
858 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

SA-RSR: a read-optimal data recovery strategy for
XOR-coded distributed storage systems∗

Xingjun ZHANG‡1, Ningjing LIANG1, Yunfei LIU1, Changjiang ZHANG1, Yang LI2

1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2Beijing Electronic Engineering General Research Institute, Beijing 100854, China

E-mail: xjzhang@xjtu.edu.cn; l_ningjing@stu.xjtu.edu.cn; liuyunfei@stu.xjtu.edu.cn; zcj9527@stu.xjtu.edu.cn

Received May 16, 2021; Revision accepted Aug. 16, 2021; Crosschecked Feb. 28, 2022

Abstract: To ensure the reliability and availability of data, redundancy strategies are always required for distributed
storage systems. Erasure coding, one of the representative redundancy strategies, has the advantage of low storage
overhead, which facilitates its employment in distributed storage systems. Among the various erasure coding schemes,
XOR-based erasure codes are becoming popular due to their high computing speed. When a single-node failure
occurs in such coding schemes, a process called data recovery takes place to retrieve the failed node’s lost data
from surviving nodes. However, data transmission during the data recovery process usually requires a considerable
amount of time. Current research has focused mainly on reducing the amount of data needed for data recovery
to reduce the time required for data transmission, but it has encountered problems such as significant complexity
and local optima. In this paper, we propose a random search recovery algorithm, named SA-RSR, to speed up
single-node failure recovery of XOR-based erasure codes. SA-RSR uses a simulated annealing technique to search for
an optimal recovery solution that reads and transmits a minimum amount of data. In addition, this search process
can be done in polynomial time. We evaluate SA-RSR with a variety of XOR-based erasure codes in simulations
and in a real storage system, Ceph. Experimental results in Ceph show that SA-RSR reduces the amount of data
required for recovery by up to 30.0% and improves the performance of data recovery by up to 20.36% compared to
the conventional recovery method.

Key words: Distributed storage system; Data reliability and availability; XOR-based erasure codes; Single-node
failure; Data recovery

https://doi.org/10.1631/FITEE.2100242 CLC number: TP391.4

1 Introduction

With the rapid development of cloud comput-
ing and big data in recent years, distributed storage
systems, such as Google’s GFS (Ghemawat et al.,
2003), HDFS (Borthakur, 2007), Microsoft’s WAS
(Calder et al., 2011), open source Ceph (Weil et al.,
2006a), and Swift (Arnold, 2014), have been exten-
sively applied. Considering the low reliability of the

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 62172327)

ORCID: Xingjun ZHANG, https://orcid.org/0000-0003-1434-
7016
c© Zhejiang University Press 2022

cheap commercial equipment in these systems and
that storage nodes are prone to failure, some redun-
dancy strategies are indispensable. Replication is
a traditional redundancy technology and has been
widely exploited in various storage systems. Replica-
tion places multiple copies of data on different nodes
(in this paper, “node” refers to an independent fail-
ure domain, which can be a disk or a storage node),
which is beneficial for data recovery because only
one replica needs to be read and transmitted when
a single-node failure occurs. However, replication
consumes a massive amount of extra storage space.

A redundancy strategy has been proposed based

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 859

on erasure coding to save storage resource. In
general, erasure codes are represented by (k,m),
denoting that the original file is divided into k

equally-sized data chunks and that m parity chunks
are calculated by these k data chunks. Compared to
replication, erasure codes usually have lower storage
overhead under the same fault tolerance conditions.
For example, Reed-Solomon (RS) code (4, 2) (Reed
and Solomon, 1960) and 3-replication can both toler-
ate any two-node failure, while the former consumes
half the storage space of the latter. Therefore, enter-
prises are gradually transferring to the use of erasure
codes to provide efficient and reliable data storage
services. Maximum distance separable (MDS) codes
are especially popular for use in real storage systems,
because they optimally balance fault tolerance and
storage overhead.

RS code, which tolerates multiple node failures,
is a representative MDS code and has been deployed
in various storage systems, e.g., Google’s GFS (Ghe-
mawat et al., 2003) and Facebook’s HDFS storage
clusters (Facebook, 2018). Furthermore, array codes
(Blaum et al., 1996; Tamo et al., 2011, 2013; Gad
et al., 2013; Hou et al., 2019a; Hou and Lee, 2020)
have been studied extensively, where each chunk is a
column of elements in a two-dimensional array. Bi-
nary MDS array codes with node elements in GF(2)
are an important family of array codes. Sometimes
these codes are also called XOR-based codes, be-
cause they perform only binary XOR operations dur-
ing encoding and decoding procedures, which can be
efficiently implemented in hardware and software.
Therefore, XOR-based codes are more efficient than
RS code in terms of computation complexity. More
importantly, recovery can work at symbol granular-
ity for XOR-based codes (array elements are also
referred to as “symbols” for representation conve-
nience). Cauchy RS (CRS) code (Roth and Lempel,
1989) has all the advantages of RS code and per-
forms only XOR operations. Two-fault-tolerant era-
sure codes, known as RAID-6 codes, have received
more attention in recent decades, such as EVEN-
ODD (Blaum et al., 1995), RDP (Corbett et al.,
2004), Blaum_Roth (Blaum and Roth, 1993), Lib-
eration code (Plank, 2008), Liber8Tion code (Plank,
2009), X-Code (Xu LH and Bruck, 1999), H-Code
(Wu et al., 2011), P-Code (Jin et al., 2009), and HV
Code (Shen and Shu, 2014). X-Code, H-Code, P-
Code, and HV Code are vertical codes, which are sel-

dom applied in real storage systems due to the com-
plex rules for placement of parity chunks. Further-
more, triple-fault-tolerant XOR-based erasure codes,
e.g., STAR (Huang and Xu, 2008), RTP (Goel and
Corbett, 2012), and TIP (Zhang et al., 2015), are
also presented to offer higher reliability.

MDS codes can greatly reduce the consump-
tion of storage space; however, their recovery per-
formance is far poorer than that of replication. For
example, in a (k,m) MDS coded system, k chunks
will be retrieved from surviving nodes to reconstruct
any single failure chunk, while in a triple-replicated
system, failure chunk can be recovered by download-
ing any single surviving replica. This k-factor data to
be read and transmitted will result in a long recovery
time, which may dramatically affect system service
performance. Single-node failure in distributed stor-
age systems accounts for more than 99.75% of all
node failures (Schroeder and Gibson, 2007). There-
fore, current research aims to optimize data recovery
efficiency of a single-node failure.

Two optimization ideas are available to optimize
data recovery of an erasure-coded storage system.
The first idea is to design new erasure codes with a
low recovery cost, which can theoretically reduce the
amount of data required during recovery. Such codes
include local reconstruction code (Huang et al., 2012)
deployed by Microsoft in the WAS cloud storage
system, Facebook’s locally repairable code (Sathi-
amoorthy et al., 2013) applied in the HDFS-Xorbas
system, and shingled erasure code (SHEC) (Miya-
mae et al., 2014; RedHat, 2018) exploited in the
Ceph system. The improved recovery performance
is obtained at the expense of extra storage space for
these codes, which is not desired in real systems. In
contrast, regenerating codes (RGCs) (Jiekak et al.,
2013; Hou et al., 2019b, 2019c; Ye et al., 2020) are
erasure codes that are developed from network cod-
ing, which can greatly reduce repair bandwidth with-
out increasing storage overhead. However, they are
rarely implemented in real systems because they lack
several key desirable properties that are crucial for
practical systems (Pamies-Juarez et al., 2016; Vajha
et al., 2018).

Another idea is to optimize the repair processes
of existing codes rather than trying to construct new
codes. Some techniques that reduce the amount of
data required have emerged for existing MDS codes,
especially for XOR-based codes. For example, the

860 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

minimum amount of data needed for RDP, EVEN-
ODD, and X-Code in recovering a single-node failure
has been derived (Wang et al., 2010; Xiang et al.,
2011), but these conclusions and recovery methods
cannot be extended to other erasure codes because
they have inherently different structures. Some gen-
eral optimization algorithms have been proposed to
recover any MDS XOR-based code, but these ap-
proaches are highly complex or easily fall into a lo-
cal optimum solution. In addition, none of these
techniques have been tested on real-world storage
systems. To overcome these shortcomings, we fo-
cus on researching the issue of optimal recovery for
any MDS XOR-based erasure code, and implement
the read-optimal recovery approach in a real-world
storage system to demonstrate its efficiency.

2 Background and related works

2.1 Background: XOR-based erasure codes

We consider a distributed storage system con-
sisting of n nodes, which are partitioned into k nodes
that store data and m (m = n− k) nodes that store
parity information. The data nodes are denoted as
D0,D1, · · · ,Dk−1, and the parity nodes are repre-
sented as P0,P1, · · · ,Pm−1. A file written to the
erasure-coded storage system is first divided into
multiple data blocks. Each data block can be en-
coded simultaneously to obtain k data chunks and m

parity chunks. The resultant set of n chunks is called
a stripe. For XOR-based erasure codes, a chunk is
composed of w symbols. The ith symbol in the jth

data chunk of a stripe is labeled as dwj+i, where w is
the number of symbols in each chunk. Similarly, the
ith symbol in the jth parity chunk is labeled as pwj+i.
The size of a symbol is typically multiples of the sec-
tor size (e.g., 4096 bytes) and depends on the specific
storage system implementation. An XOR-based era-
sure code can also be parameterized as (k,m,w).
In storage systems, the encoding and decoding pro-
cesses of each stripe are independent of each other,
so we just consider a single stripe.

Fig. 1 depicts an example stripe of one XOR-
based erasure code. In Fig. 1, the stripe comprises
k = 4 data chunks and m = 2 parity chunks. Each
chunk consists of w = 3 symbols. Symbols d0–d2
are data symbols in the 0th data chunk belonging to
data node D0, while p0–p2 are parity symbols in the

0th parity chunk belonging to parity node P0. For
the sake of discussion, the notations of XOR-based
erasure codes are listed in Table 1.

An XOR-based erasure code can be represented
by the product of a bit matrix and a vector. The bit
matrix is called a generator matrix in coding theory
and can be divided into two parts. The first part is a
kw×kw identity matrix, which can be considered to
be a k×k matrix, whose element is a w×w bit matrix.
The second part, known as a coding distribution ma-
trix (CDM), is composed of an mw× kw matrix and
determines the generation of parities. Specifically,
parity symbol pi (0 ≤ i < mw−1) is calculated from
the data symbols whose corresponding columns are
not zero in the ith row of the CDM. Therefore, the
CDM is able to define a unique XOR-based erasure
code.

Fig. 2 shows the CRS code encoding process
with k = 4, m = 2, and w = 3. In Fig. 2, the
encoding equations representing the generation of all
parity symbols are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = d0 ⊕ d3 ⊕ d6 ⊕ d9,

p1 = d1 ⊕ d4 ⊕ d7 ⊕ d10,

p2 = d2 ⊕ d5 ⊕ d8 ⊕ d11,

p3 = d0 ⊕ d5 ⊕ d6 ⊕ d7 ⊕ d10,

p4 = d1 ⊕ d3 ⊕ d5 ⊕ d8 ⊕ d10 ⊕ d11,

p5 = d2 ⊕ d4 ⊕ d6 ⊕ d9 ⊕ d11.

(1)

We can observe that if there is only one symbol

d0 d3 p0 p3

d1 d4 d7 p1 p4

d2 d5 d8 p2 p5

D0 D1 D2 P0 P1

d9

d10

d11

D3

Data
Parity

d6

Chunk Symbol

S
tri

pe

k=4 m=2

w
=3

Fig. 1 A stripe of one XOR-based erasure code when
k = 4, m = 2, and w = 3

Table 1 Notations used in this paper

Notation Description

k Number of data chunks in each stripe
m Number of parity chunks in each stripe
w Number of symbols in each data/parity chunk
F Index of the failure data node
Dj The jth data node in one stripe

dwj+i The ith symbol in the jth data chunk of a stripe
Pj The jth parity node in one stripe

pwj+i The ith symbol in the jth parity chunk of a stripe
⊕ XOR operation

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 861

Generator matrix

Raw data chunks

 Data and parity chunks

C
od

in
g

di
st

rib
ut

io
n

m
at

rix

k×
w

k×w

× =

D0

D1

D2

D3

D0

D1

D2

D3

P0

P1

m
×w

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

p0

p1

p2

p3

p4

p5

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

Fig. 2 Encoding process of CRS (4, 2, 3)

that experiences failure in one of the equations in
Eq. (1), XOR of other surviving symbols can recon-
struct this failure symbol, and more than one equa-
tion is available for recovering the same symbol (e.g.,
d0 = p0⊕d3⊕d6⊕d9 and d0 = p3⊕d5⊕d6⊕d7⊕d10
when d0 fails).

We focus on recovering failure symbols using
the least amount of data instead of constructing a
new erasure code. Our recovery approach can be ap-
plied to any XOR-based erasure code, and we con-
duct our experiments on three representative era-
sure codes, that is, CRS code, Blaum_Roth code,
and Liber8Tion code. These codes have been im-
plemented in the open-source library Jerasure-2.0,
and readers can consult the manual (Pamies-Juarez
et al., 2016) for details. CRS code is constructed
based on a Cauchy matrix, has flexible configuration
about (k,m,w), and has a dense generator matrix.
Blaum_Roth code and Liber8Tion code (w = 8) are
minimum density codes for RAID-6. Examples of
CDMs for Blaum_Roth code and Liber8Tion code
are shown in Fig. 3.

2.2 Related works

2.2.1 Conventional recovery

For storage systems that employ XOR-based
erasure codes, conventional recovery methods will

Fig. 3 CDMs for Blaum_Roth code (4, 2, 4) (a) and
Liber8Tion code (4, 2, 8) (b) when k = 4 and m = 2

use the first surviving parity node to recover the fail-
ure data node. Assume that the F th data node fails
and that other nodes are all alive. The ith failed sym-
bol dFw+i can be recovered by XOR-summing the ith

parity symbol of P0 and all the other surviving data
symbols corresponding to the non-zero columns in
the ith row of the CDM. Therefore, recovering each
erased data symbol requires the k symbols be read
for any XOR-based erasure code.

862 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

If a parity node fails, it simply needs to perform
a new encoding process to reconstruct the erased par-
ity symbols. To the best of our knowledge, there is
no research indicating that when a parity node fails,
the number of symbols to be read can be further
reduced. Therefore, existing optimization methods
focus mainly on data node failures and this also ap-
plies in our approach.

2.2.2 Hybrid recovery

Xiang et al. (2011) first investigated the opti-
mal recovery problem related to a single-node failure
for RDP code (Corbett et al., 2004). They derived
the lower bound of the number of symbols needed
for any single failure recovery of the RDP code and
proposed an efficient recovery method. Wang et al.
(2010) conducted related and independent studies for
EVENODD, X-Code, and STAR code. The authors
demonstrated that the lower bound of the number
of symbols of X-Code is 3p2 − 2p + 5. Later, the
tight lower bound of the number of symbols of X-
Code was proved by Xu SL et al. (2014), and the
load balancing recovery among different nodes was
considered. Liang et al. (2020) extended this idea to
liberation codes and evaluated their recovery scheme
on a real distributed storage system. All the stud-
ies mentioned here follow the idea of hybrid recovery
from Xiang et al. (2011), where symbols on different
parity nodes are interchangeably employed to recon-
struct the failed data symbols. Most of all, this is
fundamental to other optimization approaches, e.g.,
the enumeration algorithm (Khan et al., 2012) and
hill-climbing algorithm (Zhu et al., 2014).
Example 1 The CDM of RDP (4, 2, 4) is
shown in Fig. 4. RDP code is also represented by
a (p − 1) × (p + 1) two-dimensional array, where
w = p − 1, n = p + 1, and p is a prime. A two-
dimensional array of RDP (4, 2, 4) is plotted in
Fig. 5. In Fig. 5, the parity symbols are generated by
the symbols with the same color and shape. We take
this RDP code as an example to illustrate how con-
ventional recovery and hybrid recovery work. Fig. 6
shows the symbols used in these two approaches. In
Fig. 6a, the erased symbols are labeled “×,” and
the surviving symbols to be read are marked with
“©.” Conventional recovery uses parity node P0 to
recover symbols on D1, so all surviving data sym-
bols and parity symbols on P0 are read and the total
number of symbols read is wk = 16. In Fig. 6b, the

Fig. 4 CDM of RDP code when k = 4, m = 2, and
w = 4

Fig. 5 Encoding of RDP code when k = 4, m = 2,
and w = 4: (a) P 0 parity layout; (b) P 1 parity layout

symbols read by parity nodes P0 and P1 are labeled
“©” and “�,” respectively. The symbol that is read
by more than one equation to recover failure symbols
is referred to as an overlapping symbol. Overlapping
symbols are marked using both “©” and “�.” One
of the optimal recovery schemes to recover D1 for
hybrid recovery is as follows:

{d1, d15, p2, p4} → d4,

{d2, d8, p3, p6} → d5,

{d2, d10, d14, p2} → d6,

{d3, d11, d15, p3} → d7.

The number of symbols read is wk − noverlap = 12,
where noverlap is the number of overlapping symbols.

The core idea of hybrid recovery is the idea of
“maximizing the number of overlapping symbols.”

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 863

D0 D1 D2 D3 P0 P1

d0

d1

d2

d3

d8

d9

d10

d11

d12

d13

d14

d15

p0

p1

p2

p3

d4

d5

d6

d7

D0 D1 D2 D3 P0 P1

d1

d2

d3

d8

d10

d11

d14

d15

p2

p3

p6

p5

d4

d5

d6

d7

(a)

(b)

Fig. 6 The conventional (a) and hybrid (b) recoveries
for RDP code when k = 4, m = 2, and w = 4

This approach has the advantages of finding the
optimal amount of data read in advance and pro-
viding an optimal recovery scheme quickly. How-
ever, only a few XOR-based erasure codes with reg-
ular structures have been deduced about the lower
bound of the number of symbols read, such as RDP,
EVENODD, and X-Code. It is difficult to extend
the optimal recovery conclusion of hybrid recovery
to other codes, especially erasure codes with m ≥ 3.

2.2.3 Enumeration recovery

To solve the optimal recovery problem of gen-
eral XOR-based erasure codes, Khan et al. (2012)
suggested modeling the problem of minimizing the
number of symbols read as a combinatorial optimiza-
tion problem and obtained the global optimized so-
lution by enumeration.

For the sake of description, the notion of a re-
covery equation is defined as follows:
Definition 1 (Recovery equation) A set of sym-
bols that are XOR-summed to a zero vector is re-
ferred to as a recovery equation.

According to the definition of the recovery equa-
tion, we can conclude that any single symbol can be
reconstructed as long as the remaining symbols sur-
vive in a recovery equation.

Example 2 We use CRS (4, 2, 3) in Fig. 2 to ex-
plain the recovery of the enumeration method. Let F
contain all the failure symbols. Each symbol fi ∈ F

owns a recovery equation set Ei. An equation e be-
longs to Ei only if e ∩ F = fi. This means that any
recovery equation in Ei can recover fi because its
remaining symbols survive. For example, we assume
that D1 fails, so F = {d3, d4, d5}, and E1 = {e0, e1}
is the recovery equation set of f1 = d4, where e0 =

{p1, d1, d4, d7, d10} and e1 = {p5, d2, d4, d6, d9, d11}.
Suppose that we can list all recovery equations for
E0–Ew−1. The problem is formulated as follows: se-
lect one equation from Ei to recover fi and minimize
the number of symbols in the union of the selected
equations. In fact, the number of recovery equations
is greater than mw, because the sum of two or even
more recovery equations in Eq. (1) is still zero; i.e.,
{d0, d1, d4, d5, d6, p1, p3} is also a recovery equation
obtained by adding the second and fourth equations
in Eq. (1). In fact, there are up to 2mw − 1 candi-
date equations, so this approach is time-consuming,
especially for large m or w.

2.2.4 Hill-climbing recovery

Zhu et al. (2014) employed a heuristic algorithm
to tackle the problem mentioned. First the algorithm
reduces the search space from

(
2mw−1

w

)
to

(
mw
w

)
by

using onlymw recovery equations in the CDM. Then,
it exploits a hill-climbing technique to search out a
proximate optimum solution.
Example 3 Using CRS (4, 2, 3) in Fig. 2 , we
explain the principle of hill-climbing recovery next.
Assume that D1 fails. Let Si be the set of par-
ity symbols from parity node Pi, X be the set of
w symbols used to recover failure symbols now, Ns

be the number of symbols read now, and Y be the
collection symbols to replace the elements in X . Ini-
tially, S0 = {p0, p1, p2}, S1 = {p3, p4, p5}, X = S0,
Ns = 12, and Y = S1. Then, it starts to up-
date X . In every update process, it tries to use
yj ∈ Y (0 < j < 3) to replace one element xi ∈ X

(0 < i < 3); if the replacement is valid (can recover
all failed symbols) and Ns is reduced, it will con-
duct the replacement, and vice versa. In the first
update, supposing that we replace p1 by p5 and re-
move p5 from Y , we obtain X = {p0, p5, p2} and
Y = {p3, p4}. We have Ns = 10 after this replace-
ment. Next we continue the second update. We re-
place p2 by p3, whileNs cannot be reduced further, so

864 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

we stop the iteration process. Finally, the searched
parity symbol set is {p0, p5, p2}.

From the analysis above, we can determine that
the complexity of hill-climbing recovery is greatly re-
duced compared to enumeration recovery. However,
the algorithm omits a lot of important recovery equa-
tions and it easily falls into a local optimum solution.

3 Motivation

In general, enumeration recovery has an ex-
tremely high time complexity, because minimizing
the number of symbols to be read for single data-
node failure of XOR-based erasure codes is an NP-
hard problem (Khan et al., 2012; Zhu et al., 2014).
For an erasure code (k,m,w), the enumeration algo-
rithm will select w from 2mw − 1 recovery equations
and guarantee that the total number of symbols re-
quired for recovery is minimum. Thus, the maxi-
mum search space of the enumeration algorithm can
be

(
2mw−1

w

)
. Therefore, it is not practicable to ap-

ply the enumeration algorithm to real-world storage
systems.

Hill-climbing recovery can obtain a suboptimal
symbol-reading scheme in polynomial time and the
time complexity is O(m×w3). However, the algo-
rithm omits several important recovery equations
that generate the optimal solutions and uses greedy
thoughts in the running process, which has one ma-
jor shortcoming: it easily falls into a local optimum
solution.

In this study, we propose a random search recov-
ery algorithm that is based on simulated annealing
(SA). The algorithm has a low time complexity and
overcomes the problem of easily being trapped in
local optima in the search process.

4 Detailed design of SA-RSR

Based on this motivation, we propose a random
search recovery algorithm named SA-RSR, which
can be decomposed into two steps: parity symbol
grouping and recovery solution search.

4.1 Parity symbol grouping

SA-RSR proposed in this study draws on the
idea of grouping the recovery equations in the enu-
meration algorithm. SA-RSR significantly reduces
time complexity, which is beneficial in facilitating its

implementation in real storage systems.
It is easily observed that each recovery equation

contains only a parity symbol from Eq. (1). Hence, a
parity symbol can represent a recovery equation, and
grouping parity symbols is equivalent to grouping
the corresponding recovery equations. Parity sym-
bol grouping partitions mw parity symbols into w

groups, where parity symbols in one group partici-
pates in the recovery of the same failure data symbol.
Details of parity symbol grouping are shown in Al-
gorithm 1. In summary, the goal of SA-RSR is to
select w symbols from mw parity symbols to recover
w failed data symbols.

To facilitate the analysis, the recovery group is
defined as follows:
Definition 2 (Recovery group) The collection of
parity symbols whose corresponding recovery equa-
tions can be used to recover the same failure data
symbols is known as a recovery group.

Next, we give a detailed description of the parity
symbol grouping algorithm.

AddToG(g, dj , pi): Adding the parity symbol
pi to the recovery group gj−Fw ∈ G indicates that
the recovery equation corresponding to the parity
symbol pi can be used to recover data symbol d j .

We initialize G to NULL (step 1), traverse the
rows of CDM M (step 2), and check whether the
corresponding columns of the failure data symbols
on the row is one (steps 3 and 4). If [M]i,j = 1,
the recovery equation corresponding to the ith parity
symbol pi can recover the jth failure data symbol dj
and pi is added to the recovery group gj−Fw (step 5).
Example 4 We take Fig. 2 as an example.
When data node D0 fails, three data symbols will

Algorithm 1 Parity symbol grouping
Input:
F : index of the failure data node;
M : CDM of the erasure code;
m: number of the parity chunks in a strip;
w: number of the symbols in a data/parity chunk
Output:
G: a set of recovery groups for the failure data
symbols
1: Initialize G = NULL
2: for i = 0 to mw − 1 do
3: for j = Fw to Fw + w − 1 do
4: if [M]i,j == 1 then
5: AddToG(g, dj , pi)

6: end if
7: end for
8: end for

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 865

be erased, namely, d0, d1, and d2. For the row
that corresponds to the parity symbol p0, we note
that [M]0,0 = 1, which indicates that the recovery
equation corresponding to p0 can recover the failure
data symbol d0. Thus, we can add p0 to g0. Other
parity symbols are also processed in this way. After
parity symbol grouping, we can obtain the following
results: ⎧

⎪⎪⎨

⎪⎪⎩

g0 : {p0, p3},
g1 : {p1, p4},
g2 : {p2, p5}.

(2)

Furthermore, a parity symbol probably belongs
to multiple groups simultaneously. For example,
when data node D1 fails, data symbols d3, d4, and
d5 will be erased. p4 will be simultaneously added
to g0 and g2 due to [M]4,3 = 1 and [M]4,5 = 1. The
final recovery groups are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

g0 : {p0, p4},
g1 : {p1, p5},
g2 : {p2, p3, p4}.

(3)

If one parity symbol is selected per group and
the same symbol is chosen more than once, some
failure data symbols may not be recovered. For ex-
ample, if p4, p1, and p4 are chosen from g0, g1, and g2
respectively, d3 and d5 will be unrecoverable because
two equations in Eq. (1) are not enough to uniquely
solve three unknown variables. SA-RSR addresses
this scenario to ensure that one parity symbol ap-
pears at most once in the current search procedure.

4.2 Recovery solution search

After the grouping operation of Algorithm 1, we
can obtain w recovery groups, and the correspond-
ing recovery equations in each group are responsible
for repairing a specific failure data symbol. For ex-
ample, in Eq. (2), g0 consists of p0 and p3 and their
corresponding recovery equations can accomplish the
recovery of data symbol d0.
Definition 3 (Recovery solution) A set of w

parity symbols that are selected from distinct recov-
ery groups and the corresponding recovery equations
that can repair all the failure symbols is known as a
recovery solution Gr.
Example 5 According to Eq. (2), if we select p0

from g0, p1 from g1, and p2 from g2 to recover d0,
d1, and d2 respectively, we will obtain the recovery

solution Gr = {p0, p1, p2}. Gr is obtained by select-
ing one element from gi (0 ≤ i < w) to recover all
failure symbols.

The recovery solution search problem can be
considered as a combinatorial optimization problem.
The set of feasible solutions is really massive if the
erasure code parameters are a little larger. Let us
use CRS (10, 4, 16) as an example, where CRS
(10, 4, 16) has the same k and m parameter set-
tings as the RS code used in HDFS-RAID in Face-
book (Facebook, 2018). There are, on average, about
2.43 × 1020 alternative recovery solutions when one
data node fails for CRS (10, 4, 16) and the num-
ber will increase to 2.53 × 1023 if m increases from
4 to 5. Therefore, it is difficult to obtain the best
solution in such a huge research space by employ-
ing a brute-force method. We choose an SA-based
technique, and SA is a stochastic optimization al-
gorithm based on a Monte-Carlo iteration strategy.
Compared to the hill-climbing technique, accepting
the deteriorating solution with a certain probability
and decreasing the probability over time can help SA
step out of stagnation effectively.

Before explicitly presenting our detailed algo-
rithm, we introduce the notion of a recovery sequence
and provide a sketch of our algorithm. A recovery se-
quence consists of two parts, where the second part,
having mw elements, indicates which symbol is se-
lected out of mw parity symbols to recover the given
failed symbol, and the first part, having kw elements,
reveals the surviving data symbols that participate
in the recovery of the failed symbol.
Definition 4 Define a recovery sequence as
R = {r0, r1, · · · , r(k+m)w−1}. If parity symbol pi is
selected to recover a failed symbol, rkw+i = 1, and
rj = 1 (j ∈ {e0, e1, . . . , el}) for those surviving data
symbols {de0 , de1 , . . . , del} that belong to the recov-
ery equation corresponding to the parity symbol pi;
otherwise, rj = 0 (j /∈ {e0, e1, · · · , el} ∪ {kw + i}).
Example 6 Taking Eq. (2) as an example, if
p3, p1, and p2 are chosen to recover d0, d1, and d2
respectively, the recovery sequences are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

R0 = {000001110010000100},
R1 = {000010010010010000},
R2 = {000001001001001000}.

(4)

We use S to represent a symbol-reading scheme
to recover all failure data symbols. S is calculated

866 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

using the following equation:

S = R0|R1| · · · |Rw−1, (5)

where “ |” is the OR operation. If the jth (0 ≤ j <

kw) position in the ith (0 ≤ i < w) recovery sequence
Ri is 1, Sj will be set to 1. It indicates that we
need to read data symbol dj if S j=1 (0 ≤ j < kw)
and read parity symbol pj−kw if S j=1 (kw ≤ j <

(k +m)w). Based on Eq. (5), our objective function
is to minimize the number of 1’s in S :

min

(k+m)w−1∑

i=0

Si. (6)

Given the failure data symbols {dFw, dFw+1,

. . . , dFw+w−1}, we first obtain a set of recovery
groups G = {g0, g1, . . . , gw−1}, and gi is respon-
sible for recovering dFw+i, e.g., g0 → dFw and
g1 → dFw+1. First, we initialize the current re-
covery solution Gr by appending a random symbol
belonging to gi. Then we update Gr through mul-
tiple iterations based on the idea of SA. Finally, we
stop the algorithm until the convergence, obtain the
recovery scheme S corresponding to Gr, and read the
smallest number of symbols.

The recovery solution search algorithm (Algo-
rithm 2) is built on the following three functions:

1. generate_solution(Gr): Given a recovery so-
lution Gr, the function returns a symbol-reading
scheme S for recovering the failure data symbols.

2. replace_symbol(Gr, ptmp_sid, gtmp_gid):
Given the parity symbol ptmp_sid and the recovery
group gtmp_gid, the function replaces the symbol that
belongs to gtmp_gid with ptmp_sid and returns a new
recovery solution Grnew .

3. cal_symbol_num(S): Given a symbol-
reading scheme S, the function returns the total num-
ber of symbols to be read to recover the failure data
symbols.

We initialize the temperature T as T0 and cur-
rent recovery solution Gr as NULL (step 1). For each
failure data symbol, we randomly select a parity sym-
bol from the corresponding recovery group g ∈ G to
construct Gr (steps 2–8). Note that the selection
process requires multiple attempts to ensure that no
parity symbol is repeated (steps 2–6). According
to Gr, we can generate the symbol-reading scheme
S (step 9). In the iteration of each outer loop, we
generate a series of new symbol-reading schemes at

Algorithm 2 Recovery solution search
Input:
F : index of the failure data node
M : CDM of the erasure code
k: number of data chunks in a stripe
m: number of parity chunks in a stripe
w: number of symbols in a data/parity chunk
G: a set of recovery groups for the failure data symbols
generated by Algorithm 1, and gi is the ith element of G
Gr: current recovery solution for the failure data symbols
T0: initial temperature
Tend: termination temperature
K: temperature attenuation coefficient (K < 1)
Ne: number of external cycle iterations
Ni: number of internal cycle iterations
Output:
S: an optimal symbol-reading scheme for recovering failure
data symbols
1: Initialize T = T0 and Gr =NULL
2: for i = 0 to w − 1 do
3: x=one element selected randomly from gi
4: while x is in Gr do
5: x=one element selected randomly from gi
6: end while
7: Gr=Gr+x

8: end for
9: S = generate_solution(Gr)

10: for i = 0 to Ne do
11: for j = 0 to Ni do
12: Select an element ptmp_sid from mw parity symbols

randomly
13: Calculate groups gs to which ptmp_sid belongs
14: if ptmp_sid /∈ Gr then
15: Select a group gtmp_gid ∈ gs randomly
16: Grnew = replace_symbol(Gr, ptmp_sid,

gtmp_gid)

17: Snew = generate_solution(Grnew)

18: Δ = cal_symbol_num(S) −
cal_symbol_num(Snew)

19: if Δ > 0 or exp(Δ/T) > rand()/rand_max

then
20: Gr = Grnew and S = Snew

21: end if
22: end if
23: end for
24: T = TK

25: if T < Tend then
26: break
27: end if
28: end for
29: return S

the current temperature T and accept new schemes
based on the idea of SA. At temperature T, we ran-
domly select a symbol from all parity symbols, which
is referred to as ptmp_sid (step 12), and calculate
the corresponding recovery groups gs (step 13). If
ptmp_sid does not belong to Gr, we perform the fol-
lowing update operation. ptmp_sid may be added

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 867

to multiple recovery groups, and thus we randomly
select one recovery group gtmp_gid from them (step
15). We can obtain a new recovery solution Grnew by
replacing the parity symbol of gtmp_gid with ptmp_sid

(step 16). The recovery scheme Snew corresponding
to Grnew is generated (step 17). If Snew reads fewer
symbols, we update S with Snew; otherwise, we ac-
cept the deteriorating solution Snew with a certain
probability (steps 19–21). We will repeat this pro-
cess Ne times at each temperature T. T will decrease
according to a certain attenuation coefficient K until
T is lower than the termination temperature T end or
the number of external iterations reaches the default
value Ne (steps 24–28). Finally, it will return the
scheme S whose number of symbols to be read is the
smallest.
Example 7 We consider the recovery groups
shown in Eq. (3) as an example. First, suppose
the initial recovery solution Gr = {p0, p1, p2} by
randomly selecting one parity symbol from each re-
covery group, and the corresponding symbol-reading
scheme S = {111000111111111000}. In addition,
initialize temperature T , the numbers of internal it-
erations Ni and external iterations Ne, and the ter-
mination temperature Tend. Thus, the initial number
of symbols to be read is 12. Then we perform the
following procedure multiple times to update Gr and
S at temperature T . Assume that we pick a random
symbol p3 /∈ Gr from {p0, p1, . . . , p5}. We replace
p2 ∈ g2 with p3 ∈ g2 to generate Grnew = {p0, p1, p3},
which corresponds to the symbol-reading scheme
Snew = {110000110110110100}, and the number of
symbols to be read is 9 (9 < 12). So, we need to
update Gr and S using Grnew and Snew respectively.
After Ni iterations at temperature T , we reduce T

by multiplying by a factor K (K < 1) and continue
performing the update procedure multiple times at
each T until T < Tend or Ne is reached.

4.3 Complexity analysis

We analyze the complexities of Algorithms 1 and
2 based on the notations listed in Table 1.

1. Complexity of Algorithm 1: Algorithm 1 is a
traversal process on the CDM of erasure codes, and
the complexity of Algorithm 1 is O(m×w×w).

2. Complexity of Algorithm 2: During the exe-
cution of Algorithm 2, two loops are executed, while
the number of external iterations equals Ne and the
number of internal iterations equals Ni. However,

temperature T will gradually decrease with the exe-
cution of the search process, and the number of exter-
nal iterations may not reach Ne. Therefore, the com-
plexity of Algorithm 2 will not exceed O(Ne ×Ni).

3. Complexity of SA-RSR: We have mentioned
that SA-RSR can be decomposed into parity symbol
grouping and recovery solution search. Thus, the
complexity of SA-RSR is O(m×w×w) + O(Ne×Ni).

5 Simulations

We conducted a series of intensive simulations
to evaluate the performance of SA-RSR. Both the
enumeration algorithm (Khan et al., 2012) and the
hill-climbing algorithm Zpacr (Zhu et al., 2014) can
reduce the amount of data required for recovery and
accelerate the data recovery process for any XOR-
based erasure code. We therefore chose these two
algorithms as baselines to describe the advantage of
SA-RSR. Our goal is to show that SA-RSR can re-
turn one symbol-reading scheme in a significantly
short time, and that the amount of data required
by SA-RSR for data recovery is minimum. Simu-
lations were performed on a physical storage server
with an Intel XeonE7 processor, 16 GB memory, and
several SATA HDDs. Each disk was 600 GB and it
operated at 7200 r/min. The operating system was
Centos 7. For each erasure code parameter setting,
we performed 300 simulation runs to obtain the av-
erage value.

We implemented the enumeration algorithm,
Zpacr, and SA-RSR using the C++ language and
considered three kinds of XOR-based erasure code
as the simulation objective, including Blaum_Roth
code (Blaum and Roth, 1993), Liber8Tion code
(Plank, 2009), and CRS code (Roth and Lempel,
1989). Blaum_Roth code and Liber8Tion code be-
long to a class of minimum density RAID-6 codes
(Plank et al., 2011), provide the optimal write per-
formance, and can tolerate up to two node failures.
All selected erasure codes were implemented in the
Jerasure-2.0 Library, which is an open-source library
and is commonly employed in the erasure code com-
munity (Plank et al., 2009). Table 2 lists the restric-
tions of these three coding schemes.

For the data recovery operation, three steps
were performed: (1) determining the symbols in-
volved in the data recovery process, (2) reading
surviving symbols from the selected nodes, and (3)

868 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

Table 2 Erasure codes and their parameters we tested

Coding scheme Restriction(s)

Blaum_Roth k ≤ w, m=2, w > 2, and w+1 is prime
Liber8Tion k < w, m=2, and w=8
CRS 2w≥k+m

reconstructing the failure data symbols. In reality,
SA-RSR primarily acts on step (1), which calculates
the corresponding symbol-reading scheme while se-
lecting nodes to perform the data recovery. Our jus-
tification is that the performance of data recovery in
a distributed storage system primarily depends on
network transmission instead of computations. Pre-
vious studies (Khan et al., 2012; Zhu et al., 2014)
have validated that data reading and transmission
parts consume the majority of data recovery time.
Thus, we need to ensure that SA-RSR does not be-
come a computational bottleneck in the data recov-
ery operation.

5.1 Search performance

We compared the enumeration algorithm,
Zpacr, and SA-RSR in terms of runtime to prove
that SA-RSR can rapidly return an optimal symbol-
reading scheme. Table 3 displays the runtime of
different algorithms over various parameter settings.
In the simulations, we randomly selected one data
node and let it fail. When the parameters (k,m,w)

were relatively large, the enumeration algorithm was
too time-consuming to calculate an optimal symbol-
reading scheme. From Table 3, we can see that the
enumeration algorithm took more than 1 min to ob-
tain the results under most of the parameter settings.
Conversely, both SA-RSR and Zpacr can maintain a
short computation time for all parameter settings,
where they took less than 0.5 s. SA-RSR execution
time was slightly longer than that of Zpacr.

5.2 Data required for data recovery

We simulated the amount of data required for
data recovery to verify that SA-RSR can obtain
a symbol-reading scheme with the least amount of
data. The computation time of the enumeration al-
gorithm is excessive, and we believe that accelerating
the data recovery operation using the enumeration
algorithm in real large-scale distributed storage sys-
tems is impractical. Therefore, we did not compare
the enumeration algorithm with SA-RSR in terms of

Table 3 Runtime of enumeration, Zpacr, and SA-RSR
recoveries

Coding
(k, m, w)

Runtime (s)

scheme Enumeration Zpacr SA-RSR

Blaum_Roth (2, 2, 4) 94.80 0.0003 0.0005
Blaum_Roth (3, 2, 4) 96.16 0.0003 0.0007
Liber8Tion (2, 2, 8) – 0.0179 0.0243
Liber8Tion (4, 2, 8) – 0.0166 0.0351
CRS (2, 2, 4) 94.36 0.0003 0.0006
CRS (3, 2, 4) 96.14 0.0002 0.0008
CRS (3, 3, 3) 599.61 0.0004 0.0005
CRS (4, 3, 8) – 0.1656 0.1854
CRS (4, 4, 8) – 0.2761 0.3067
CRS (5, 3, 8) – 0.2038 0.2141
CRS (5, 4, 8) – 0.4498 0.4930

“–” means that the results cannot be calculated in a short
period of time

the amount of data required for data recovery. After
making a random data node fail, we executed Zpacr
and SA-RAR algorithms, and compared the amount
of data required by the symbol-reading schemes that
they generated.

Fig. 7 illustrates the percentage of the required
amount of data for recovery of Zpacr and SA-RSR
over the conventional recovery method for vari-
ous double-failure-tolerant coding schemes, includ-
ing Blaum_Roth code, Liber8Tion code, and CRS
code (m=2). For Blaum_Roth code, SA-RSR re-
duced the required amount of data by up to 25.0%,
while Zpacr can reduce it by up to only 20.0%.
For Liber8Tion code, SA-RSR reduced the required
amount of data by up to 28.12%, but Zpacr re-
duced it by up to 25.0%. For CRS code, SA-RSR
can reduce the required amount of data by up to
30.0% for recovery, yet Zpacr can reduce it by up
to only 26.70%. Fig. 8 shows the results for three-
failure-tolerant codes. SA-RSR reduced the required
amount of data by up to 25.08%, while Zpacr reduced
it by up to 22.22%.

Figs. 7 and 8 demonstrate that SA-RSR can
reduce the required amount of data for data recov-
ery for various kinds of codes compared to Zpacr.
The reason is that the SA approach can prevent
a search from being confined in suboptimal search
regions compared with other local search methods,
such as the hill-climbing algorithm.

5.3 Algorithm stability

Another crucial metric we considered is algo-
rithm stability. Russell and Norvig (2016) noted

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 869

that SA algorithm is a probability-based algorithm,
for which one may obtain different answers if one
repeats the algorithm several times. We verified
that the convergence of SA-RSR is satisfactory for
the current algorithm implementation. We provide
a new concept of accuracy:

Accuracy

=
average number of symbols to be read

minimum number of symbols to be read
.

(7)

Accuracy is used to denote the closeness be-
tween the optimum solution and the average solution
obtained by SA-RSR. The result is a decimal number
equal to or greater than 1. The closer the accuracy

Blaum_Roth (2, 2, 6) Blaum_Roth (2, 2, 10)

D
at

a
pe

rc
en

ta
ge

 (%
)

50

60

70

80

90

83.30

75

80

75

Zpacr

SA-RSR

(a)

Zpacr

SA-RSR

D
at

a
pe

rc
en

ta
ge

 (%
)

50

60

70

80

90

81.25

75 75
71.88

Liber8Tion (2, 2, 8) Liber8Tion (4, 2, 8)

(b)

D
at

a
pe

rc
en

ta
ge

 (%
)

50

60

70

80

90
Zpacr

SA-RSR
80

75
73.3

70

CRS (2, 2, 10) CRS (3, 2, 10)

(c)

Fig. 7 Percentage of the data needed for Zpacr and
SA-RSR over the conventional approach in terms of
double-fault-tolerant codes: (a) Blaum_Roth code;
(b) Liber8Tion code; (c) CRS code (m = 2)

to 1, the better the convergence of SA-RSR.
We evaluated SA-RSR’s accuracy through ex-

periments. During each experiment, we selected a
data node randomly and made it fail. Table 4 shows
the accuracies for various erasure code parameter
settings, where SNmin, SNmax, and SNavg represent
the minimum, maximum, and average numbers of
symbols, respectively. We observed that the accura-
cies for Blaum_Roth code and Liber8Tion code can
reach 1; the accuracy for CRS code did not exceed
1.04. The reason is that there are strict restrictions
for Blaum_Roth code and Liber8Tion code. The pa-
rameters of Blaum_Roth code and Liber8Tion code
are not large, which ensures that the total number of
recovery equations is small. Thus, SA-RSR can ob-
tain stable symbol-reading schemes in a very short
time. We conclude that SA-RSR has good stability.

6 Experiments

In Section 4, we described how SA-RSR reduces
the amount of data required for data recovery. To

CRS (4, 3, 10)

D
at

a
pe

rc
en

ta
ge

 (%
)

50

60

70

80

90
Zpacr

SA-RSR
80

76.93 78 78
80

74.92

CRS (5, 3, 10) CRS (6, 3, 10)

(a)

D
at

a
pe

rc
en

ta
ge

 (%
)

50

60

70

80

90

CRS (4, 3, 8) CRS (4, 3, 9) CRS (4, 3, 10)

78.13
75.88

77.78 77.2
80

76.93

Zpacr

SA-RSR

(b)

Fig. 8 Percentage of the data needed for Zpacr and
SA-RSR over the conventional approach in terms of
triple-fault-tolerant codes: (a) CRS code with varying
k (m = 3, w = 10); (b) CRS code with varying w

(k = 4, m = 3)

870 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

Table 4 Accuracy of SA-RSR with different coding
schemes and different erasure code parameter settings

Coding scheme (k, m, w) SNmin SNmax SNavg Accuracy

Blaum_Roth (2, 2, 6) 9 9 9 1
Blaum_Roth (2, 2, 10) 15 15 15 1
Liber8Tion (2, 2, 8) 12 12 12 1
Liber8Tion (4, 2, 8) 23 23 23 1
CRS (2, 2, 10) 15 16 15.01 1.0007
CRS (3, 2, 10) 21 21 21 1
CRS (4, 3, 7) 20 21 20.77 1.0385
CRS (4, 3, 8) 24 25 24.28 1.0120
CRS (5, 3, 4) 14 14 14 1
CRS (4, 3, 10) 30 32 30.77 1.0260
CRS (6, 3, 10) 46 48 46.907 1.0200

verify the effectiveness of SA-RSR in accelerating
the data recovery process in real distributed stor-
age systems, we implemented SA-RSR in the open-
source distributed storage system, Ceph. Based on
our implementation, we conducted substantial sys-
tem experiments to test the recovery performance of
SA-RSR in a distributed storage environment. In
this section, we first give an overview of Ceph and
its erasure coding scheme. We then present how to
integrate SA-RSR into Ceph. Finally, we describe
the SA-RSR experimental results.

6.1 Overview of Ceph

Ceph (Weil et al., 2006a) is an open-source dis-
tributed storage system with a decentralized system
architecture and without a single point of failure.
Ceph provides an infinitely scalable storage cluster
that is based on a reliable, autonomic distributed ob-
ject store (RADOS) (Weil et al., 2007) consisting of
two types of daemons: the Ceph monitor (which is
responsible for monitoring the entire storage cluster)
and the Ceph object storage daemon (OSD) (which
handles read/write operations on the storage disks).
Generally, a single OSD is used to manage a single
HDD or SSD. The Ceph clients and Ceph OSDs both
use the CRUSH (Weil et al., 2006b) algorithm to ef-
ficiently determine an object’s location information.

The Ceph storage system supports the notion
of “pools,” which are logical partitions for storing
objects. Each storage pool has an access control
and redundancy policy to provide a separate name-
space for users and applications. Each storage pool
has numerous placement groups (PGs) which are ba-
sic units of data storage and migration in the Ceph
storage system. The settings of PGs depend on the
number of replicas or the settings of the erasure code.

PGs are distributed on multiple OSDs and can be dy-
namically adjusted according to the size of clusters
and the number of objects. One primary OSD (p-
OSD) must be selected from the placement group.
The pool that is based on the replication scheme is
responsible for forwarding objects to all other OSDs
in the placement group, while the pool that uses
erasure codes must divide and encode the object and
send the coded block to other OSDs in the placement
group. Ceph supports an erasure coding scheme via
a pluggable interface that enables the use of a variety
of traditional erasure codes (e.g., RS code and CRS
code) and locally repairable codes.

The encoding process of the erasure code in
Ceph is performed as a real-time job; i.e., the data is
encoded while being written into the system. When
writing data into a Ceph storage cluster using an
erasure coded pool, the selected p-OSD divides the
input data stream into many stripes. Each stripe is
then divided into k data chunks and is encoded to
generate m = n−k parity chunks using (n, k, w) era-
sure codes. The stripe size in Ceph refers to the size
of k data chunks and can be specified in the config-
uration file. Furthermore, a chunk is composed of w
symbols, the size of which is a multiple of 8192 bytes.

Fig. 9 shows an example of the encoding process
of Ceph, where the original object is divided into two
stripes, each of which is composed of two chunks la-
beled as chunk 0 and chunk 1. Each chunk is further
partitioned into two symbols, e.g., X00 and X01 in
stripe 0 or Y00 and Y01 in stripe 1.

6.2 SA-RSR in Ceph

To integrate SA-RSR in the distributed storage
system Ceph, we reconstructed the execution logic of
the data recovery process of erasure codes in Ceph.
Fig. 10 shows our implementation architecture. Dur-
ing data recovery, Ceph first selects one OSD node,
usually the p-OSD node, in the PG to perform data
recovery operations. We refer to this OSD as the
recovery node.

Ceph, by default, uses the conventional recovery
strategy mentioned in Section 2.2. In detail, accord-
ing to the coding scheme in the PG and the number
and location of the failed nodes, Ceph selects k sur-
viving nodes to participate in the data recovery oper-
ation, including data nodes and parity nodes. In our
design, when performing data recovery, the recovery
scheduling module in Ceph first executes SA-RSR to

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 871

obtain an optimal symbol-reading scheme. Then ac-
cording to the symbol-reading scheme, the recovery
node constructs a reading request for each node in-
volved in the data recovery process. Once the read-
ing requests are built, they are sent to the corre-
sponding nodes.

A recovery read handler runs on each surviving
node and handles the read requests sent by the recov-
ery node. OSDs in Ceph are responsible for reading
data blocks from the disk. Based on this system de-
sign, the recovery read handler performs data read
operations according to the messages in the read re-
quests, which contain the identification numbers of
the symbols that the current node needs to read. All
symbols needed for data recovery are sent back to
the recovery node.

The failure data symbols can be obtained by the
decoding operation of the decoding module. Ceph
uses an erasure code plug-in infrastructure that en-
ables dynamic use of external erasure code libraries,

while the XOR-based erasure codes are implemented
in the Jerasure-2.0 Library in Ceph. Therefore, we
improve the decoding part of the Jerasure library to
ensure that it can decode the lost data with fewer
data.

Our integration of SA-RSR is based on the re-
lease of Ceph’s Luminous v12.0.2 . We consider CRS
code, Blaum_Roth code, and Liber8Tion code as
representative XOR-based erasure codes, which have
been implemented in the Jerasure library in Ceph.

6.3 Results

In this subsection, we evaluated the recovery
performance of SA-RSR in Ceph. Ceph was deployed
on a cluster consisting of five Linux-based servers,
each of which was equipped with an Intel XeonE7
CPU and 16 GB RAM. Each storage device was a
SATA HDD with 600 GB capacity and it operated
at 7200 r/min. The servers were interconnected via

Ceph object

X00

X01

X10

X11

Y00

Y01

Y10

Y11

S
tri

pe
 0

S
tri

pe
 1

Encoding

X00 X01 X10 X11 P00 P01 P10 P11

Chunk 0 Chunk 1 Parity 0 Parity 1

Chunk 0 Chunk 1 Parity 0 Parity 1

Y00 Y01 Y10 Y11 Q00 Q01 Q10 Q11

Symbols

Encoding results of stripe 0

Encoding results of stripe 1

Data Parity

Fig. 9 A Ceph encoding example when k=2 and m=2 (The object is divided into two stripes, and the symbols
within each of the stripe are encoded)

Disk Disk Disk Disk Disk

OSD 01 OSD 02 OSD 03 OSD 04 OSD 05
Recovery read

handler
Recovery read

handler
Recovery read

handler
Recovery read

handler
Recovery read

handler

Executing SA-RSR

Dispatching the read
requests for data recovery

Recovery scheduling
module

Decoding
module

Recovery node

...

Fig. 10 Integration of SA-RSR in Ceph

872 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

a gigabit ethernet switch. In the Ceph system, a
physical disk can serve as a logical OSD storage node.
Here, each of the four servers was configured three
disks to form three logical OSD nodes; the remaining
server was responsible for managing the cluster and
was used as a monitoring node. Thus, we had at most
12 OSD nodes with capacity of 7.03 TB depending
on the chosen erasure coding schemes.

In Section 5, we explained the significant com-
plexity of the enumeration algorithm and concluded
that the enumeration algorithm is not always suit-
able for real distributed storage systems, so we im-
plemented Zpacr and SA-RSR in Ceph without im-
plementing the enumeration algorithm. We did not
specifically optimize our implementation to demon-
strate the absolute recovery performance. Instead,
our goal is to evaluate the relative performance of
SA-RSR compared with the conventional approach
and Zpacr in fair conditions.

We focused on the metric of recovery speed,
which is the amount of data recovered per second.
We wrote a 200-MB object into a Ceph storage
cluster using a specified coding scheme (e.g., CRS
code, Blaum_Roth code, or Liber8Tion code). Note
that SA-RSR may read non-contiguous symbols in
a disk, which will result in random access to HDDs
and performance degradation. However, Khan et al.
(2012) pointed out that the enumeration algorithm
with large stripes in cloud file systems can amortize
the seek costs incurred when reading non-contiguous
symbols. This also applies to our SA-RSR algorithm
when implemented in a distributed storage system.
Specifically, we set our symbol size to 1 MB to amor-
tize the seek cost in our experiments. We made one
node fail in the corresponding PG by setting the state
of the OSD as “out” to trigger the data recovery oper-
ation of the Ceph system; the recovery operation in-
cludes performing SA-RSR, building a read request
for data recovery operation, reading corresponding
symbols from disks, and performing the decoding
operation. The recovery operation was performed 20
times, and we obtained the total average.

Fig. 11 demonstrates the comparison of the
recovery speed among the conventional approach,
Zpacr, and SA-RSR for different double-failure-
tolerant codes, including Blaum_Roth code,
Liber8Tion code, and CRS code (m=2). For
Blaum_Roth code, Liber8Tion code, and CRS code,
the improvements of SA-RSR over the conventional

approach for data recovery were up to 19.48%,
17.92%, and 20.36% respectively, while Zpacr had
an acceleration rate of 16.88%, 13.87%, and 18.56%
in recovery speed over the conventional approach,
respectively. Fig. 12 shows the results of different
coding schemes that tolerated three or more node
failures. We observed that SA-RSR improved the
recovery speed by 19.05%, 18.01%, and 15.63% with
k=4, 5, and 6 respectively, while Zpacr improved
the recovery speed by 14.88%, 13.04%, and 13.13%,
respectively. SA-RSR achieved 17.03%, 18.18%, and
19.05% improvements in recovery speed over the con-
ventional approach with w=8, 9, and 10, respec-
tively, while Zpacr increased the recovery speed by
15.38%, 15.34%, and 14.88%, respectively.

0

5

10

15

20

25

30

16
18.4 19

15.4
18 18.4

Conventional
Zpacr
SA-RSR

Blaum_Roth (2, 2, 6) Blaum_Roth (2, 2, 10)

R
ec

ov
er

y
sp

ee
d

(M
B

/s
)

(a)

0

5

10

15

20

25

30

R
ec

ov
er

y
sp

ee
d

(M
B

/s
)

Liber8Tion (2, 2, 8) Liber8Tion (4, 2, 8)

Conventional
Zpacr
SA-RSR

18.5
21 21.5

17.3
19.7 20.4

(b)

0

5

10

15

20

25

30

R
ec

ov
er

y
sp

ee
d

(M
B

/s
)

Conventional
Zpacr
SA-RSR

16.9
19.6 20.3

16.7
19.8 20.1

CRS (2, 2, 10) CRS (3, 2, 10)

(c)

Fig. 11 Recovery speed comparison among the con-
ventional approach, Zpacr, and SA-RSR for dif-
ferent codes that tolerate two node failures: (a)
Blaum_Roth code; (b) Liber8Tion code; (c) CRS
code (m = 2)

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 873

0

5

10

15

20

25

30

R
ec

ov
er

y
sp

ee
d

(M
B

/s
)

CRS (4, 3, 10) CRS (5, 3, 10) CRS (6, 3, 10)

16.8
19.3 20

16.1
18.2 19

16
18.1 18.5

Conventional
Zpacr
SA-RSR

(a)

0

5

10

15

20

25

30

R
ec

ov
er

y
sp

ee
d

(M
B

/s
)

18.2
21 21.3

17.6
20.3 20.8

16.8
19.3 20

Conventional
Zpacr
SA-RSR

CRS (4, 3, 8) CRS (4, 3, 9) CRS (4, 3, 10)

(b)

Fig. 12 Recovery speed comparison among the con-
ventional approach, Zpacr, and SA-RSR for different
codes that tolerate three or more node failures: (a)
CRS code (m = 3, w = 10); (b) CRS code (k = 4,
m = 3)

Figs. 11 and 12 indicate that SA-RSR can effec-
tively accelerate the data recovery process of erasure
coding schemes in the real distributed storage sys-
tem. The reason is that SA-RSR effectively reduces
the data amount in the data recovery process for
various erasure coding schemes compared with the
conventional approach, while Zpacr is prone to fall
into a local optimum solution during execution. In
Section 5, we declared that the recovery performance
of the erasure coding schemes in distributed storage
systems is determined mainly by network transmis-
sion rather than computing operation, and we ver-
ified that the computation overhead of SA-RSR for
search is very small. Thus, the improvement of SA-
RSR over Zpacr can be more significant.

7 Conclusions

Data recovery is a costly process in distributed
storage systems that employ XOR-based erasure
codes because it occupies a large amount of network
bandwidth. To accelerate the recovery of failure
data, we proposed a random search recovery algo-
rithm that can provide the optimal recovery perfor-
mance by minimizing the data needed for single-node

failure recovery. This algorithm can significantly
reduce the search time of an optimal recovery so-
lution to a polynomial time. To demonstrate the
effectiveness of our algorithm, we performed exten-
sive simulations with a variety of XOR-based era-
sure codes. We also conducted experiments by im-
plementing Zpacr and our algorithm in a real dis-
tributed storage system, Ceph. The results showed
that our algorithm reduced the amount of data re-
quired for single-node failure recovery by up to 30.0%
and improved the performance of data recovery by
up to 20.36% in Ceph when compared to the conven-
tional recovery method.

Contributors
Xingjun ZHANG designed the research. Ningjing

LIANG and Yunfei LIU processed the data. Ningjing

LIANG drafted the paper. Changjiang ZHANG helped

organize the paper. Ningjing LIANG, Changjiang ZHANG,

and Yang LI revised and finalized the paper.

Compliance with ethics guidelines
Xingjun ZHANG, Ningjing LIANG, Yunfei LIU,

Changjiang ZHANG, and Yang LI declare that they have

no conflict of interest.

References
Arnold J, 2014. OpenStack Swift Using, Administering, and

Developing for Swift Object Storage. O’Reilly Media,
Sebastopol, USA.

Blaum M, Roth RM, 1993. New array codes for multiple
phased burst correction. IEEE Trans Inform Theory,
39(1):66-77. https://doi.org/10.1109/18.179343

Blaum M, Brady J, Bruck J, et al., 1995. EVENODD: an
efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Trans Comput, 44(2):192-
202. https://doi.org/10.1109/12.364531

Blaum M, Bruck J, Vardy A, 1996. MDS array codes with in-
dependent parity symbols. IEEE Trans Inform Theory,
42(2):529-542. https://doi.org/10.1109/18.485722

Borthakur D, 2007. The Hadoop Distributed File System:
Architecture and Design. http://hadoop.apache.org/
core/docs/current/hdfs_design.html

Calder B, Wang J, Ogus A, et al., 2011. Windows azure
storage: a highly available cloud storage service with
strong consistency. Proc 23rd ACM Symp on Operating
Systems Principles, p.143-157.
https://doi.org/10.1145/2043556.2043571

Corbett P, English B, Goel A, et al., 2004. Row-diagonal par-
ity for double disk failure correction. Proc 3rd USENIX
Conf on File and Storage Technologies, Article 1.

Facebook, 2018. HDFS-RAID.
http://wiki.apache.org/hadoop/HDFS-RAID

Gad EE, Mateescu R, Blagojevic F, et al., 2013. Repair-
optimal MDS array codes over GF(2). IEEE Int Symp

874 Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875

on Information Theory, p.887-891.
https://doi.org/10.1109/ISIT.2013.6620354

Ghemawat S, Gobioff H, Leung ST, 2003. The Google file
system. Proc 19th ACM Symp on Operating Systems
Principles, p.29-43.
https://doi.org/10.1145/945445.945450

Goel A, Corbett P, 2012. RAID triple parity. ACM SIGOPS
Oper Syst Rev, 46(3):41-49.
https://doi.org/10.1145/2421648.2421655

Hou HX, Lee PPC, 2020. Binary MDS array codes with
optimal repair. IEEE Trans Inform Theory, 66(3):1405-
1422. https://doi.org/10.1109/TIT.2019.2939111

Hou HX, Han YS, Lee PPC, et al., 2019a. A new de-
sign of binary MDS array codes with asymptotically
weak-optimal repair. IEEE Trans Inform Theory,
65(11):7095-7113.
https://doi.org/10.1109/TIT.2019.2923992

Hou HX, Han YS, Lee PPC, et al., 2019b. New regenerating
codes over binary cyclic codes. IEEE Int Symp on
Information Theory, p.216-220.
https://doi.org/10.1109/ISIT.2019.8849354

Hou HX, Lee PPC, Shum KW, et al., 2019c. Rack-aware
regenerating codes for data centers. IEEE Trans Inform
Theory, 65(8):4730-4745.
https://doi.org/10.1109/TIT.2019.2902835

Huang C, Xu LH, 2008. STAR: an efficient coding scheme
for correcting triple storage node failures. IEEE Trans
Comput, 57(7):889-901.
https://doi.org/10.1109/TC.2007.70830

Huang C, Simitci H, Xu YK, et al., 2012. Erasure coding in
windows azure storage. Proc USENIX Conf on Annual
Technical Conf, Article 2.

Jiekak S, Kermarrec AM, Le Scouarnec N, et al., 2013. Re-
generating codes: a system perspective. ACM SIGOPS
Oper Syst Rev, 47(2):23-32.
https://doi.org/10.1145/2506164.2506170

Jin C, Jiang H, Feng D, et al., 2009. P-Code: a new RAID-6
code with optimal properties. Proc 23rd Int Conf on
Supercomputing, p.360-369.
https://doi.org/10.1145/1542275.1542326

Khan O, Burns R, Plank J, et al., 2012. Rethinking erasure
codes for cloud file systems: minimizing I/O for recovery
and degraded reads. Proc 10th USENIX Conf on File
and Storage Technologies, Article 20.

Liang NJ, Zhang XJ, Yang HL, et al., 2020. An optimal
recovery approach for liberation codes in distributed
storage systems. IEEE Access, 8:137631-137645.
https://doi.org/10.1109/ACCESS.2020.3012190

Miyamae T, Nakao T, Shiozawa K, 2014. Erasure code with
shingled local parity groups for efficient recovery from
multiple disk failures. Proc 10th USENIX Conf on Hot
Topics in System Dependability, Article 5.

Pamies-Juarez L, Blagojevic F, Mateescu R, et al., 2016.
Opening the chrysalis: on the real repair performance
of MSR codes. Proc 14th USENIX Conf on File and
Storage Technologies, p.81-94.

Plank JS, 2008. The RAID-6 liberation codes. Proc
6th USENIX Conf on File and Storage Technologies,
p.97-110.

Plank JS, 2009. The RAID-6 Liber8Tion code. Int J High
Perform Comput Appl, 23(3):242-251.
https://doi.org/10.1177/1094342009106191

Plank JS, Luo JQ, Schuman CD, et al., 2009. A performance
evaluation and examination of open-source erasure cod-
ing libraries for storage. Proc 7th Conf on File and
Storage Technologies, p.253-265.

Plank JS, Buchsbaum AL, Zanden BTV, 2011. Minimum
density RAID-6 codes. ACM Trans Stor, 6(4):16.
https://doi.org/10.1145/1970338.1970340

RedHat, 2018. Ceph Erasure. http://docs.ceph.com/docs/
master/architecture/erasurecodin

Reed IS, Solomon G, 1960. Polynomial codes over certain
finite fields. J Soc Ind Appl Math, 8(2):300-304.
https://doi.org/10.1137/0108018

Roth RM, Lempel A, 1989. On MDS codes via Cauchy
matrices. IEEE Trans Inform Theory, 35(6):1314-1319.
https://doi.org/10.1109/18.45291

Russell SJ, Norvig P, 2016. Artificial Intelligence: a Modern
Approach. Prentice-Hall, Inc., USA.

Sathiamoorthy M, Asteris M, Papailiopoulos D, et al., 2013.
XORing elephants: novel erasure codes for big data.
Proc VLDB Endow, 6(5):325-336.
https://doi.org/10.14778/2535573.2488339

Schroeder B, Gibson GA, 2007. Disk failures in the real
world: what does an MTTF of 1 000 000 hours mean
to you? Proc 5th USENIX Conf on File and Storage
Technologies, p.1-16.

Shen ZR, Shu JW, 2014. HV Code: an all-around MDS code
to improve efficiency and reliability of RAID-6 systems.
Proc 44th Annual IEEE/IFIP Int Conf on Dependable
Systems and Networks, p.550-561.
https://doi.org/10.1109/DSN.2014.57

Tamo I, Wang ZY, Bruck J, 2011. MDS array codes with
optimal rebuilding. IEEE Int Symp on Information
Theory, p.1240-1244.
https://doi.org/10.1109/ISIT.2011.6033733

Tamo I, Wang ZY, Bruck J, 2013. Zigzag codes: MDS array
codes with optimal rebuilding. IEEE Trans Inform
Theory, 59(3):1597-1616.
https://doi.org/10.1109/TIT.2012.2227110

Vajha M, Ramkumar V, Puranik B, et al., 2018. Clay codes:
moulding MDS codes to yield an MSR code. Proc
16th USENIX Conf on File and Storage Technologies,
p.139-153.

Wang ZY, Dimakis AG, Bruck J, 2010. Rebuilding for array
codes in distributed storage systems. IEEE Globecom
Workshops, p.1905-1909.
https://doi.org/10.1109/GLOCOMW.2010.5700274

Weil SA, Brandt SA, Miller EL, et al., 2006a. Ceph: a scal-
able, high-performance distributed file system. Proc
7th Symp on Operating Systems Design and Implemen-
tation, p.307-320.

Weil SA, Brandt SA, Miller EL, et al., 2006b. CRUSH: con-
trolled, scalable, decentralized placement of replicated
data. Proc ACM/IEEE Conf on Supercomputing, Ar-
ticle 122-es. https://doi.org/10.1145/1188455.1188582

Weil SA, Leung AW, Brandt SA, et al., 2007. RADOS:
a scalable, reliable storage service for petabyte-scale
storage clusters. Proc 2nd Int Workshop on Petascale
Data Storage: held in conjunction with Supercomput-
ing, p.35-44.
https://doi.org/10.1145/1374596.1374606

Zhang et al. / Front Inform Technol Electron Eng 2022 23(6):858-875 875

Wu CT, Wan SG, He XB, et al., 2011. H-Code: a hybrid
MDS array code to optimize partial stripe writes in
RAID-6. Proc IEEE Int Parallel & Distributed Pro-
cessing Symp, p.782-793.
https://doi.org/10.1109/IPDPS.2011.78

Xiang LP, Xu YL, Lui JCS, et al., 2011. A hybrid approach
to failed disk recovery using RAID-6 codes: algorithms
and performance evaluation. ACM Trans Stor, 7(3):11.
https://doi.org/10.1145/2027066.2027071

Xu LH, Bruck J, 1999. X-code: MDS array codes with opti-
mal encoding. IEEE Trans Inform Theory, 45(1):272-
276. https://doi.org/10.1109/18.746809

Xu SL, Li RH, Lee PPC, et al., 2014. Single disk failure re-
covery for X-code-based parallel storage systems. IEEE
Trans Comput, 63(4):995-1007.
https://doi.org/10.1109/TC.2013.8

Ye FW, Liu SQ, Shum KW, et al., 2020. On secure exact-
repair regenerating codes with a single Pareto optimal
point. IEEE Trans Inform Theory, 66(1):176-201.
https://doi.org/10.1109/TIT.2019.2942315

Zhang YZ, Wu CT, Li J, et al., 2015. TIP-Code: a three
independent parity code to tolerate triple disk failures
with optimal update complextiy. Proc 45th Annual
IEEE/IFIP Int Conf on Dependable Systems and Net-
works, p.136-147.
https://doi.org/10.1109/DSN.2015.19

Zhu YF, Lee PPC, Xu YL, et al., 2014. On the speedup
of recovery in large-scale erasure-coded storage systems.
IEEE Trans Parall Distrib Syst, 25(7):1830-1840.
https://doi.org/10.1109/TPDS.2013.244

	Introduction
	Background and related works
	Background: XOR-based erasure codes
	Related works
	Conventional recovery
	Hybrid recovery
	Enumeration recovery
	Hill-climbing recovery

	Motivation
	Detailed design of SA-RSR
	Parity symbol grouping
	Recovery solution search
	Complexity analysis

	Simulations
	Search performance
	Data required for data recovery
	Algorithm stability

	Experiments
	Overview of Ceph
	SA-RSR in Ceph
	Results

	Conclusions

