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From Figs. 8 and 9, it is shown that the initial 

conditions x(0), z(0), and u(0) can all behave as the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
boosting adjusters. According to the line equilibrium 
set S=(0, 0, 0, u0), the positions of equilibrium points 
change with u(0), resulting in the change of attractor 
positions. The coupling effect among the state varia-
bles in system (4) indicates the periodic evolution of 
coexisting attractors related to the initial conditions 
x(0) and z(0). The mechanism of the initial- 
condition-switched boosting extreme multistability is 
presented in the following section. 
 
 
4  Mechanism of the initial-condition-switched 
boosting behaviors 

4.1 Reconstructed system via time integral  
transformation 

To explain the forming mechanism of the initial- 
condition-switched boosting behaviors related to 

Fig. 7  Initial u(0) dependent coexisting behaviors and initial-condition-switched boosting behaviors with fixed 
x(0)=10−9, y(0)=z(0)=0: (a) coexisting chaotic attractors in an individual period, where the left spiral attractor (red), 
right spiral attractor (magenta), and double-scroll attractor (yellow) correspond to u(0)=0.558, 0.652, and 0.612, re-
spectively; (b) coexisting point and periodic attractors in an individual period, where the stable point (black), period-1 
limit cycle (red), period-2 limit cycle (blue), and period-4 limit cycle (dark green) correspond to u(0)=0.410, 0.480, 0.507, 
and 0.532, respectively; (c) initial offset-boosted coexisting attractors in three adjacent periods, where the red, green, 
and blue spiral attractors correspond to u(0)=0.558, 0.558+2π/η, and 0.558+4π/η, respectively, and the lavender, dark 
orange, and light green chaotic attractors correspond to u(0)=1.210, 1.210+2π/η, and 1.210+4π/η, respectively. Refer-
ences to color refer to the online version of this figure 
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Fig. 8  Mean values of four state variables with the fixed 
initial conditions x(0)=10−9 and y(0)=z(0)=0, where 
mean(x), mean(y), and mean(z) are all equal to 0, while 
mean(u) increases nonlinearly 
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extreme multistability, a three-dimensional (3D) di-
mensionality reduction model is derived. For the 
convenience of description, three new state variables 
and four initial-condition-related parameters are in-
troduced as follows (Chen et al., 2018, 2019a, 2020): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0
d , d , d ,

t t t
X x Y y Z z             (17) 

η0=u(0), η1=x(0), η2=y(0), η3=z(0).        (18) 

 
Transforming by incremental integration from 0 to t, 
the equations of system (4) are rewritten as 
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The new 3D system (19) possesses the four pa-
rameters (0, 1, 2, and 3) related to the initial 
conditions of system (4). These explicitly expressed 
initial-condition-related parameters help us interpret 
the dynamical mechanism of the revealed initial- 
condition-switched boosting behaviors. 

According to Eq. (17), the initial conditions of 
system (19) all equal to 0, i.e., X(0)=0, Y(0)=0, and 
Z(0)=0. In this case, the reconstructed system can 
retain the same dynamical behaviors of system (4). 

The equilibrium point of system (19) is deter-
mined by solving the following equations: 
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The equilibrium point of system (19) is expressed as 

1
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where Ẑ is the root of the following equation: 

0 0 1 3
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Obviously, Ẑ is determined by 0, 1, and 3. 
The Jacobian matrix JD for the dimensionality 

Fig. 9  Initial-condition-switched boosting behaviors 
illustrated by the mean values of the four state variables 
and the corresponding phase portraits: (a) the mean 
values of the four state variables (top) and x(0)-switched 
boosting behaviors (bottom) with fixed y(0)=10−9 and 
z(0)=u(0)=0. In the top figure, mean(x), mean(y), and 
mean(z) are all equal to 0, while mean(u) decreases non-
linearly. In the bottom figure, the single-scroll chaotic 
attractors for x(0)=1.02, 0.50, and −0.02 as well as the 
double-scroll chaotic attractors for x(0)=0.77, 0.25, and 
−0.27 are all boosted with initial-offset −0.52 along the u 
coordinate; (b) the mean values of the four state varia-
bles (top) and z(0)-switched boosting behaviors (bottom) 
with fixed x(0)=10−9 and y(0)=u(0)=0. In the top figure, 
mean(x), mean(y), and mean(z) are all equal to 0, while 
mean(u) increases nonlinearly. In the bottom figure, the 
single-scroll chaotic attractors for z(0)=−0.47, 0, and 0.47 
as well as the double-scroll chaotic attractors for z(0)= 
−0.22, 0.25, and 0.72 are boosted with initial-offset 0.47 
along the u coordinate 
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reduction system (19) at the equilibrium point P is 
deduced as 
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So, the characteristic polynomial equation is derived as 
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Obviously, the stability of P is related to 0 and Ẑ. In 
other words, the initial-condition-related parameters 
0, 1, 2, and 3 have a significant impact on the 
stability of the equilibrium point P and thereby affect 
the dynamical behaviors. 

4.2  Parameter-switched boosting behaviors 

The initial-condition-related parameters are de-
termined as 1=10−9 and 2=3=0, and the initial 
conditions of system (19) are fixed as X(0)=Y(0)= 
Z(0)=0. When increasing 0, the bifurcation diagram 
of the state variable Y and the first two Lyapunov 
exponents are together given in Fig. 10. Comparing 
Fig. 10 with Fig. 5, the dimensionality reduction 
system (19) reveals the same dynamic behaviors as 
system (4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When 1=10−9 and 2=3=0 are assigned, the 
reconstructed chaotic and periodic attractors of the 
dimensionality reduction system (19) are shown in 
Fig. 11. According to the initial conditions used in 
Figs. 7a and 7c, Fig. 11a shows four reconstructed 
chaotic attractors under η0=0.558, 0.612, 0.652, and 
1.210. Meanwhile, corresponding to the periodic 
coexisting attractors depicted in Fig. 7b, one recon-
structed point attractor and three reconstucted period- 
1, period-2, and period-4 limit cycles are obtained 
under η0=0.410, 0.480, 0.507, and 0.532, as shown in 
Fig. 11b. 

When each of the four initial-condition-related 
parameters is chosen as the boosting controller se-
quentially, the dynamical behaviors of the dimension-
ality reduction system (19) are discussed as follows: 

Case 1: 0 is the boosting controller with fixed 
1=10−9 and 2=3=0 

Because 1=10−90 and 2=3=0, the equilib-
rium point is expressed as P=(0, 0, Ẑ). Fig. 12a shows 
that with the variation of 0, Ẑ expresses the periodic 
changing rule. Thus, the equilibrium point P period-
ically moves around the origin of the Z coordinate 
with the same cyclic width 2/ as the original sys-
tem (4). The mean values of the state variables are 
plotted with respect to 0 in the top of Fig. 13a. 
Through reconstruction, the mean value of Z changes 
periodically around zero, and the mean values of X 
and Y remain at zero. Thus, the initial-condition- 
switched boosting behaviors disappear in the recon-
structed system (19). The bifurcation diagrams in the 
bottom of Fig. 13a confirm these behaviors. There-
fore, the different attractors triggered by the initial- 
condition-related parameter 0 with the 2/ interval 
drop into the same region in the phase plane, which is 
different from the boosting phenomenon in Fig. 7c. 

Case 2: 1 is the boosting controller with fixed 
2=10−9 and 3=0=0 

The equilibrium point of system (19) is ex-
pressed as P=[−(1−)1/(), −1/, Ẑ]. The trajec-
tory of Ẑ is plotted with respect to the initial- 
condition-related parameter 1 in Fig. 12b, which 
manifests that the equilibrium point P periodically 
moves along the negative direction of the Z coordi-
nate as 1 increases. Also, the X and Y coordinates of 
P decrease linearly. These features are also reflected 
by the mean values of the three state variables given  

Fig. 10  The initial-condition-related parameter η0 relied 
bifurcation diagram of the state variable Y (a) and the 
first two Lyapunov exponents (b) of system (19) with 
fixed X(0)=Y(0)=Z(0)=0, 1=10−9, and 2=3=0 
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in the top of Fig. 13b. The mean value of Z decreases 
periodically, but the mean values of X and Y decrease 
linearly, leading to the periodic evolution and offset 
boosting features of the bifurcation behaviors. These 
characteristics are further confirmed by the bifurca-
tion diagram depicted in the bottom of Fig. 13b. Be-
sides, the periodic evolution of dynamical behaviors 
has the same cyclic width 0.52 as that in Fig. 6a. 

Case 3: 2 is the boosting controller with fixed 
1=10−9 and 3=0=0  

The equilibrium point of system (19) is ex-
pressed as P=(2, 0, Ẑ). The trajectory of Ẑ is plotted 
with respect to the initial-condition-related parameter 
2 in Fig. 12c. As 2 increases, the Y and Z coordi-
nates of P remain at zero and the X coordinate in-
creases linearly. In the top of Fig. 13c, the evolution 
of the state mean values is plotted with respect to 2, 
which agrees with the evolution of the equilibrium 
point P. The bifurcation diagram given in the bottom  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of Fig. 13c shows that system (19) always operates in 
the chaotic mode with the variation of 2. However, 
these chaotic attractors are linearly boosted along the 
positive direction of the X coordinate, because the X 
coordinate of P is linearly changed with 2. 

Case 4: 3 is the boosting controller with fixed 
1=10−9 and 2=0=0  

The equilibrium point of system (19) is ex-
pressed as P=(3/, 0, Ẑ). Combined with Fig. 12d, we 
can conclude that as 3 increases, P increases linearly 
along the X coordinate, remains at zero along the Y 
coordinate, and periodically increases in the positive 
direction of the Z coordinate. The evolution of P in-
duces the movement of the attractors’ positions. 
These are also presented by the state mean values and 
bifurcation diagram in Fig. 13d. The revealed be-
haviors are similar to those depicted in Fig. 13b, but 
the boosting direction and the evolution period are  

Fig. 12  Trajectories of Ẑ with the variation of the initial 
parameters 0, 1, 2, and 3: (a) 1=10−9 and 2=3=0; 
(b) 2=10−9 and 3=0=0; (c) 1=10−9 and 3=0=0;  
(d) 1=10−9 and 2=0=0 

Ẑ
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Ẑ
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Fig. 11  The initial-condition-switched coexisting attrac-
tors of the dimensionality reduction system with fixed 
X(0)=Y(0)=Z(0)=0, 1=10−9, and 2=3=0: (a) chaotic 
behaviors with 0=0.558/0.612/0.652/1.210; (b) periodic 
behaviors with 0=0.410/0.480/0.507/0.532 
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different. The period of the bifurcation behaviors is 
0.47, which is the same as that in Fig. 6b. 

The veil of the initial-condition-switched 
boosting behaviors induced by the initial conditions 
x(0), y(0), z(0), and u(0) in system (4) can be uncov-
ered in system (19). The initial conditions of state 
variables x, y, z, and u in system (4) are transformed 
into the initial-condition-related parameters 1, 2, 3, 
and 0 in system (19). Thus, the mechanism of the 
initial-condition-switched boosting behaviors is ex-
plained by the analysis of the dynamical behaviors 
associated with the initial-condition-related parameters. 
 
 
5  Circuit simulation for the reconstructed 
system 
 

The implementation circuit of the dimensional- 
ity reduction system (19) is shown in Fig. 14. This 
circuit is composed of operational amplifiers, trigo-
nometric function converters, resistors, and capacitors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time constant of this circuit is defined as RC= 
10 k33 nF=0.33 ms. Then the other resistors are 
calculated as R1=R/=9.03 k, R2=R/=15.43 k, 
R3=R/=18 k, R4=R=51.84 k, R5=R/()= 
25.72 k, and R6=R/()=30 k. 

Following the implementation circuit in Fig. 14, 
the circuit equations of the dimensionality reduction 
system (19) are expressed as 
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Fig. 13  Initial parameter-switched boosting behaviors of the dimensionality reduction system illustrated by the state 
mean values and bifurcation diagrams: (a) 0-switched boosting behavior with 1=10−9 and 2=3=0; (b) 1-switched 
boosting behavior with 2=10−9 and 3=0=0; (c) 2-switched boosting behavior with 1=10−9 and 3=0=0; (d) 
3-switched boosting behavior with 1=10−9 and 2=0=0 
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where vx, vy, and vz are three circuit variables corre-
sponding to the state variables of system (19), and 
four DC voltage biases V0–V3 are corresponding to the 
initial-condition-related parameters 0–3. 

Let V1=10−9 V and V2=V3=0 V. When V0 is set 
to 0.558, 0.612, 0.652, or 1.210 V, the Power SIM-
ulation (PSIM) circuit simulations are depicted in 
Fig. 15a. The chaotic attractors with four different 
topological structures emerge around the original 
point. Then, the limit cycles with period-1, period-2, 
and period-4 for V0=0.480, 0.507, and 0.532 V are 
plotted in Fig. 15b. The PSIM circuit simulation 
results match well with the MATLAB numerical 
simulation results in Fig. 11. These results for dif-
ferent values of V0–V3 can further confirm the infi-
nite coexisting attractors’ behaviors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions 
 

The initial-condition-switched boosting behav-
iors can exhibit the periodical coexisting attractors 
with different topological structures and positions 
along the coordinate of the memcapacitor inner var-
iable. In this paper, we have introduced a cosine 
memcapacitor into an oscillator, and thus presented a 
4D memcapacitive oscillator. The 4D memcapacitive 
oscillator possessed a line equilibrium set, and its 
stability periodically evolved with the initial condi-
tion of the memcapacitor. These characteristics could 
induce complex dynamical behaviors in the 4D 
memcapacitive oscillator. By employing multiple 
numerical simulation methods, the initial-condition- 
related complex dynamical behaviors have been  
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V0=0.480/0.507/0.532 V, V1=10−9 V, and V2=V3=0 V 

Fig. 14  Analog implementation circuit for the dimensionality reduction system 
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disclosed. In particular, the initial-condition-switched 
boosting extreme multistability has been revealed. 
Furthermore, the mechanism of the initial-condition- 
switched boosting behaviors was uncovered based on 
a reduced-order system constructed by the integral 
transformation. The obtained results have been fur-
ther confirmed by the PSIM circuit simulations. The 
revealed initial-condition-switched boosting extreme 
multistability has more potential applications in  
secure communications (Wang Z et al., 2017; 
Khorashadizadeh and Majidi, 2018) and deserves our 
future study. 
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