi loga ( xi /yi ) is

called the relative entropy of x relative to y, where x=
(x1, x2, …, xn) and y=(y1, y2, …, yn). Its main properties
are as follows:

(1)∑i = 1

n xi loga ( xi /yi ) ≥ 0 ;

(2) The necessary and sufficient condition of∑i = 1

n xi loga ( xi /yi ) = 0 is that xi=yi for all i.

Based on the above properties, when x and y are
two discrete distributions, the relative entropy can be
used as a measure of their coincidence. The weight eva‑
luation measure of CW can then be obtained as follows:

D (w ) =∑
i = 1

m ( )∑
j = 1

n

W j ln ( )W j

w i
j

, (22)

where W=(W1, W2, … , Wn) is the CW vector and w=
(w1, w2, … , wm) is the weight vector, and the relation‐
ship between W and w is discussed in Eq. (1). The
smaller the relative entropy, the smaller the differ‐
ence between CW and each weight.

4 Results and discussion

Experiments are carried out to verify the effec‐
tiveness of the proposed approach. First, to verify the
performance of iMOEA/D-DE, two kinds of test
instances are used for comparison with MOEA/D-DE
(Li H and Zhang, 2009). Second, to verify the perfor‐
mance of the proposed algorithm in the CW model,
the iMOEA/D-DE is compared with MOEA/D (Zhang
QF and Li, 2007), MOEA/D-DE, and NSGA-II (Deb
et al., 2002). Finally, the weight evaluation approach
is verified in the CW model.

4.1 Test instance experiments

In this study, two kinds of test instances with
different properties are selected by the characteris‐
tics of CW, where the number of the objective func‐
tions is 2 and 3, separately. The first is a two-objective
test instance ZDT (Zhang QF and Li, 2007) and the
second group is a three-objective test instance DTLZ
(Zhang QF and Li, 2007), which are used to test the PF.

The MOEA/D-DE is compared with the iMOEA/
D-DE. To ensure the comparability of test results, the
same parameters are set in both algorithms, and readers
can refer to Li H and Zhang (2009) for parameter
selection. The parameters are set as follows: the value
range of F is [0, 1], and its initial value is set to 0.5;
the value range of CR is [0, 1], and its initial value is
set to 0.5; the distribution index of η is 20; the poly‐
nomial variation rate pm is 1/n (n is the number of
decision variables); the number of neighborhoods T is
0.1N; the probability of selecting parents from neigh‐
borhood δ is 0.9; the child solution number replaced
nr is 2; the population size of ZDT is 100; the popula‐
tion size of DTLZ is 300.

To evaluate the distribution and convergence
of the algorithm, the inverted generational distance
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(IGD) (Ishibuchi et al., 2018; Sun YN et al., 2019)
is introduced. The smaller the IGD, the better the
distribution and convergence of the PF. IGD requi‑
res the target object to obtain real PF. Two kinds of
test instances meet the requirements, and IGD is as
follows:

IGD =
∑

p ∈ p*
dist ( p, PF )

|| p*
, (23)

where p* is a set of reference points for IGD, PF indi‐
cates the nondominated solutions generated by the al‐
gorithm, and dist(p, PF) is the nearest distance from
p to PF.

Table 1 lists the results of the two algorithms in
ZDT and DTLZ. MOP is the multiobjective optimiza‐
tion problem. Each test instance runs 20 times to com‐
pute the mean value, standard deviation (STD), and the
minimum value (min) of IGD. The bold font indicates
that the values represent excellent performances. The
iMOEA/D-DE is better than the MOEA/D-DE with
respect to the standard deviation of IGD, and the per‐
formances of these two algorithms are equivalent to the
minimum value of IGD. However, iMOEA/D-DE is
worse than MOEA/D-DE in the mean value of IGD,
because the middle point of iMOEA/D-DE for the
mean value of IGD is smaller than that of MOEA/
D-DE. Hence, the performances of these two algorithms

are similar, indicating that the iMOEA/D-DE algorithm
is effective.

4.2 CW model experiments

For the integrated navigation system, OW de‐
pends on the simulation data. Taking the accuracy in‐
dex in the index layer in the literature (Cheng et al.,
2019b) as an example, the weights of the first three
experts are (0.3, 0.2, 0.5), (0.2, 0.3, 0.5), and (0.2,
0.4, 0.4). According to the simulation results of the
integrated navigation system in Table 2, the objective
weights are (0.3148, 0.3431, 0.3421) by EM (Jiao
et al., 2016). OW and SW are substituted into Eq. (12)
to obtain the three-objective optimization model of the
CW. To verify the effectiveness of iMOEA/D-DE in
the CW model, it is compared with MOEA/D, MOEA/
D-DE, and NSGA-II. The parameters of the four
algorithms refer to the parameters in Section 4.1 and
the parameters in each reference.

Since the multiobjective model of CW is unable
to obtain real PF, IGD cannot be used to measure the
performance of the algorithm. The hyper-volume
(HV) (Tian et al., 2016; Cai et al., 2021) is used to
measure the distribution and convergence of the algo‐
rithm, and is described as

HV ( P, r )

= Volume ( )∪
F ∈P

[ f1, r1 ]×[ f2, r2 ]×⋯ ×[ fm, rm ] ,

(24)

where P is the optimal solution set, and the reference
point is r= (r1, r2,… , rm). HV is designed to find an
area sum or volume sum of optimal solution relative
to the reference point. MOEA/D is used to plot the
figure of the CW. According to the CW distribution
in Fig. 2, the reference point is set as r=(0, 1.3, 0.5).
The larger the HV, the better the distribution and con‐
vergence of the algorithm.

Table 2 Results of the integrated navigation system

System

System 1
System 2
System 3
System 4
System 5

Pitch angle
(′)

0.3479
1.6524
1.0547
0.3479
1.6732

Roll angle
(′)

0.3441
1.6995
1.0349
0.3441
1.7034

Azimuth
angle (′)

7.5550
21.4081
34.5051

7.5539
34.5672

Speed accuracy (m/s)
Eastward
0.0097
0.0259
0.0414
0.0097
0.0415

Northward
0.0149
0.0421
0.0681
0.0149
0.0681

Position accuracy (m)
Eastward
1.0018
2.4346
3.8297
1.0018
3.8297

Northward
0.7977
1.8481
2.8655
0.7976
2.8664

Fault tolerance
coefficient

0.0240
0.0097
0.0075
0.0369
0.0048

Robust
coefficient

25.2336
2.8988
2.0173

50.5542
0.3101

Table 1 IGD of ZDT and DTLZ

MOP

ZDT1
ZDT2
ZDT3
ZDT4
ZDT6
DTLZ1
DTLZ2

MOEA/D-DE
Mean
0.0090
0.7132
0.1769
5.3854
0.3378
6.1287
0.2360

STD
0.0224
0.0732
0.0499
2.8069
0.2289
4.2944
0.0090

Min
0.0039
0.6093
0.0101
0.8114
0.0018
0.2926
0.2047

iMOEA/D-DE
Mean
0.0097
0.6344
0.2143
6.3351
0.7504
7.1037
0.2419

STD
0.0117
0.1197
0.0457
2.7644
0.1831
3.9490
0.0207

Min
0.0039
0.0094
0.0127
0.6679
0.0019
0.2906
0.2105
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In Table 3, HVs of four algorithms are given.
The order of HVs from large to small is: iMOEA/D-
DE, NSGA-II, MOEA/D-DE, and MOEA/D. The
HV of iMOEA/D-DE is the largest, which indicates
that the proposed algorithm has the best distribution
and convergence performance.

4.3 Multi-expert weight and CW experiments

Based on the literature (Cheng et al., 2019b),
the multi-expert weight of the integrated navigation

system is shown in Table 4, and the test data calcu‐
lated by CW is shown in Table 2. The CW combines
three SWs with one OW. The three weights are ex‐
pert 1, expert 2, and expert 3. D and C in Table 4 in‐
dicate two index layers. D indicates the device layer.
C includes the accuracy, stability, and usability in the
index layer. OW is computed by EM from the data in
Table 2. The results are shown in Table 5. Since there
are no test data for indices in the function layer, there
is only the multi-expert weight. Four weights are sub‐
stituted into Eq. (12), and CWs are subsequently
computed by iMOEA/D-DE. The results are shown
in Table 6.

To compare the multi-expert weight with CW, the
comparison curves of two weights are plotted, as shown
in Fig. 3. The difference between the multi-expert
weight and CW is whether the fourth weight is SW
or OW. It can be seen from Fig. 3 that the existence
of OW changes the size of each CW component. Each
weight of the multi-expert weight is SW without OW,
while the CW includes both SW and OW. The objec‐
tivity of weight is reflected in the source of data. The
data of OW comes from the index attribute value,
while the data of SW comes from experts, which has
the advantage of strong explanation. CW is objective

Table 4 Weights of the three experts

Expert

Expert 1

Expert 2

Expert 3

Weight

Index layer=D

(0.3, 0.3, 0.1, 0.1, 0.1, 0.1)

(0.3, 0.1, 0.15, 0.15, 0.15, 0.15)

(0.4, 0.2, 0.2, 0.1, 0.05, 0.05)

C

(0.3, 0.2, 0.5)

(0.2, 0.3, 0.5)

(0.2, 0.4, 0.4)

(0.5, 0.5)

(0.6, 0.4)

(0.4, 0.6)

(0.1, 0.4, 0.5)

(0.2, 0.3, 0.5)

(0.4, 0.1, 0.5)

Table 5 Objective weight (OW) of the integrated navigation system

Index

Device layer indices

Accuracy indices in the index layer

Stability indices in the index layer

Usability indices in the index layer

OW

(0.1717, 0.1717, 0.1717, 0.1416, 0.1717, 0.1717)

(0.3148, 0.3431, 0.3421)

(0.1124, 0.8876)

(0.2431, 0.2458, 0.5112)

Table 6 Combination coefficient (CC) and combination weighting (CW)

Index

Device layer indices

Accuracy indices in the index layer

Stability indices in the index layer

Usability indices in the index layer

CC

(0.2466, 0.2655, 0.2089, 0.2795)

(0.0013, 0.0420, 0.0141, 0.9427)

(0.0010, 0.8492, 0.1476, 0.0021)

(0.0379, 0.0032, 0.8405, 0.1183)

CW

(0.2852, 0.1903, 0.1543, 0.1250, 0.1229, 0.122)

(0.3084, 0.3419, 0.3498)

(0.5693, 0.4306)

(0.3694, 0.1292, 0.5013)

Table 3 HV values of the four algorithms

Algorithm

iMOEA/D-DE

MOEA/D

HV

13.245

9.346

Algorithm

MOEA/D-DE

NSGA-II

HV

9.841

12.348
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Fig. 2 Figure of the CW model based on MOEA/D
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and interpretable at the same time, thus overcoming the
drawback of multi-expert weight. Therefore, CW is more
reasonable and objective than the multi-expert weight.

4.4 Experiments with the new weight evaluation
approach of the multi-expert weight and CW

To verify the new weight evaluation approach,
experiments are carried out with examples in the lit‐
erature (Shi et al., 2012). Compared with the results
of the two different methods in the reference, the
weights of these methods are compared. Using the CW
value and each weight value in this study, the relative
entropy values of weights are computed by the new
weight evaluation approach. The results are 0.134,
0.270, 0.0694, and the results are consistent with the
size relationship in the literature. The results are
more prominent different, which proves that the pro‐
posed approach is feasible. Since the multi-expert
weight is composed of three subjective weights and
CW is composed of four weights, two cases can be
considered: three-weight and four-weight. The re‐
sults are shown in Table 7.

When CW has only three weights, it is in the
multi-expert weight mode, and the relative entropy
values obtained by two weights show little difference
(except the accuracy index). As the model coefficients

of the multi-expert weight are artificially set, the
accuracy of the multi-expert weight is not high enough;
thus, it is not convincing. When CW contains four
weights, it is objective and more scientific. Compared
with the mode of three weights, adding the fourth
weight makes the relative entropy values of the accu‐
racy index and stability index increase rapidly. The
increase of device index and usability index is com‐
mon. It shows that the introduction of OW has an
impact on CW, which makes the distribution between
CW and each weight worse. However, the objectivity
of CW increases.

5 Summary

In this paper, a multiobjective optimization model
of CW based on improved GT and an iMOEA/D-DE
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Fig. 3 Comparison of the multi-expert weight and CW: (a) weights of the device layer; (b) weights of precision index in
the index layer; (c) weights of stability index in the index layer; (d) weights of usability index in the index layer

Table 7 Relative entropy values of weights of two groups

Group

Three-weight

Four-weight

Device
index

0.185

0.151

0.234

0.151

Accuracy
index

0.153

0.056

0.153

0.056

Stability
index

0.069

0.050

0.682

0.050

Usability
index

0.462

0.323

0.524

0.323
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algorithm are proposed. The main contributions of this
paper are as follows:

1. The multiobjective optimization model of CW
based on improved GT is presented to overcome the
drawback of poor objectivity of the multi-expert
weight. The uncertainty of CW is also considered.

2. The iMOEA/D-DE algorithm is presented.
First, the improved mutation operation is introduced
to improve the convergence rate of the algorithm.
Second, an adaptive strategy with self-learning abili‐
ty is described to overcome the shortcomings that F
and CR in classical DE algorithms are constant val‐
ues and that they cannot adapt to the multiobjective
optimization model with nonlinearity and equality
constraint. The adaptive strategy with self-learning
ability depends on the changes of the fitness value
within five generations.

3. A new weight evaluation approach based on
relative entropy is presented to evaluate the rationality
of the CW.

4. Experiments are carried out on test instances,
on the CW model in the evaluation approach of the in‐
tegrated navigation system and on the new weight
evaluation approach. Results show that the proposed
algorithm has excellent performance in certain as‐
pects, as well as good distribution and convergence per‐
formance.

In the future, the solution of multiobjective opti‐
mization model of CW can be further improved. The
main directions are proposed as follows: (1) The
in-depth study on MOEA/D should be carried out to
make the algorithm more suitable for the CW model,
so as to be extended to multiobjective optimization
problems with nonlinearity and equality constraint.
(2) The new intelligent algorithms with better perfor‐
mance should be used to solve the CW model.
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