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Abstract: In this study, a novel reinforcement learning task supervisor (RLTS) with memory in a behavioral control
framework is proposed for human–multi-robot coordination systems (HMRCSs). Existing HMRCSs suffer from high
decision-making time cost and large task tracking errors caused by repeated human intervention, which restricts the
autonomy of multi-robot systems (MRSs). Moreover, existing task supervisors in the null-space-based behavioral
control (NSBC) framework need to formulate many priority-switching rules manually, which makes it difficult to
realize an optimal behavioral priority adjustment strategy in the case of multiple robots and multiple tasks. The
proposed RLTS with memory provides a detailed integration of the deep Q-network (DQN) and long short-term
memory (LSTM) knowledge base within the NSBC framework, to achieve an optimal behavioral priority adjustment
strategy in the presence of task conflict and to reduce the frequency of human intervention. Specifically, the proposed
RLTS with memory begins by memorizing human intervention history when the robot systems are not confident in
emergencies, and then reloads the history information when encountering the same situation that has been tackled by
humans previously. Simulation results demonstrate the effectiveness of the proposed RLTS. Finally, an experiment
using a group of mobile robots subject to external noise and disturbances validates the effectiveness of the proposed
RLTS with memory in uncertain real-world environments.
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1 Introduction

Human–multi-robot coordination systems (HM-
RCSs) (Zheng et al., 2017; Lippi and Marino, 2018)
have been used in homes (Lee and Kim, 2018),
military detection (Gans and Rogers, 2021), res-
cue robots (Queralta et al., 2020), industrial pro-
cesses (Robla-Gómez et al., 2017), and outer space
exploration (Bluethmann et al., 2003). Coordina-
tion between humans and robots can improve con-
trol efficiency and robustness, and allows robots to
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successfully complete specific predetermined tasks
while encountering emergencies such as partial
failure. On this topic, researchers have proposed
different methods to achieve efficient and practical
human–multi-robot coordination. An automated ad-
vising agent system has been introduced to solve
the problem of supervising and operating multiple
robots simultaneously in a large-scale human–multi-
robot coordination system (HMRCS) for search and
rescue (Rosenfeld et al., 2017). A distributed con-
trol strategy based on robust adaptive control has
been designed to realize efficient physical inter-
action between human and multiple manipulators
(Lippi et al., 2019). An intelligent robot naviga-
tion system has been proposed to realize human–
multi-robot coordination control, where multiple
robots can implement tasks with priority with ex-
ternal disturbances such as human and robot motion
(Bajcsy et al., 2019). A robot fault human informa-
tion processing (RF-HIP) model has been designed
(Honig and Oron-Gilad, 2018) to solve communica-
tion and perception problems among humans and
robots, in which efficient decision-making and con-
trol are achieved under the condition of perception
error and response failure in some robots.

Although these approaches achieve effective co-
operation among humans and robots, they do not
consider repeated human intervention in the task
execution process when robots encounter similar
emergencies or failures. This may require consis-
tent human attention, increasing the burden of hu-
man monitoring and controlling and the probabil-
ity of making mistakes. In addition, frequent hu-
man participation and repeated intervention can re-
sult in significant decision-making time cost and
task tracking errors, which seriously affect task ex-
ecution process and may even cause safety prob-
lems. To tackle these problems, researchers have
recently proposed learning methods to memorize hu-
man intervention information, called human-in-loop
(HIL) hybrid enhanced intelligence (Zheng et al.,
2017). For example, an HIL hybrid enhanced in-
telligent closed-loop system has been built by in-
troducing machine learning and human knowledge
into robotic decision-making (Fu et al., 2019). A hi-
erarchical emotional episodic memory method has
been proposed in social human–robot collaboration
(Lee and Kim, 2018), where robots are able to re-
member and manage human experiences and predict

and prevent emergencies.

However, conflicts among humans and robots
are inevitable in human–robot cooperation as robots
are flexibly combined and designated to complete
tasks with increasing complexity. Null-space-based
behavioral control (NSBC) (Antonelli and Chi-
averini, 2006) is a practical method for resolv-
ing task conflicts. NSBC ensures that tasks with
higher priority are fully executed, while those with
lower priority can be partially executed using null-
space projection and system redundancy. To this
end, one of the key issues in NSBC is to design
an implicit centralized supervisor to manage mul-
tiple tasks that may be in conflict. Traditional su-
pervisors include the finite state automaton (FSA)
method (Baizid et al., 2017), fuzzy logic method
(Moreno et al., 1993; Huang et al., 2019), and model
predictive control (MPC) (Chen et al., 2020), which
can realize real-time dynamic switching of task prior-
ity. However, FSA and fuzzy logic methods need to
manually formulate priority switching rules. These
methods are not intuitive when their task space and
state space are large. In addition, the supervisor
based on MPC has the disadvantages of requiring
an accurate mathematical model and high cost of
real-time computation.

The task supervisor design is even more trou-
blesome in the case of human intervention in HM-
RCSs, in which questions like when and how hu-
mans intervene are not easy to answer. In early
studies, a human drift diffusion model (DDM) has
been proposed to account for human intervention in
the NSBC framework (Huang et al., 2020). How-
ever, these works do not consider the repeated and
frequent human intervention problems which may
cause high decision-making time cost and significant
task tracking errors. Motivated by these issues, we
propose a novel reinforcement learning task super-
visor (RLTS) with memory in the NSBC framework
(Mo et al., 2022). A deep Q-network (DQN) and a
long short-term memory (LSTM) knowledge base are
employed to address the problems of dynamic task
priority adjustment and repeated human participa-
tion. In particular, the proposed RLTS with memory
first memorizes human intervention history from the
situations when robot systems are not confident in
emergencies, and then reloads the history informa-
tion when encountering the situation that was pre-
viously tackled by humans. RLTS is first trained
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off-line, and can obtain dynamic task priority ad-
justment strategies online depending on the environ-
ment. This overcomes the defects of the traditional
FSA and MPC task supervisors. This paper is signif-
icantly improved on the basis of Mo et al. (2022) in
the following areas: (1) An artificial potential field
model is introduced to improve the state selection
accuracy of the RLTS. So, the proposed RLTS with
memory can accurately determine whether to trigger
human intervention, and the robots have the ability
to avoid dynamic obstacles. (2) In addition to nu-
merical simulations, experiments are conducted us-
ing real mobile robots to demonstrate the effective-
ness of the proposed RLTS.

2 Preliminaries and problem state-
ment

2.1 Markov decision process

The Markov decision process (MDP) (Aviv and
Pazgal, 2005; Zhang et al., 2021) can be used to
describe the interaction between agents and the en-
vironment. An agent can implement an action
in the environment, obtain a new state and re-
ward, and evaluate the next action according to
the state at the current time. MDP contains a
five-tuple (S,A, T,R, γ), where S represents a set
of states, A represents a set of actions, T : S × A ×
S → [0, 1] denotes the transition probability func-
tion with T a

ss′=P [St+1 = s′|St = s,At = a], R:
S × A × S → R denotes the reward function with
Ra

s = E [Rt+1|St = s,At = a], and γ is the discount-
ing factor for future reward and γ ∈ [0, 1].

The state-value function vπ(s) and the action-
value function qπ(s, a) following policy π can be ex-
pressed as

vπ(s)=Eπ[Gt|St=s]=
∑
s′∈S

T a
ss′ [R

a
s+γvπ(s′)], (1)

qπ(s, a) = Eπ[Gt|St = s,At = a]

=Ra
s+γ

∑
s′∈S

T a
ss′

∑
a′∈A

π(a′|s′)qπ(s′, a′), (2)

where Gt represents the attenuation sum of all re-
wards from state St at time t to the final state.

2.2 Deep Q-networks

In DQNs, the agent tries to learn the optimal
action value function q∗(s, a) through value iteration

update (Mnih et al., 2015; Wang et al., 2020). In the
value iteration process, DQNs introduce a deep neu-
ral network qw(s, a) with parameter w to replace the
Q-table in Q-learning (Watkins and Dayan, 1992).
The parameter w is learned by randomly sampling
a mini-batch nm of transitions from an experience
replay buffer and minimizing the squared temporal-
difference (TD) error. The cost function can be cal-
culated as

L(w) =

nm∑
μ=1

(Gμ − q(s, a;w))2, (3)

where Gμ = r + γmaxa′ q̂(s′, a′;w−) is the TD goal,
also called the expected state-action reward, w−

is the neural network parameter of the target Q-
network, s and s′ are the current and next states
respectively, and a and a′ are the current selected
action and next action respectively.

2.3 Null-space-based behavioral control

The NSBC approach can be designed in a
three-level structure consisting of elementary be-
haviors, composite behaviors, and a task supervisor
(Baizid et al., 2015, 2017). The speed output of each
elementary behavior can be combined and superim-
posed according to the geometric rules of null-space
projection to obtain reference speed signals of the
robots.

2.3.1 Elementary behaviors

In NSBC, elementary behaviors are the atomic
task functions to be controlled at the kinematic level.
They can be expressed by a function that involves the
degree of freedom of the system and variables to be
controlled.

Define ρ ∈ R
m as the task variable and δ ∈

R
n as the system configuration. ρi is the function

related to δi, i = 1, 2, . . . , κ, and κ is the number of
robots in the HMRCS. Thus, the corresponding task
function of each robot can be expressed as

ρi = f(δi). (4)

The corresponding differential relationship of
Eq. (4) is

ρ̇i =
∂f(δi)

∂δi
vi = J i(δi)vi, (5)

where J i(δi) ∈ R
m×n is the configuration-related

task Jacobian matrix of the ith robot and vi ∈ R
n is
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the stacked vector of the ith robot. n depends on the
specific system and controllable degree of freedom;
for example, for a mobile robot, n = 3. The system
configuration here is referred to the position and ori-
entation. The reference velocity vd can be calculated
by converting the local linear mapping (5) into the
least-square formula. The integration of reference ve-
locity would incur a certain drift of the reconstructed
position of the robot, which can be compensated
for by the following closed-loop inverse kinematics
(CLIK) algorithm (Antonelli and Chiaverini, 2006):

vi,d = J†
i (ρ̇i,d +Λi(ρi,d − ρi)), (6)

where J†
i = JT

i (J iJ
T
i )

−1 is the pseudo-inverse ma-
trix of J i and Λi is a positive-definite constant gain
matrix. Let ρi,d,ρi be the desired and actual posi-
tions of the ith robot respectively, and ρ̃i = ρi,d−ρi

be the task tracking error.
Remark 1 A behavior is also called a task or
mission in behavioral control in this study.

2.3.2 Composite behaviors

Composite behaviors are combinations of mul-
tiple elementary behaviors and determined by the
priority of tasks.

Let ρj ∈ R
mj be the jth task function, where

j = 1, 2, · · · ,K and mj denotes the space dimension
of the jth task. Define a time-related priority func-
tion g(j, t) : NK×[0,∞] → NK , NK = {1, 2, . . . ,K},
representing a mapping between the task function
index and the priority index. Then, the composite
behavior combination rules can be defined as follows:

1. j = 1 is assumed as the top priority. jα > jβ
indicates that jβ owns a higher priority than jα. The
behavior with priority jα cannot interfere with the
behaviors with priority jβ , ∀jα, jβ ∈ NK , jα �= jβ .
The behaviors with a lower priority are allowed to
be executed in the null-space of all behaviors with a
higher priority.

2. The behavior Jacobian matrices Jg(j,t) ∈
R

mj×n, j = 1, 2, · · · ,K, determine the mappings
from the generalized velocities of the system to the
behavior velocities.

3. The dimension of the lowest-level task mk can
be greater than mn −∑K−1

j=1 mj . So, the dimension
mn of the behavior space is larger than the total
dimension of all behaviors.

4. g(j, t) depends on a task supervisor accord-
ing to task requirements and the sensor feedback

information.
The velocity output of composite behaviors at

time t is given by the following recursive expression
by distributing a given priority to multiple elemen-
tary behaviors. Therefore, the velocity output of
composite behaviors at time t can be expressed as

vd(t) = v1(t) +

ζ∑
ic=2

N ic−1(t)vic(t), (7)

where vic(t) is the speed output of elementary be-
haviors ic, ic = 2, 3, . . . , ζ represents the behav-
ior priority of the behaviors in the ith robot, ζ

is the quantity of all elementary behaviors, and
N ic(t) = I − J†

ic
(t)J ic(t) is a projection onto the

null-space of the augmented Jacobian matrix J ic(t).
J ic(t) can be expressed as

J ic(t) = [JT
1 (t),J

T
2 (t), . . . ,J

T
ζ (t)]

T. (8)

Remark 2 Only those elementary behaviors
in conflicts are supposed to be allocated priori-
ties among all elementary behaviors, while inter-
independent behaviors can be executed au-
tonomously with available degree of freedom.

2.3.3 Behavioral control task supervisor

In the NSBC approach, the real-time switching
between composite behaviors must be assigned by a
so-called task supervisor (Baizid et al., 2015), which
can dynamically manage and adjust the composite
behaviors. It can be triggered flexibly according to
task requirements and sensor information. The de-
sign of the behavioral control task supervisor module
will be detailed later.

2.4 Problem description and assumptions

The goal of this study is to develop an optimal
adjustment strategy of the behavioral priority and
reduce the frequency of repeated human participa-
tion. First, we have the following commonly used
assumptions:
Assumption 1 All robot tasks are local tasks.
There is no information interaction between robots.
Each robot in HMRCSs pursues its own maximum
benefit.
Assumption 2 Robots are autonomously con-
trolled by a robot controller. Human intervention
will take over control only when the robot system is
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not confident enough or fails to complete the tasks
within a limited time period.

3 RLTS with memory

In this section, we describe the design of a novel
RLTS with memory to control the HMRCS. It is
designed to obtain an optimal behavioral priority
adjustment strategy and reduce the frequency of re-
peated human participation in the HMRCS by elab-
orately integrating the NSBC approach, DQN, and
a specific memory base.

3.1 Basic framework of the HIL hybrid en-
hanced intelligence system

The basic framework of the HIL hybrid en-
hanced intelligence was systematically summarized
in Zheng et al. (2017). When autonomous un-
manned systems are in an abnormal situation in
which robots are unable to execute tasks in a limited
time period or the host computer is not confident
enough to complete those specific tasks, the au-
tonomous unmanned systems ask for human assis-
tance and automatically update operation informa-
tion to the knowledge base after estimating the con-
fidence and a cognitive state of the host computer.
Accuracy and credibility can be enhanced after in-
troducing human prediction and intervention. The

frequency of human participation can be reduced due
to the knowledge base.

3.2 HMRCS under the NSBC-based frame-
work

Based on the aforementioned framework, a novel
HMRCS under the NSBC-based framework is de-
signed, as shown in Fig. 1. It consists of six key
elements: an autonomous decision maker, an RLTS
with memory, the typical NSBC scheme, the ac-
tual physical environment, a data processing station
based on DDM, and an HIL decision maker. They
are marked �–� in the block diagram. A detailed
description of each element is given below:

1. The autonomous decision maker. As shown
in element �, this element is responsible for robot
moving autonomously according to preset programs
or control laws. In our application scenario, the pre-
set or designated programs include the tracking task,
obstacle avoidance task, and collision avoidance task.

2. The RLTS with memory. As shown in el-
ement �, the role of the supervisor is to obtain an
optimal behavioral priority adjustment strategy and
dynamically adjust the task priority during the task
execution process. It learns, records, and reloads the
control input of human intervention. This module
will be further described in Section 3.3.

3. The NSBC scheme. As shown in element �,

Fig. 1 The novel human–multi-robot coordination system (HMRCS) under the null-space-based behavioral
control (NSBC) based framework (KB: knowledge base)
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this element is responsible for controlling implemen-
tations. The desired speed control signal is obtained
by fusing elementary task outputs based on the task
priority from the RLTS. Then, a proportion integra-
tion differentiation (PID) controller embedded in the
robots tracks the desired speed.

4. The actual physical environment. As shown
in element �, this element refers to the real envi-
ronment including obstacles, terrains, and robots.
Robots transform their states through actions or be-
havior execution, observe the environment through
sensor feedback, and make their decisions for the
next action.

5. Data processing station based on DDM. As
shown in element �, this element consists of an infor-
mation collector, a filter, and a DDM (Bogacz et al.,
2006). DDM is introduced to model the accuracy
and reaction time of the value-based human choice in
the intervention process. During task execution, the
decision information is collected in real time, which
helps determine the starting and ending time of hu-
man intervention. Once the accumulated informa-
tion reaches a decision threshold, human intervention
is activated. The decision threshold is determined by
minimizing the Bayes risk brought by human inter-
vention (Huang et al., 2020).

6. HIL decision maker. As shown in element �,
this element is responsible for supervising and taking
over the multi-robot system (MRS) when necessary,
which would generate human control input into the
robots. The robot autonomous decision maker would
take control again after eliminating the risk or fail-
ure. In this study, two human tasks are considered,
including the monitoring task and the human inter-
vention task. Other human behaviors such as plan-
ning and recording are omitted, but they can also be
taken into account in the proposed framework.

3.3 Design of RLTS with memory

Based on the NSBC task supervisor, the design
of our RLTS with memory is discussed in detail in
this subsection. The proposed RLTS includes a re-
inforcement learning task allocation supervisor and
an LSTM knowledge base. The supervisor is re-
sponsible mainly for dealing with task conflicts in
the HMRCS task execution process, realizing effec-
tive human–robot coordination, and adjusting task
priorities in real time. The LSTM knowledge base
achieves mainly the memory and storage, and im-

proves the independent decision-making ability and
intelligence of the HMRCS.

3.3.1 Design of RLTS

In the RLTS with memory, the optimal mapping
relationship between system states and composite
tasks is obtained by off-line training. This ensures
that each robot selects its optimal task priority or-
der. To enhance the adaptability of the HMRCS in
unknown environments, an artificial potential field
model is introduced to help select states in reinforce-
ment learning, to increase the accuracy of action
or behavior selection, and to accelerate the train-
ing convergence. In this subsection, a DQN with a
dueling structure is employed to accelerate the con-
vergence of the neural network. The pseudo code of
the proposed supervisor is given in Algorithm 1. De-
fine E as a static environment, Si as the set of states
of the ith robot, B as the set of behaviors, D as the
experience replay buffer with capacity ND, M as the
total number of training episodes, and Tstep as the
time step of one episode.

The proposed supervisor satisfies the Markov

Algorithm 1 Reinforcement learning task supervi-
sor (RLTS) for the ith robot
1: Input: total number of training episodes M , ε-greedy

policy decay coefficient γε, time step Tstep of an episode,
and the target network update step length NC

2: Initialize replay buffer Di with capacity ND

3: Initialize the initial value of ε-greedy policy as ε0
4: Initialize action-value function qi(si, bi;Wi,q ,Wi,α,

Wi,β) = Vi(si;Wi,q ,Wi,β) + Ai,b(si, bi;Wi,q ,Wi,α) with
random initial weights Wi,q ,Wi,α, and Wi,β

5: for episode = 1:M do
6: Initialize initial state s0
7: for t = 1:Tstep do
8: Select a random behavior bi,t with probability ε;

otherwise, select bi,t = argmax
b

q(si,t, bi,t;Wi,q ,

Wi,α,Wi,β)

9: Execute behavior bi,t and observe reward ri,t and
next state si,t+1

10: Store this transition (si,t, bi,t, ri,t, si,t+1) in Di

11: Sample mini-batch nm of transitions (si,t, bi,t, ri,t,

si,t+1) from Di with priority
12: yi,z = ri,z + max

bi,z+1

q̂i(si,z+1, bi,z+1;W
−
i,q ,W

−
i,α,

W−
i,β)

13: Perform a gradient descent step on (yi,z −
qi(si,z , bi,z ; Wi,q ,Wi,α,Wi,β))

2 with respect to the
network parameters Wi,q ,Wi,α, and Wi,β

14: Set si,t+1 = si,t
15: Reset q̂i = qi at every NC steps
16: end for
17: end for
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property, which means that robots interact with en-
vironment E at time t with state st, select a behavior
bt according to the ε-greedy policy, and obtain a re-
ward rt, and then the robots are transferred from the
current state st to the next state st+1. The ε-greedy
policy means that the robots behave with the maxi-
mum Q value with a probability 1− ε and randomly
select a behavior with probability ε. In addition, the
transition quadruple tuple (st, bt, rt, st+1) is stored
in the experience replay buffer D. Then, at time
t + 1, the training continues until M episodes are
finished. To make DQN explore optimistically in the
early stage of the learning process and keep stable in
the later stage, a high initial value of ε-greedy policy
ε0 and an appropriate decay coefficient γε are set in
RLTS.

In RLTS, the q-function is separated into
two components: a value function V (s;Wq,Wβ)

and an advantage function Ab(s, b;Wq,Wα), where
V (s;Wq,Wβ) is estimated using a value function
network with parameter Wβ and Ab(s, b;Wq,Wα) is
estimated using a state-dependent behavior advan-
tage function network with parameter Wα. Then,
the q-function is expressed by q(s, b;Wq,Wα,Wβ) =

V (s;Wq,Wβ)+Ab(s, b;Wq,Wα). After off-line train-
ing, RLTS can guide task priority selection on-line
during task execution.

In addition, an artificial potential field value
corresponding to a specific position of the robot is
chosen as one of the states in RLTS. The states of
reinforcement learning are selected as a joint matrix,
which can reflect the position, potential field, and the
distance from each obstacle to the robot, designed as

Oi(t) = [P i(t),V i(t),Di,o(t)], (9)

where Oi(t) is the observation, and P i(t), V i(t), and
Di,o(t) are the vectors of position, potential field,
and distance from each obstacle to the ith robot, re-
spectively. To simplify the model, only the repulsive
force field is considered. Thus, the potential field
function of the jth obstacle (j = 1, 2, . . . , ϕ, and ϕ is
the number of obstacles detected by the robot sen-
sor) for the ith robot can be defined as

Ui,j =

{
1
2λ(

1
d(P i,P j,o)

− 1
dj,o

)2, d(P i,P j,o) ≤ dj,o,

0, d(P i,P j,o) > dj,o,

(10)
where λ is a positive-definite constant gain,
d(P i,P j,o) represents the distance between the ith

robot and the jth detected obstacle, and dj,o denotes
the influence radius of the jth obstacle. The potential
field of the HMRCS environment is shown in Fig. 2.

Fig. 2 Potential field of a specific environment

3.3.2 Design of the LSTM knowledge base

LSTM has been successfully applied to large-
scale book retrieval knowledge bases (Zhou et al.,
2018) and complex semantic recognition systems
(Graves and Schmidhuber, 2005). In our applica-
tion scenario, the LSTM knowledge base is designed
to memorize human intervention information in the
HMRCS, which includes the forget stage, selective
memory stage, and output stage. The network can
be realized as

φt = σ (θl,φlt + θh,φht−1 + θc,φct−1 + bφ) , (11)

f t = σ (θl,f lt + θh,fht−1 + θc,fct−1 + bf ) , (12)

ct=f tct−1+φt tanh (θl,clt+θh,cht−1+bc), (13)

κt = σ (θl,κlt + θh,κht−1 + θc,κct + bκ) , (14)

ht = κt tanh (ct) , (15)

where φ,f ,κ, and c represent the input gate, forget
gate, output gate, and cell vectors respectively, h is
the hidden vector, l is the data vector, σ(·) repre-
sents a logistic sigmoid function, tanh(·) is a hyper-
bolic tangent function, and θ represents the weight
parameter matrix from a module to another. The
LSTM knowledge base in the HMRCS is able to learn
human intervention control information and experi-
ence history. In our HMRCS application scenario,
the data can be defined as a time series array of five
dimensions, which consist of the position, velocity,
and potential field value of the ith robot controlled
by a person. The knowledge base needs to label pro-
cessing history data according to different situations.
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Therefore, the array can be expressed as

Γ = (P i,x,P i,y,V i,x,V i,y,U i)
T
, (16)

where P i,x, P i,y, V i,x, and V i,y are vectors concern-
ing the position and velocity in the x and y directions
of the ith robot, respectively, and U i denotes a vector
concerning the potential field value.

4 Simulation results

In this section, three mobile robots running on
a flat plane are considered. The control goal of the
simulation for the robots is to maintain formation
and reach their target points in an unknown environ-
ment, without colliding with obstacles or the other
robots. The parameters of the RLTS, environment
configuration, and LSTM knowledge base are given
in Table 1.

4.1 Task design

Three elementary tasks are briefly introduced:
motion, obstacle avoidance, and human interven-
tion tasks. The motion task is to control robots
in approaching their target positions along a pre-
determined trajectory or according to robots’ au-
tonomous motion requirements. For mobile ground
robots, based on the behavior design guidelines of
the NSBC framework, the corresponding task func-
tion of the motion task is defined as

ρi,m = fm(pi), ρi,m ∈ R
2×1, (17)

where pi ∈ R
2×1 is the position of the ith robot. The

reference velocity of the motion task can be calcu-
lated as

vi,m = J†
i,m(ρ̇i,md + Λmρ̃i,m), (18)

where J†
i,m is the pseudo-inverse of J i,m, J i,m =

I2 ∈ R
2×2 denotes the Jacobian matrix of the motion

behavior of the ith robot, ρi,md is the desired task
function, Λm is the gain of the motion behavior, and
ρ̃i,m = ρi,md − ρi,m is the task error of the motion
behavior.

Then, the obstacle avoidance task drives the
robots to avoid obstacles along their planned path.
The task function is designed to keep a safe distance
between the robots and the nearest obstacle, which
is defined as

ρi,o = ‖pi − po‖ , ρi,o ∈ R, (19)

Table 1 Parameter values in the simulation

Parameter Value

DDM threshold, ξ 4
Obstacle avoidance task gain, Λo 5
Motion task gain, Λm 0.4
Safe distance, dsafe (m) 1.8
Initial positions, p1,p2,p3 (m) (1, 8), (5, 6), (4, 1)
Target positions, p4,p5,p6 (m) (27, 23), (31, 21), (30, 16)
Positions of obstacles

po1,po2 (m) (10.2, 12.3), (22, 20.5)
po3,po4 (m) (8.8, 6.2), (21, 13.5)
po5,po6 (m) (13.8, 6.4), (26, 14)

Positions of the newly detected (8.8, 9.2), (21, 16.5)
obstacles, po7, po8 (m)

Motion task functions
ρ1,m (m) (2+0.25t, 8+0.15t)
ρ2,m (m) (6+0.25t, 6+0.15t)
ρ3,m (m) (5+0.25t, 1+0.15t)

Sampling frequency, F (Hz) 20
Positive constant in the reward 0.4

function, kr
Total number of DQN training 40 000

episodes, M
Target network update 50

step length, NC

Capacity of experience replay 5000
buffer, ND

Initial ε-greedy parameter, ε0 0.8
ε-greedy decay coefficient, γε 0.999 85
Numbers of hidden layers 128, 128

in the Q-network, h1, h2

Number of output layers 3
in the Q-network, h3

Learning rate of LSTM, Ω 0.001
Sequence input of LSTM, ls 6
LSTM learning rate drop period, 125

Tdp

Learning rate drop factor 0.2
of LSTM, Fdf

Number of hidden units in 100
the bidirectional LSTM, hb

where po ∈ R
2×1 is the position of the obstacle. The

reference velocity of the obstacle avoidance behavior
can be calculated as

vi,o = J†
i,oΛo (dsafe − ‖pi − po‖) , (20)

where J†
i,o is the pseudo-inverse of J i,o of the ith

robot, J i,o = (pi−po)
T

‖pi−po‖ , Λo is the gain of the obsta-
cle avoidance behavior, dsafe − ‖pi − po‖ is the task
error of the obstacle avoidance behavior, and dsafe
represents the safe distance between the robots and
the detected obstacles.

The human intervention task is to describe the
control of humans in the HMRCS in the NSBC
framework. Human intervention is activated once
the accumulated information reaches a decision
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threshold, indicating that robots in the HMRCS
might encounter problems or emergencies such as a
local minimum and partial failure. The task output
can be a time-dependent position or a speed signal.
For mobile ground robots, the human intervention
task is defined as

ρi,h = fh(pi), ρi,h ∈ R
2×1. (21)

The reference velocity of the human intervention task
can be calculated as

vi,h = J†
i,h(ρ̇i,hd + Λhρ̃i,h), (22)

where J†
i,h is the pseudo-inverse of J i,h, J i,h ∈ R

2×2

denotes the Jacobian matrix of the human interven-
tion task in the ith robot, ρi,hd is the desired human
intervention function, Λh is the human intervention
task gain, and ρ̃i,h = ρi,hd−ρi,h is the human inter-
vention task error.

Finally, elementary tasks are fused according
to Eq. (7), based on the task priority provided by
RLTS.

4.2 Reward function in RLTS

The task tracking error of the ith robot is defined
as

ei(t) = ρi,md − pi(t). (23)

The reward function ri(t) in the supervisor is de-
signed as the sum of two parts:

ri(t) = ri,1(t) + ri,2(t), (24)

ri,1(t) = −15tanh(eTi (t)ei(t)Δt− kr), (25)

ri,2(t) =

{
−12, ‖pi − po‖ < dsafe,

0, ‖pi − po‖ ≥ dsafe,
(26)

where Δt denotes the sampling interval, and kr ∈
(0, 0.5] is a small positive constant, which is used to
improve the convergence of the neural network in the
initial training phase.

4.3 Comparative analysis

In this subsection, a comparative simulation is
conducted between the FSA-based task supervisor
and our proposed RLTS with memory in the HM-
RCS framework. The important parameters used to
realize our simulation are shown in Table 1, including
the task and gain parameters of NSBC, configuration

of robots and environmental obstacles, reinforcement
learning parameters, and knowledge base parame-
ters. In the simulation, three mobile robots move
according to the preset task function trajectories.

Figs. 3 and 4 show the moving trajectories of the
robots using the FSA-based task supervisor and our
proposed RLTS with memory, respectively. When
encountering obstacles on the way, the robotic sys-
tem supervisor will assign task priorities and com-
posite NSBC behaviors. Robots in the HMRCS
sample their status information and collect real-time
drift diffusion decision information during the task
execution process. The real-time drift diffusion deci-
sion information collected using the FSA-based task
supervisor and our proposed RLTS with memory is
shown in Figs. 5 and 6, respectively. The decision in-
formation is also defined as the task tracking error.
When robots detect new obstacles or fall into lo-
cal minima, the human intervention task is triggered
after the decision information reaches the decision
threshold. During human intervention, human direct
control input can help robots cross the dangerous
area smoothly, and the control authority is handed
over to the robot controller after they are far enough
away from the obstacle or other hazardous areas.

4.3.1 FSA-based task supervisor analysis

Fig. 7 shows the distance between the robots
and the detected obstacles, and Fig. 8 illustrates the
switching mode of composite tasks using the FSA-
based task supervisor. After analysis, human inter-
vention would take over the control process when
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Fig. 3 Trajectories of the robots using the FSA-
based task supervisor with two human intervention
processes in the HMRCS



Huang et al. / Front Inform Technol Electron Eng 2022 23(8):1174-1188 1183

0 5 10 15 20 25 30 35
x (m)

0

5

10

15

20

25

y
 (

m
)

9.0 9.5 10.0
13.0

13.5

14.0

13 14

4.5

5.0

5.5

−5

Robot 1
Robot 2
Robot 3
Obstacle

Local minimum

Human designated target

Newly detected obstacle

Fig. 4 Trajectories of the robots using the proposed
RLTS with memory with one human intervention pro-
cess and one reloading intervention process in the
HMRCS

Fig. 5 Task tracking error of the robots using the
FSA-based task supervisor with two human interven-
tion processes in the HMRCS

Fig. 6 Task tracking error of the robots using the pro-
posed RLTS with memory with one human interven-
tion process and one reloading intervention process
in the HMRCS

robots encounter an emergency and reach the deci-
sion threshold with the FSA-based task supervisor.

Fig. 7 Distance between the robots and the detected
obstacles using the FSA-based task supervisor with
two human intervention processes in the HMRCS

Fig. 8 Robot task mode using the FSA-based task su-
pervisor in the HMRCS with two human intervention
processes: (a) robot 1; (b) robot 2; (c) robot 3
MT: motion task; OT: obstacle avoidance task; WT: waiting
for human intervention task; HT: human intervention task

In addition, the FSA-based supervisor lacks the abil-
ity to dynamically adjust the task priority, which
means that the robots will constantly create safety
concerns and speed mutation. When this occurs, a
person takes over twice the FSA-based supervisor.

4.3.2 RLTS with memory analysis

Fig. 9 shows the distance between the robots
and the detected obstacles, and Fig. 10 illustrates
the switching mode of composite tasks using our pro-
posed RLTS with memory. After analysis, human in-
tervention would take over the control process when
robots encounter the first local minimum and reach
the decision threshold with the proposed RLTS with
memory. The LSTM knowledge base updates the
human controlled information and its training of the
neural network simultaneously, and accurately and
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efficiently reloads the control information when fac-
ing a similar situation. In addition, the HMRCS real-
izes an optimal behavioral priority adjustment strat-
egy for human and robot tasks, making the moving
trajectories of robots smoother and more accurate
without speed mutation. Human intervention takes
over once in the simulation under the RLTS with
memory.

4.3.3 Performance comparison

After comparing simulation results of the two
methods, their performances are summarized in Ta-
ble 2. The moving trajectories of the robots when
implementing the proposed RLTS with memory are

Fig. 9 Distance between the robots and the detected
obstacles using the proposed RLTS with memory with
one human intervention process and one reloading
intervention process in the HMRCS

Fig. 10 Robot task mode using the proposed RLTS
with memory in the HMRCS with one human inter-
vention process and one reloading intervention pro-
cess: (a) robot 1; (b) robot 2; (c) robot 3
MT: motion task; OT: obstacle avoidance task; WT: waiting
for human intervention task; HT: human intervention task;
KT: knowledge base reloading task

smoother and more accurate, without bursting into
the dangerous collision area, which demonstrates
that the HMRCS realizes an optimal behavioral pri-
ority adjustment strategy for human and robot tasks.
After integrating learning and memory abilities into
the design of the supervisor, the HMRCS can memo-
rize human intervention history when robot systems
encounter emergencies and are not confident in de-
cision making. Then the proposed RLTS with mem-
ory reloads the history information while encoun-
tering the same situation when tackled by humans.
The frequency of repeated human intervention will
be greatly reduced, and the intelligence of the HM-
RCS is considerably improved. At the end of the
comparative analysis, the training loss curves of the
RLTS with memory during 200 and 40 000 epochs
are shown in Figs. 11 and 12, respectively. These
training curves demonstrate that the proposed RLTS
with memory has good convergence performance and
practicability.

5 Experiments

In this section, we present an experiment
using a group of mobile robots subject to external

Table 2 Performance comparison

Parameter
Value

FSA RLTS

Frequency of task switch (Hz) 2.63 0.19
Number of task switches 28 4
Number of intervention tasks 2 1
Number of reloading tasks 0 1
Decision waiting time (s) 17.26 3.75

Fig. 11 LSTM network training loss of the RLTS
with memory during 200 epochs (the training process
is carried out after a human intervention task)
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noise and disturbances, and the experiment was
conducted in uncertain real-world environments.
Two sets of verification were presented. The first
was to verify that the RLTS can determine the
optimal priority adjustment strategy to realize
dynamic priority switching in real time. The
second was to verify that the LSTM knowledge
base can effectively reduce the frequency of human
intervention. The experimental video of the pro-
posed HMRCS is provided in the supplementary
materials and can also be accessed from YouTube
(https://youtu.be/gk8SRVTsp64) and Bilibili
(https://www.bilibili.com/video/BV1GM4y1F7Lc).

5.1 Experimental setup

The experimental parameters of the HMRCS
were set as follows: the decision threshold was

Fig. 12 Training loss of the RLTS with memory dur-
ing 40 000 epochs

1.48 m. The obstacle avoidance task gain was 5.
The motion task gain was 0.4. The safe distance was
1.8 m. The initial positions of robots 1, 2, and 3
were (0.5, 7.8), (0.8, 4.8), and (0.5, 1.8) m, respec-
tively. The positions of obstacles were set as: po1,
(2.5, 7) m; po2, (7.5, 9) m; po3, (3.8, 6) m; po4, (7.8,
6) m; po5, (2.5, 3) m; po6, (7.5, 1) m. The positions
of the newly detected obstacles were set as: po7, (4.2,
4) m; po8, (8.2, 4) m. The motion task functions 1,
2, and 3 were set as (0.5+0.1t, 8), (1.5+0.1t, 5), and
(0.5+0.1t, 2) m, respectively. The remaining param-
eters of the RLTS and LSTM were the same as those
in Table 2.

The experimental scheme of the HMRCS with
multiple mobile robots is shown in Fig. 13. It is di-
vided into four parts: an HIL decision-and-control
center, a Linux-based computing control unit, a mo-
bile robot chassis driving module, and an ultra-wide-
band (UWB) positioning system. Each robot was
equipped with a Raspberry PI running on a Ubuntu
system. The HIL decision-and-control center was
responsible for monitoring the operation of the HM-
RCS and providing inputs to the human intervention
task. The robots’ position information and speed in-
formation were collected in real time by the UWB
positioning system. The configuration of the phys-
ical experimental environment is shown in Fig. 14,
including eight obstacles, three mobile robots, an
HIL decision center, and four UWB positioning base
stations and their terminals mounted on the robots.
The configuration of a single mobile robot is shown
in Fig. 15.

Raspberry PI with Ubuntu system carried on robots

UWB positioning 

system

Reinforcement 

learning task 
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memory 
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Fig. 13 Experimental scheme of the HMRCS
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5.2 Experimental results

Snapshots of the experiment at 0, 36, 67, 78,
88, and 100 s are shown in Fig. 16. The task status,
robot trajectories, and decision-making information

Fig. 14 Configuration of the human–multi-robot co-
ordination experimental platform

Mecanum wheel chassis

STM32 microchip 

and DC motor drive 

module Debugging 

screen

Raspberry PI with Ubuntu 

system
UWB terminal

Fig. 15 Configuration of a single mobile robot in the
HMRCS

during the experiment process are also presented in
the snapshots. These results showed that the RLTS
can dynamically adjust the behavioral priority. The
supervisor can memorize human intervention history
when the robots were not confident in decision mak-
ing, and then reload the history information when
encountering a situation that was previously tackled
by a person.

6 Conclusions

In this study, we proposed an RLTS with mem-
ory by integrating DQN and LSTM knowledge base
within an NSBC framework to address the problems
of dynamic task priority adjustment and repeated
human intervention in HMRCSs. Simulations and
experiments were conducted in an uncertain real-
world environment to demonstrate the effectiveness
of the proposed RLTS. Results showed that RLTS
can successfully memorize human intervention his-
tory and reload human control input when robots are
not confident, greatly improving the robustness and
flexibility of the HMRCS. Our future work will focus
on multi-agent reinforcement learning in the HMRCS
with more complex dynamics and more complicated
environmental constraints.
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