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Abstract: Non-orthogonal multiple access (NOMA) based fog radio access networks (F-RANs) offer high spectrum
efficiency, ultra-low delay, and huge network throughput, and this is made possible by edge computing and communi-
cation functions of the fog access points (F-APs). Meanwhile, caching-enabled F-APs are responsible for edge caching
and delivery of a large volume of multimedia files during the caching phase, which facilitates further reduction in the
transmission energy and burden. The need of the prevailing situation in industry is that in NOMA-based F-RANs,
energy-efficient resource allocation, which consists of cache placement (CP) and radio resource allocation (RRA),
is crucial for network performance enhancement. To this end, in this paper, we first characterize an NOMA-based
F-RAN in which F-APs of caching capabilities underlaid with the radio remote heads serve user equipments via
the NOMA protocol. Then, we formulate a resource allocation problem for maximizing the defined performance
indicator, namely network profit, which takes caching cost, revenue, and energy efficiency into consideration. The
NP-hard problem is decomposed into two sub-problems, namely the CP sub-problem and RRA sub-problem. Finally,
we propose an iterative method and a Stackelberg game based method to solve them, and numerical results show that
the proposed solution can significantly improve network profit compared to some existing schemes in NOMA-based
F-RANs.

Key words: Fog radio access network; Non-orthogonal multiple access; Game theory; Cache placement; Resource
allocation
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1 Introduction

With the proliferation of mobile services in the
fifth-generation (5G) wireless communication sys-
tem and interaction development of multiple domain
resources in the six-generation (6G) wireless com-
munication system, more and more applications of-
fering a significantly enriched user experience have
emerged in the domain of popular use; as examples,
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we may mention augmented reality (AR), virtual re-
ality (VR), intelligent transportation, and environ-
ment protection. Furthermore, the integration of
artificial intelligence (AI) and the next-generation
networking techniques promotes the development of
intellicise networks (Zhang P et al., 2022). How-
ever, there exists a gap between the large demands
of user equipments (UEs) and the limited capabil-
ities of network infrastructures. Specifically, the
cloud server is responsible for global signal process-
ing, management, and allocation for communica-
tion, caching, and computing resources, in a cen-
tralized way; ever-increasing demands and traffic ag-
gravate the processing burden of the cloud server and
the energy consumption from the cloud to the UEs,
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which hinders the development of 6G low-energy net-
work. To fill this gap, fog radio access networks
(F-RANs) arise as a novel paradigm with multiple
fog access points (F-APs), which have the abilities
of resource management, distributed signal process-
ing, edge computing, and caching (Peng et al., 2016,
2020; Dang and Peng, 2019). By sinking a part of the
functions from the cloud server to the edge F-APs,
much traffic can be processed locally and delivered
by the F-APs to their serving UEs (FUEs) directly.
The F-RANs greatly mitigate the burden of global
processing in the cloud server, and reduce the en-
ergy consumption in processing and transmission via
backhaul links (Park et al., 2016; Kong et al., 2018).

Non-orthogonal multiple access (NOMA) tech-
nique has been validated as a promising multiple
access mechanism allowing multiple users to share
the same resource block (RB), in power, code, and
spatial domains rather than the conventional time
and frequency domains. The network throughput
and spectrum efficiency (SE) will be improved fur-
ther when NOMA can be integrated with F-RANs.
Specifically, multiple UEs located at the edge of the
network can be served by F-APs where the requested
files are delivered by F-APs with file copies. Addi-
tionally, the file delivery from F-APs to UEs obeys
the NOMA protocol, and the UEs perform the suc-
cessive interference cancellation (SIC) technique to
extract the requested signal. Although characterized
by distinct superiority, this approach also introduces
severe challenges, as noted by Zhang HJ et al. (2018)
and as the following content explains. First, it is
doubtful that simultaneous transmissions by NOMA
may consume more transmission energy and increase
mutual interference, which is unexpected for the goal
of energy-efficient resource allocation with energy-
constrained devices. Second, the co-provision of ra-
dio resource, cache placement (CP), and user ac-
cess mechanism in NOMA-based F-RANs increases
the difficulty of resource allocation and performance
enhancement.

Motivated by these observations, we integrate
NOMA-based transmission and file caching in F-
RANs and jointly allocate the caching and commu-
nication resources. Specifically, the file caching and
user association, which rely on the file price, capac-
ity of F-APs, and user requests, are considered to
be done during the caching phase. In the caching
phase, F-APs are responsible for caching a large vol-

ume of multimedia files according to the file price
and user requests to further reduce the transmission
energy and burden of backhaul links. In addition,
the NOMA-based transmission, which is influenced
by the RRA scheme, is considered to be done dur-
ing the transmission phase. In this phase, F-APs
serve multiple FUEs via the NOMA protocol in the
F-AP mode, underlaid with the radio remote heads
(RRHs) in the cellular mode. To achieve huge ca-
pacity, ultra-low delay, and high energy efficiency,
we further formulate a resource allocation problem
for maximizing the newly defined performance in-
dicator. The problem is NP-hard and intractable,
and we solve it by decomposing it into two sub-
problems according to the two phases. An iterative
programming algorithm and a Stakelberg framework
are formulated for each sub-problem, where the CP
scheme is attained by a simple and efficient heuris-
tic algorithm, and the RRA scheme is attained by
a game-theoretic method with sequential interaction
relationship between players. Our contributions are
summarized as follows:

1. We characterize an NOMA-based F-RAN in
which the F-APs of caching capabilities are under-
laid with RRHs serving multiple UEs via the power-
domain NOMA protocol. We divide the whole file
transmission into the caching phase (from the cloud
to F-APs) and the transmission phase (from F-APs
to FUEs). To mitigate the excessive cost of caching
and improve network energy efficiency, we jointly op-
timize the CP, pricing of files, power and subchan-
nel allocation, and formulate a resource allocation
problem to maximize the newly defined performance
indicator, namely network profit, which takes both
cost of CP in the caching phase and energy efficiency
in the transmission phase into consideration.

2. Due to the coexistence of binary, integer, and
continuous variables, this non-convex problem is in-
tractable with NP-hardness and we decompose it
into two sub-problems, namely the CP sub-problem
and RRA sub-problem. In the CP sub-problem, we
propose an iterative programming algorithm based
on simulated annealing (SA) to maximize the profit
of CP in the caching phase. In the RRA sub-
problem, we propose a hierarchical Stackelberg game
approach consisting of a non-cooperative power allo-
cation algorithm for the F-APs, and a one-to-many
subchannel matching algorithm for the RRHs and
F-APs to maximize network energy efficiency in the
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transmission phase.
3. We examine the efficiency of our proposed it-

erative SA algorithm, non-cooperative power alloca-
tion algorithm, and stable subchannel matching al-
gorithm. We also explore the impact of quantitative
limits of FUEs, the number of F-APs, and the pricing
of files on network performance, and find that there
is no simple trend between caching and resource allo-
cation strategies. Additionally, viewed in a compara-
tive context against various caching approaches and
resource allocation schemes, our proposed resource
allocation approach is verified to achieve high net-
work profit, especially when the essential constraints
become more stringent.

2 Related works

Resource allocation is an effective approach for
improving network throughput. Scholars have gener-
ated vast research output enumerating various suit-
able means to improve network throughput (Xu
et al., 2016; Yang et al., 2018; Yao and Ansari,
2019). For example, Zhang JX et al. (2016) and
Deng et al. (2016) focused on the storage alloca-
tion and content placement problem in hierarchical
cache-enabled heterogeneous networks and F-RANs,
respectively. Yu et al. (2019) investigated green
fog computing by maximizing the network function
considering energy efficiency with the constraints of
power and interference. Sun et al. (2019) formu-
lated a hierarchical RRA architecture in F-RANs,
where network slicing was considered to relieve the
heavy burden of centralized resource manager, and
proposed a game-based resource allocation algorithm
to solve the maximum SE problem efficiently. Zhou
et al. (2019) introduced a machine learning based F-
AP content placement method, where unsupervised
learning was used to classify the popularity of re-
quested contents and solve the content placement
problem.

The NOMA protocol (Ding et al., 2016, 2019)
functions as a valid technique to achieve high SE.
However, NOMA-based F-RANs are faced with chal-
lenges such as simultaneity of various resource allo-
cations and interaction influences among different
resources (Zhai et al., 2018). To this end, Rai et al.
(2021) proposed an NOMA-enabled fog-cloud struc-
ture in a novel density-aware F-RAN to tackle dif-
ferent aspects of high- and low-density regions, the

objective being to meet the heterogeneous require-
ments of enhanced mobile broadband (eMBB) and
ultra-reliable low-latency communication (URLLC)
traffic. A framework of two different scenario con-
figurations and performance analysis, consisting of
independent caching association and transmission
mode allocation, was considered to cater to the high-
throughput and low-latency requirements in high-
and low-density modes, respectively. In Cao et al.
(2019), a communication resource allocation algo-
rithm for energy efficiency maximization, consisting
of subchannel reuse assignment and power alloca-
tion, was formulated for NOMA-based F-RANs and
a game-based approach was proposed to solve it. In
Liu et al. (2020), with the aim of maximizing the
weighted sum rate while taking co-channel interfer-
ence into consideration, a joint RB and power allo-
cation problem was formulated. The authors applied
monotonic optimization and proposed an outer poly-
block approximation algorithm to obtain the global
optimal solution. Bai et al. (2019) focused on dy-
namic power allocation of wireless subchannel in
NOMA. By extending it to F-RANs, the authors
proposed an improved fractional transmission power
allocation (I-FTPA) algorithm. Yan et al. (2020)
focused on the user access mode selection and con-
tent popularity prediction analysis without resource
allocation in NOMA-based F-RANs.

However, the mentioned studies focus on com-
munication resources such as power, subchannel, and
integrated RB in NOMA-based F-RANs, without
taking caching resource into consideration. Given
the potential improvement of the integration of
NOMA and F-RANs with edge caching ability,
a joint resource allocation algorithm consisting of
caching and radio resources in NOMA-based F-
RANs is tackled in this study where the maxi-
mum network profit can be obtained by a tractable
approach.

3 System model and problem formula-
tion

In this section, we present a mathematical
model of the NOMA-based F-RANs which we fo-
cus throughout the paper, and formulate an opti-
mization problem in achieving the maximum net-
work profit.
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3.1 Network model

As depicted in Fig. 1, we consider the F-RANs
comprising the cloud server, F-APs, RRHs, and
UEs. The F-APs have the abilities of resource man-
agement, signal processing, and caching, while the
RRHs have only the radio frequency function. Fur-
thermore, we consider that the NOMA protocol is
applied where one F-AP can serve multiple users in
the same time and frequency RB. We denote the
UEs served by the F-APs and RRHs as the FUEs
and RUEs, respectively. Additionally, the communi-
cation mode where the FUEs are served by F-APs
and receive the file directly from the F-AP is called
the F-AP mode. Similarly, the communication mode
where the RUEs are served by RRHs and receive the
file from the cloud is called the RRH mode. We con-
sider that the cloud server has all the desired files

F-AP

RRH RRH

RRH

F-AP

FUE
RUE

Fronthaul
Optical

fiber Power

Frequency

NOMA

Cloud server
The reused
subchannel
Orthogonal
subchannel
Interference
signal

Fig. 1 System model of downlink transmission in an
NOMA-based F-RAN

with the same size sf , each of which is indexed by
F = {1, 2, . . . , F}. Denote the set of RRHs, F-APs,
and FUEs by R = {1, 2, . . . , R}, N = {1, 2, . . . , N},
and L = {1, 2, . . . , L}, respectively. We assume that
R RRHs serve R RUEs by R orthogonal subchan-
nels. Without loss of generality, we consider that
subchannel r is allocated to RRH r for serving RUE
r. On the other hand, with the aid of the NOMA
technique, N F-APs can serve L FUEs, with each
F-AP serving up to Qn FUEs. We also assume that
each F-AP can access one subchannel only, while
each subchannel occupied by each RRH can accom-
modate at most M F-APs at one time slot. Unless
otherwise specified, the notations used throughout
the paper are the ones summarized in Table 1. The
whole network operation process can be expressed as
three sub-figures in Fig. 2.

3.2 Caching model

We now present the caching model. The exist-
ing caching schemes consist of the random caching
scheme (where all files are cached with an equal prob-
ability) and the popularity-based caching scheme
(where the more popular file has the larger proba-
bility of being cached). In addition, some specialized
caching schemes are proposed by certain rules. In
our system, the popularity-based caching scheme is
not feasible because the F-AP may not be willing to
contribute to all of its limited space with additional

Table 1 Notations and main abbreviations used throughout the paper

Notation Description Notation Description

F-AP Fog access points CP Cache placement
RRA Radio resource allocation RRH Radio remote head
FUE User equipment served by F-APs RUE User equipment served by RRHs
R, N , L Sets of RRHs, F-APs, and FUEs, respectively F Set of files
sf Size of each file SC

n Limited storage of F-AP n

cnc Backhaul cost from the cloud to F-AP n ηn,f Index of caching file f on F-AP n

dnc Transmission delay from the cloud to F-AP n ξn,l Index of serving FUE l by F-AP n

Zl,f Index of requesting file f of FUE l θn,f Price of caching file f of F-AP n

U Profit of the cloud server V Profit of F-APs
hr,n,q Channel coefficient from RRH r to FUE q pn,q Transmission power of F-AP n to FUE q

served by F-AP n pn Transmission power of F-AP n

hn,q Channel coefficient from F-AP n to FUE q pr Transmission power of RRH r

hr Channel coefficient from RRH r to RUE r pmax
n Maximum transmission power of F-AP n

hi,n,q Channel coefficient from F-AP i to FUE q p Transmission power of F-APs
served by F-AP n φn Spectrum efficiency of F-AP n

xn,r Matching index from F-AP n to RRH r φr Spectrum efficiency of RRH r

yr,n Matching index from RRH r to F-AP n Q Serving limitation of one F-AP
x,y Matching indexes M Tolerant accommodation of each RRH
mr Number of F-APs matching RRH r
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Fig. 2 Diagram of caching and communication phases:
(a) relationship between variables and agents during
the caching and communication phases; (b) schedul-
ing procedure among the cloud, F-APs, and FUEs;
(c) time sequence of the scheduling period

cost and the user requests are unpredictable. Thus,
we propose an on-demand CP strategy which relies
on the cost saved by caching, the file prices, and
demands of UEs.

The overall framework of the proposed CP strat-
egy is shown as Fig. 2b. All the available row files or
the copyright is published in the cloud server and sold
at different prices. The cloud server broadcasts the
price to F-APs, which would buy some files via back-
haul links to maximize own profit. In particular, the
profit of F-AP is related to the file prices, incomes of
users, and the transmission cost saved by local deliv-
ery. In turn, the cloud server desires to maximize its
profit, which is related to the income for caching and
user access. The objective of CP is to find the equi-
librium among the optimal CP, pricing of files, and
the user association scheme of F-APs and the cloud
server. Upon reaching the optimal strategy, all F-
APs cache the files and charge for FUEs. This being
so, when FUE l accesses in F-AP n and requests for
file f , if file f or its copyright has been cached in
F-AP n, it can be delivered to FUE l directly with a
low transmission delay and light backhaul link bur-
den. Otherwise, F-AP n should send the first request
for file f to the cloud server via the congested and
weak backhaul link and transmit to FUE l with a
large transmission delay.

To this end, we now describe the mathematical
model mentioned throughout the paper and intro-
duce some notations in detail. First, we introduce

two binary indexes ξn,l ∈ {0, 1} and ηn,f ∈ {0, 1}.
When F-AP n serves FUE l, ξn,l = 1; otherwise,
ξn,l = 0. Similarly, when file f is cached in F-
AP n, ηn,f = 1; otherwise, ηn,f = 0. Note that
∑N

n=1 ξn,l = 1, ∀l ∈ L, Qn =
∑L

l=1 ξn,l ≤ Q, ∀n ∈
N , and

∑F
f=1 ηn,fsf ≤ SC

n , ∀n ∈ N should be sat-
isfied. Qn is the number of FUEs under F-AP n.
For the F-APs, taking the CP into consideration,
the profit of F-AP is defined as the difference be-
tween the revenue and the expenditure. The revenue
comprises the backhaul transmission energy cost and
delay cost saved by local caching, and the income for
user association. The expenditure is the cost for local
caching from the cloud. In particular, the revenue of
F-AP n accessing FUE l which requests for file f can
then be expressed as

V re
n =

F∑

f=1

ηn,f (κdnc + cnc)

+
F∑

f=1

L∑

l=1

ξn,lZl,fηn,frf δ,

(1)

where κ represents the weight between transmission
delay and delay cost, rf represents the price of file
f paid by FUE l to the cloud server, and δ repre-
sents the percentage of income which the cloud server
shares with F-AP n. The expenditure of F-AP n ac-
cessing FUE l which requests for file f can then be
expressed as

V ex
n =

F∑

f=1

θn,fηn,f . (2)

So, the profit of F-AP n accessing FUE l which re-
quests for file f can then be expressed as

Vn = V re
n − V ex

n , (3)

and the profit of F-APs is expressed as

V = v1V1 + v2V2 + . . .+ vNVN , (4)

where vn (n = 1, 2, . . . , N) represents the weighted
coefficient of each F-AP n. For the cloud server, the
profit comes from the income for the files and user
association due to the local CP. Thus, the profit of
the cloud server can be expressed as

U =

N∑

n=1

F∑

f=1

θn,fηn,f

+

N∑

n=1

L∑

l=1

F∑

f=1

ξn,lZl,fηn,frf (1− δ).

(5)
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3.3 Communication model

We now focus on the communication model. A
block fading channel is considered in our system,
where the channel fading of each subchannel remains
unchanged but varies independently across different
subchannels. Recalling the definition of hn,q in Ta-
ble 1, hn,1 > hn,2 > ... > hn,Qn holds. Each F-
AP decodes the signal with low ranking of the chan-
nel coefficient via the SIC technique. The transmis-
sion power of F-AP n to FUE q, i.e., pn,q, satisfies
pn,q ≤ pmax

n .
In the transmission phase, the data transmission

rate of FUE q accessing F-AP n is shown as

gn,q = B log2

(

1 +
xn,ryr,npn,q|hn,q|2
σ2 + I1 + I2 + I3

)

,

I1 =

q−1∑

j=1

pn,j|hn,q|2,

I2 = xn,ryr,npr|hr,n,q|2,

I3 =

mr∑

i=1,i�=n

xi,ryr,ipi,q|hi,n,q|2,

(6)

where B is the bandwidth of each channel, I1 is the
interference from other FUEs under the same F-AP,
I2 is the interference from the RRH which reuses the
same subchannel, and I3 is the interference from the
F-APs that reuse the same subchannel as F-AP n.
When F-AP n (RRH r) matches RRH r (F-AP n),
xn,r = 1 (yr,n = 1); otherwise, xn,r = 0 (yr,n = 0).
Therefore, the data transmission rate of RUE r is

gr = B log2

⎛

⎜
⎜
⎝1 +

pr|hr|2

σ2 +
mr∑

i=1

xi,ryr,ipi,r|hi,r|2

⎞

⎟
⎟
⎠ ,

(7)
where σ2 is the variance of the noise during the trans-
mission phase, pi,r is the transmission power of F-
AP i to RUE r, and hi,r is the channel coefficient
from F-AP i to RUE r. To guarantee the quality of
service of each UE, we also consider SE constraints
as follows:

φn(xn, pn) =

Qn∑

q=1

gn,q, φr(yr) = gr, (8)

where yr = mr =
∑N

n=1 yr,n, xn =
∑R

r=1 xn,r, pn =
∑Qn

q=1 pn,q, and Qn =
∑L

l=1 ξn,l. The network energy

efficiency (EE), which is defined as the total average
number of bit/(Hz·W) successfully delivered to the
others (Ng et al., 2012), can be expressed as

EE =

N∑

n=1

Qn∑

q=1
gn,q +

R∑

r=1
gr

N∑

n=1

Qn∑

q=1
pn,q +

R∑

r=1
pr + PF

cir + PR
cir

, (9)

where PF
cir and PR

cir are the circuit power of F-APs
and RRHs respectively which ensure the normal op-
eration of the equipment.

3.4 Problem formulation

Our work aims to optimize the CP strategy to
reduce the transmission burden and delay, and si-
multaneously achieve energy-efficient resource allo-
cation. To this end, we define a new performance in-
dicator, namely network profit P , taking both profits
of CP in the caching phase and energy efficiency of
NOMA transmission in the transmission phase into
consideration:

P = ρ1 (V + U) + ρ2EE, (10)

where V + U and EE represent the profits in the
caching phase and transmission phase respectively,
and ρ1 and ρ2 are the weighted coefficients. Without
loss of generality, we equate the influences of two
phases and set ρ1 = ρ2 = 1. Then the optimization
problem can be expressed as

max
θ,ξ,η,p,{x,y}

P (11)

s.t. ξn,l ∈ {0, 1}, ηn,f ∈ {0, 1},
∀n ∈ N , ∀f ∈ F , ∀l ∈ L, (11a)

xn,r ∈ {0, 1}, yr,n ∈ {0, 1}, ∀n ∈ N , ∀r ∈ R,

(11b)

0 ≤ θn,f ≤ θmax, (11c)
N∑

n=1

ξn,l = 1,

L∑

l=1

ξn,l ≤ Q, ∀l ∈ L, ∀n ∈ N ,

(11d)
F∑

f=1

ηn,fsf ≤ SC
n , ∀n ∈ N , (11e)

Qn∑

q=1

pn,q = pmax
n , pn,q > 0, ∀n ∈ N , (11f)
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φn(xn, pn) ≥ φmin
n , φr(yr) ≥ φmin

r

∀r ∈ R, ∀n ∈ N , (11g)
R∑

r=1

xn,r = 1,

N∑

n=1

yr,n ≤ M. (11h)

In this optimization problem, θ, ξ, and η repre-
sent the price of caching, user association, and CP
variables in the caching phase, respectively. Con-
straints (11a) and (11b) represent the limitations
to the controllable variables in each phase. Con-
straints (11c)–(11e) are the limitations in the caching
phase, where (11c) represents that the price of the
file must not be too high due to the law of demand
from the field of economics, (11d) represents that one
FUE can access one F-AP only and one F-AP can
accommodate Q FUEs at most within one time slot,
and (11e) represents that the capacity of CP cannot
exceed the storage of one F-AP. Constraints (11f)–
(11h) are the limitations in the transmission phase,
where (11f) suggests that the transmission power of
Qn FUEs under F-AP n should not exceed the up-
per limitation, (11g) represents the SE constraints of
the FUEs and RUEs, and (11h) represents that one
F-AP can match only one RRH to reuse the subchan-
nel and that one RRH can match M F-APs at most
within the interference tolerance. Note that the opti-
mization problem is NP-hard because the 0–1 binary
and the continuous variables are mixed. In the next
section, we will decompose it into two sub-problems
and propose two tractable algorithms.

4 Problem solution

Reviewing the expression of network profit and
the optimization problem, it is evident that the CP,
pricing of files, and user association are coupled with
one another while working only in the caching phase,
but function independent of the power and subchan-
nel allocation; the energy-efficient resource alloca-
tion, consisting of power and subchannel allocation,
works in the transmission phase. In this section, we
first decompose problem (11) into two sub-problems,
namely the CP sub-problem and RRA sub-problem;
then we propose an iterative algorithm and a game-
based algorithm to solve them, respectively. The
descriptions of four algorithms are listed in Table 2
in detail.

4.1 CP sub-problem

In this subsection, we focus on the CP sub-
problem by optimizing the CP strategy, pricing of
files, and user association. Specifically, the cloud
server desires to maximize its own profit through
high pricing of files and high income from FUEs
benefiting from local caching. Meanwhile, F-APs of
caching capabilities desire to maximize profits which
are related to the large backhaul link transmission
cost and delay saved by local caching, high income
from FUEs, and low expenditure to the cloud server
for caching. We reformulate two optimization prob-
lems for the cloud server and the F-APs, respectively.
First, the maximization optimization problem for the
cloud server is shown as

max
θn,f

U (12)

s.t. 0 ≤ θn,f ≤ θmax, ∀n ∈ N , ∀f ∈ F , (12a)

where constraint (12a) suggests that the prices of files
must not be excessive since the demanded quantity
of goods falls as the price of goods rises by the law
of demand from the field of economics. Next, we
can similarly show the maximization optimization
problem for the F-APs as

max
ηn,f ,ξn,l

V (13)

s.t. ξn,l ∈ {0, 1}, ∀n ∈ N , ∀l ∈ L, (13a)
N∑

n=1

ξn,l = 1, ∀l ∈ L, (13b)

L∑

l=1

ξn,l ≤ Q, ∀n ∈ N , (13c)

ηn,f ∈ {0, 1}, ∀n ∈ N , ∀f ∈ F , (13d)

where constraint (13a) represents that the user asso-
ciation variable is a binary variable, constraints (13b)
and (13c) suggest that each FUE can access only one
F-AP and one F-AP can accommodate Q FUEs at
most at one time slot, and constraint (13d) repre-
sents that the CP is a binary variable. Note that the
optimization problem (13) is a multi-objective opti-
mization problem. For simplification purposes, we
define the weight vn = 1 for each element (∀n ∈ N )
of the weighted sum method V =

∑N
n=1 vnVn in

transferring from multiple objectives to a single ob-
jective V =

∑N
n=1 Vn.
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Table 2 Description of the four algorithms

Algorithm Description

Algorithm 1: cache placement The CP strategy can be attained by the SA scheme, where the CP initialization,
(CP) algorithm capacity threshold Q, and maximum price θmax are the input variables, and the

optimum profit and strategies of the cloud and F-APs are the output solution.
Algorithm 2: non-cooperative game The power allocation strategy can be attained by the Dinkelbach scheme and

based power allocation algorithm sub-gradient based method, where the initial power constitutes input variables
and the optimum power allocation of each F-AP constitutes the output solution.

Algorithm 3: one-to-many matching Optimization can be attempted for the subchannel allocation solution between
based subchannel allocation algorithm F-APs and RRHs until there is no point unmatched with any member of the

opposite set.
Algorithm 4: radio resource allocation The optimum solution to multi-dimensional resource allocation can be attained

(RRA) algorithm iteratively.

It is clear that problem (12) is a linear program-
ming problem for continuous variable θ but prob-
lem (13) is still a non-convex problem due to the
coexistence of binary variables ξ and η. In par-
ticular, the optimization problem for the F-APs in
problem (13) is a Knapsack problem and we propose
an advanced iterative SA optimization algorithm to
solve it within the acceptable latency. Based on
this, an iterative dynamic programming algorithm
for the CP sub-problem is proposed, as shown in
Algorithm 1. Specifically, we denote a well-defined
generation function to generate new solutions and
calculate the increment of the evaluation function of
two iterations, which is set as an optimization func-
tion generally. To facilitate the subsequent calcula-
tion and evaluation, and to reduce the algorithm’s
running time, the generation function is set through
simple linear change based on the current solution.
Moreover, we use the Metropolis guideline where the
new solution is accepted if the increment (i.e., the
difference, as ascertained by the evaluation function,
between two solutions of two steps) is more than zero.
Otherwise, it is accepted as a probability related to
the increment. This method can significantly avoid
getting trapped into local optimal solutions.

In Algorithm 1, when the difference of two ob-
jective functions in two iterations ΔV is smaller than
the threshold, the algorithm stops and the current
strategy is the final optimum one. In addition, we
choose the initial solution by fixed point variation
to overcome the defect of getting trapped into lo-
cal optimal solutions, and meanwhile speed up the
convergence. Due to the finite number of players,
Algorithm 1 is guaranteed to converge to a stable
equilibrium, under which no player can improve its
utility by unilaterally changing its own strategy with-

Algorithm 1 Cache placement (CP) algorithm
1: Initialize: the CP, user association, and the price

randomly as η0, ξ0, θ0, which satisfy constraints
(12a), (13a)–(13d), the initial profit of the cloud as
U(0), and that of F-APs as V (0), t = 1, k, T

2: while |V (t)− V (t− 1)| > ζ do
3: Compute the difference of the evaluation func-

tion between two solutions, dE = V (ηt+1, ξt+1) −
V (ηt, ξt)

4: if dE ≥ 0 then
5: Update ηt+1 = ηt, ξt+1 = ξt
6: else
7: exp

(
dE
kT

)
> rand(1)

8: Update ηt+1 = ηt, ξt+1 = ξt
9: Change the temperature, T = τT

10: t = t+ 1

11: Return ηn,f to the cloud and compute the profit
function U by expression (12)

12: Update θ = θ +Δθ

13: Return θ∗ and output U

14: end if
15: end while

out decreasing utilities of other players. As far as the
application aspect is concerned, the user association
and access, via multiple access techniques in time
and frequency domains, can alleviate traffic burden
and achieve efficient transmission in scenarios such as
concerts and sports venues that involve relatively few
base stations (BSs) and densely packed users, which
typically leads to overloading in the operations of
BSs or wireless access points.

4.2 RRA sub-problem

After obtaining the CP strategy (η∗n,f , ξ∗n,l, and
θ∗n,f), we fix the optimal cost of caching, U , for the
cloud server and the profit, V , for the F-APs in the
caching phase and focus on the RRA strategies in
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the transmission phase. Specifically, one F-AP can
serve more than one FUE via the NOMA protocol
within the available transmission powers; for improv-
ing the efficiency of spectrum allocation, we assume
that one subchannel can be occupied by more than
one F-AP in the F-AP mode, in addition to RRHs in
the cellular mode, under the condition in which the
received co-channel interference does not exceed the
acceptable threshold of the RRHs. Based on this, we
reformulate the RRA sub-problem for the F-APs and
RRHs under multiple constraints of SE, transmission
power, and subchannel matching. In particular, the
optimization problem is shown as

max
{x,y},p

EE (14)

s.t.

Qn∑

q=1

pn,q = pmax
n , pn,q > 0, ∀n ∈ N , (14a)

φn(xn, pn) ≥ φmin
n , ∀n ∈ N , (14b)

φr(yr) ≥ φmin
r , ∀r ∈ R, (14c)

xn,r ∈ {0, 1}, ∀r ∈ R, (14d)

yr,n ∈ {0, 1}, ∀n ∈ N , (14e)
R∑

r=1

xn,r = 1,

N∑

n=1

yr,n ≤ M, (14f)

where the solutions obtained are the multiple vectors
expressed as x = [xn,r], y = [yr,n], p = [pn,q], ∀n ∈
N , ∀r ∈ R, ∀q ∈ {1, 2, . . . , Qn}. Constraint (14a)
suggests the power limitation of the F-APs via the
NOMA protocol and the RRHs in the cellular mode,
constraints (14b) and (14c) imply the SE lower-
bound constraints for FUEs and RUEs respectively,
and constraints (14d) and (14f) imply the match-
ing rule for subchannel reuse matching. Similarly,
due to the 0–1 binary variables {x,y} and continu-
ous variable p being mixed, problem (14) is a mixed
nonlinear integer programming problem with NP-
hardness, which cannot be solved tractably by the
conventional dynamic programming method (Peng
et al., 2015). However, when {x,y} is fixed, the ob-
jective function is convex with respect to the trans-
mission power vector p, and when p is fixed, the func-
tion of {x,y} is a Knapsack problem about {x,y}.
To solve this problem, considering the property of or-
derly decision-making process and cyclic dependency
between the F-APs and RRHs, we adopt a Stack-
elberg game based approach including an NOMA-
based power allocation algorithm and a subchannel

reuse assignment algorithm. In the Stackelberg game
model, the follower decides the subchannel allocation
strategy according to the observation of leader’s be-
havior, and in turn, the leader makes its strategy
according to the estimation result of the follower.
Specifically, as the leaders, the F-APs decide the
transmission powers by a non-cooperative power al-
location algorithm to maximize the EE of the FUEs
according to the anticipated subchannel allocation
strategy and prior knowledge of the response func-
tion of the RRHs. As the followers, the RRHs as-
sign the subchannel reuse allocation to minimize the
interference by a one-to-many matching game algo-
rithm according to the practical transmission power
strategy. We will characterize the power allocation
algorithm and subchannel allocation algorithm for
the F-APs and RRHs in the forthcoming subsections.

4.2.1 Leader: NOMA-based power allocation algo-
rithm

First, we introduce the NOMA-based power al-
location optimization problem (15) for the F-APs,
where there exists a competition relationship among
the FUEs that access the same F-AP, due to the
limited power of one F-AP and quality of service of
data rate for each FUE. Specifically, the optimization
problem for the F-APs is

max
p

N∑

n=1

Qn∑

q=1

gn,q

N∑

n=1

Qn∑

q=1
pn,q + PF

cir

∣
∣
∣
∣
∣
∣
∣
∣
∣
Ω(n)=r

(15)

s.t.

Qn∑

q=1

pn,q = pmax
n , pn,q > 0, ∀n ∈ N , (15a)

φn(xn, pn) > φmin
n , (15b)

tn ≤ tmax
n , ∀n ∈ N , (15c)

where Ω(n) = r represents the subchannel match-
ing strategy of F-AP n and RRH r, tn =

t0 ·∑L
l=1

∑F
f=1 ξn,lZl,f (1− ηn,f ) is the delay con-

straint, and t0 is the delay per file transmission. A
non-convex problem needs to be addressed in rela-
tion to transmission power vector p, and to solve it
efficiently, we propose a non-cooperative game the-
oretic framework where the Nash equilibrium (NE)
theorem is guaranteed to converge in problem (15)
according to the following theorem (Shi et al., 2009):
Theorem 1 Consider a non-cooperative game G
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where the nth F-AP aims at maximizing the data
transmission rates of all users and the system EE,
with respect to the choice of the set of the RRH R
and transmission power p; the utility function Ψn

will be shown in Definition 2. The best-response
dynamics (BRD) of game G always converges to an
NE.

Note that the objective function in problem (15)
can be classified as a nonlinear fractional program-
ming problem (Dinkelbach, 1967). To solve this
problem, we first define the optimal value as γ∗ =
G(p∗)
P (p∗) , which is nonlinear. G is the total transmission
rate and P represents the total power of all players.
Then, we have Theorem 2 (Ng et al., 2012):
Theorem 2 (Sub-problem equivalence) γ∗ is
achieved if and only if

max
p

G(p) = P (p) · γ∗ (16)

holds, where G(p) =
∑N

n=1

∑Qn

q=1 gn,q and P (p) =
∑Qn

q=1 pn,q.
Based on Theorem 2, it is proved that the orig-

inal problem can be transformed into the convex
problem (17) by the Dinkelbach method, which is
proved in Appendix A.

max
p

G(p)− γ∗P (p)

s.t. constraints (15a) and (15b).
(17)

Note that γ∗ is any feasible solution to prob-
lem (15) that satisfies constraints (15a) and (15b).

The proof is given in Appendix B.
We define an equivalent function F (γ) =

maxpG(p) − γP (p), and for all feasible p and γ,
F (γ) is a strictly and monotonically decreasing func-
tion of γ, and F (γ) > 0. Thus, this transformed
sub-problem can be solved by the Lagrange dual de-
composition method. The Lagrange dual function is
expressed in the form of Eqs. (18) and (19):

L(p,β,λ) =

[
N∑

n=1

Qn∑

q=1

gn,q − γ

(
N∑

n=1

Qn∑

q=1

pn,q + PF
cir

)]

+

N∑

n=1

(
Qn∑

q=1

βn,qgn,q − φmin
n

)

+

N∑

n

λn

(

pmax
n −

Qn∑

q=1

pn,q

)

,

(18)

d(β,λ) = max
p

L(p,β,λ)

=max
p

{[
N∑

n=1

Qn∑

q=1

gn,q−γ

(
N∑

n=1

Qn∑

q=1

pn,q+PF
cir

)]

+
N∑

n=1

(
Qn∑

q=1

βn,qgn,q − φmin
n

)

+

N∑

n=1

λn

(

pmax
n −

Qn∑

q=1

pn,q

)}

.

(19)
β = [β1,β2, . . . ,βn]

T, where βn = [βn,1, βn,2,
. . . , βn,Qn ]

T. λ = [λ1, λ2, . . . , λn] is the Lagrange
multiplier vector. The dual optimization problem is
reformulated as follows:

min
{β,λ}

d(β,λ)

s.t. β ≥ 0, λ ≥ 0.
(20)

With the Karush–Kuhn–Tucker (KKT) condi-
tions, the optimal power allocation is derived by

p∗n,q =
[

ω∗
n,q −

1

δn,q

]+
, (21)

where δn,q =
xn,ryr,n|hn,q|2

σ2 + I1 + I2 + I3
, [x]+ = max{x, 0},

and the optimal coefficient ω∗
n,q is obtained as

ω∗
n,q =

1 + βn,q

ln
(
2(γBPF

cir + λn)
) . (22)

After substituting the optimal power alloca-
tion into the decomposed problem (15) and accord-
ing to the sub-gradient based method, the update
equations for the dual variables are derived (Peng
et al., 2015). Here, for brevity, we have omitted
the associated detailed derivations and refer readers
to Boyd and Vandenberghe (2004) for similar pro-
cesses. Based on this method, we propose the non-
cooperative game based power allocation algorithm
(Algorithm 2). The complexity of Algorithm 2 is
O(IN), where I refers to the number of iterations.

4.2.2 Follower: subchannel allocation algorithm

We now introduce the subchannel allocation
problem for RRHs. As the followers, RRHs deter-
mine the subchannel matching strategy with the
F-APs under the decided power allocation strat-
egy. Taking available accommodation capacity of
one subchannel and the acceptable co-channel in-
terference into consideration, we model subchannel
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allocation as a one-to-many matching game among
the F-APs and RRHs, and the key parameters are
expressed as

1. Players: F-APs in N and RRHs in R.
2. Strategies: The strategy set of the F-APs is

constituted by all members in the set of RRH R, and
vice versa.

3. Utility: The utility of the F-APs is EE and
the utility of the RRHs is the suffered interference I2
in Eq. (6).

Before the matching starts, we should explore
the formation rule of and solution to stable matching
(SM). To this end, we first explain some definitions
to facilitate the analysis.
Definition 1 (Two-side matching) Consider
that N and R are two disjoint sets. A one-to-many
two-side matching Ω is a mapping from N into R
satisfying:

(a) Ω(n) ∈ R, Ω(r) ∈ N ,
(b) Ω(n) = r ⇔ Ω(r) = n,
(c) |Ω(n)| = 1, |Ω(r)| ≤ M .
Condition (a) explains that each player can

match any member of the opposite set, condition
(b) explains that if F-AP n matches RRH r, RRH r

matches F-AP n certainly, and condition (c) explains
that one F-AP can match one RRH while one RRH
can accommodate M F-APs at most.
Definition 2 (Stable matching) Given a match-
ing Ω, Ω(n) �= r, Ω(r) �= n, denote the utility of
each F-AP as the data rate in Eq. (6) and mark
it as Ψn. The utility of each RRH is the inter-
ference I2 in Eq. (6) and it is marked as Ψr. If
Ψn(Ω(n)\r̄ ∪ r) > Ψn(Ω) where Ω(n) is the current
partner of F-AP n, it means that F-AP n prefers
RRH r to r̄. If Ψr(Ω(r)\n̄ ∪ n) > Ψr(Ω) where Ω(r)

is the current partner of RRH r, it means that RRH r

Algorithm 2 Non-cooperative game based power
allocation algorithm
1: Initialize: p∗n,q(0) according to the average power

distribution scheme, i = 1

2: while p∗n,q(i) �= 0 do
3: for n ∈ N do
4: Calculate the optimal power value according to

Eq. (21)
5: if p∗n,q(i) �= p∗n,q(i− 1) then
6: Repeat
7: end if
8: end for
9: end while

prefers F-AP n to n̄. As long as both conditions are
met, F-AP n is matched with RRH r successfully,
and it is marked as (n, r).

In general, before the matching starts, each
player should build a preference list (PL) which
consists of all the strategy members in descending
order according to the utility. Note that if and
only if xn,r = yr,n = 1, F-AP n matches RRH r

successfully.
Then, based on the previous analysis, we pro-

pose a matching algorithm (Algorithm 3), and the
best response of the game is guaranteed to converge
to an NE due to the finite number of players. The
complexity of Algorithm 3 is O (INR). Available fre-
quency bandwidth is close to boundaries in industry,

Algorithm 3 One-to-many matching based sub-
channel allocation algorithm
1: Initialize: the preference lists of all players. Denote

Su = {1, 2, . . . , N} as the set of F-APs which do not
match any RRH yet and Sm = ∅ as the initial set of
F-APs which match certain RRHs

2: while Su �= ∅ do
3: for n ∈ N do
4: Each F-AP sends the request to the RRH with

the highest ranking from set R
5: end for
6: for r ∈ R which receives a request from n do
7: if mr = 0 then
8: RRH r accepts the request directly. mr ←

mr + 1. Mark xn,r = yr,n = 1 and remove n

from Su to Sm; prefer n to its current candi-
date n′, if there exists any feasible FAP n

9: if 0 < mr < M then
10: r holds n as a partner. Mark xn,r = yr,n =

1 and remove n from Su to Sm. mr ←
mr + 1

11: if mr = M then
12: RRH r accepts F-AP n if it ranks higher

than any current candidate and removes
the F-AP item n′ which ranks the low-
est at that time. Mark xn,r = yr,n =

1, xn′,r = yr,n′ = 0, remove n from Su

to Sm, and remove n′ from Sm to Su

13: else
14: RRH r rejects the request directly and

removes RRH r from PLF−APn

15: end if
16: end if
17: end if
18: end for
19: end while
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and two proposed approaches aim at improving the
utilization ratio in terms of current limited resources.
They work out in many problems for multiple users
with few channels.

4.2.3 RRA problem

Finally, the RRA algorithm (Algorithm 4) is ad-
dressed by combining Algorithms 2 and 3. In Algo-
rithm 4, j is the index of iterations and J is the max-
imum number of iterations. ε0 is a fixed value. The
optimal solution can be achieved after several itera-
tions, and the performance gains obtained, in terms
of complexity, convergence, and accuracy, are signif-
icant. The complexity of Algorithm 4 is O(JNR).
The final NE identifies the optimal NOMA-based
power allocation strategy and subchannel reusing so-
lution under the optimal CP and user association
strategy.

Algorithm 4 Radio resource allocation (RRA)
algorithm
1: Initialize: the proper transmission power of each

F-AP according to Algorithm 2, j = 1

2: while j < J and ε ≤ ε0 do
3: for n ∈ N and r ∈ R do
4: Determine the subchannel reuse assignment

according to the matching algorithm (Algo-
rithm 3)

5: end for
6: for each F-AP with the determined subchannel

state do
7: Calculate the power allocation policy according

to Algorithm 2
8: end for
9: j ← j + 1 and calculate ε =

pn,q(j)− pn,q(j − 1)

pn,q(j − 1)
10: end while

5 Numerical results

In this section, numerical results are provided to
validate the performance of the proposed algorithms.

5.1 Simulation setup

In the simulations, we consider 8 F-APs and 10
RRHs. The RRHs are located randomly around the
BS which covers the area with a radius of 1 km. We
consider that each F-AP can provide coverage with
a radius of 100 m. All the FUEs and RUEs are
uniformly distributed around the F-APs and RRHs,

respectively. The transmission power of each F-AP
is 20 dBm (Li QP et al., 2019), and the number of
simulation snapshots is 1000. Unless specified, all
parameters are the ones summarized in Table 3.

5.2 Performance of the cache placement algo-
rithm

In this subsection, we simulate the impact of
the price and the number of FUEs on the profit of
the cloud and F-APs. In Fig. 3, specifically, we set
cnc = 1 dollar/file and evaluate the impact of θn,f on
the algorithm performance by setting SC

n to 100 and
200. The vertical coordinates represent the profit
U or V measuring the revenue and expenditure of
CP. From Fig. 3, we can first see that the optimal
price of one file gets smaller with the larger profit
when the storage capacity of the F-AP increases to
allow a larger actual caching quality and income from
FUEs. However, the profit of the cloud server dimin-
ishes with the increase of price of the file. It can be
explained by the law of demand, where the quantity
of goods actually consumed decreases with the price
increasing.

Table 3 Simulation parameters

Parameter Value Parameter Value

Number of 10 R 10
subchannels N 5–12
SC
n 100, 200 pmax

n 20 dBm
pr 20 dBm PF

cir 0.12 W
PR
cir 0.1 W L 20–150
κ 0.1 cnc 1–3
M 2 ζ 0.4
ε0 10−4
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Fig. 3 Impact of the price on the profit of the cloud
and F-APs
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In Fig. 4, we set the storage capacity of the F-
AP as SC

n = 100 under this simulation. Then we
compare the maximum profit of the cloud server and
the F-APs under the proposed algorithm versus the
unit backhaul transmission cost, cnc, with two other
schemes: maximum hit rate (max) where for a given
price θn,f , each F-AP n chooses to cache the files
that maximize the local cache hit rate, and random
caching (random) where for a given price θn,f , each
F-AP n randomly selects the files to cache. It is
clear that the profit of the cloud is the maximum
with respect to other three algorithms. Furthermore,
the profit of F-APs under our proposed scheme is
larger than those under the max scheme and random
scheme.

1.0 1.5 2.0 2.5 3.0
Unit backhaul link transmission cost (dollar/file)
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Fig. 4 Maximum profit vs. unit backhaul transmis-
sion cost

5.3 Performance of the radio resource alloca-
tion algorithm

In this subsection, the benefit of the SM al-
gorithm is verified in Fig. 5 compared to the ran-
dom matching (RM) scheme and exhaustive search
matching (EM) scheme. Specifically, we can first see
that for both the RM and SM schemes, the total la-
tency decreases with the increase of the number of it-
erations. In addition, the SM scheme achieves better
performance than RM because just the local channel
state information is needed, and the RM scheme is
worse than SM because there is a large probability
to have a chaotic initial state, which leads to lower
EE. The numerical results show that our proposed
SM scheme can find the near-optimal value, which is
very close to the optimal value obtained by the EM

scheme with low complexity, and in particular, the
difference of the SM and EM schemes for Q = 10 is
only 2.6%.
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Fig. 5 Comparison among SM, RM, and EM

The benefit of the game-theoretic non-
cooperative power allocation scheme is evaluated in
Fig. 6. We can see that the network EE decreases
with the increase of the maximum number of FUEs,
suggesting tradeoff between the number of users in
one NOMA group and the performance. We also see
that the equal power allocation scheme achieves the
worst performance because it does not consider dy-
namic channel conditions among different users, and
that the greedy power allocation scheme ignores the
efficiency but focuses on greedy throughput. The
differences between these two schemes and our pro-
posed scheme are distinct but become inconspicuous
due to the increasing interference from subchannel
reuse. However, our proposed NOMA-based power
allocation scheme, which is dependent on the channel
state, achieves the best performance gain.

Finally, we simulate the EE of the UEs in terms
of the SE threshold of F-AP n. From Fig. 7, we
can see that with the growth of the SE threshold
of F-AP n, the EE decreases due to the decrease
in the number of FUE users whose demand can be
met by F-AP n. We also see that when more FUEs
participate in transmission, EE increases largely due
to the larger rate increment.

5.4 Performance of the network profit maxi-
mization algorithm

In this subsection, we adopt the CP, non-
cooperative power allocation, and matching game
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Fig. 6 Energy efficiency vs. serving limitation of one
F-AP using NOMA
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Fig. 7 Performance of energy-efficient power alloca-
tion vs. the spectrum efficiency threshold of F-AP n

schemes to verify the network profit performance.
We set the price as 1, 3, θ∗, and the backhaul link cost
is cnc = 1 dollar/file. Two special schemes are simu-
lated where 8 F-APs are with SC

n = 100 and L = 50,
and 10 F-APs are with SC

n = 100 and L = 100. It
is evident from Fig. 8 that with the increase of the
number of F-APs, the network profit P increases sig-
nificantly and the growth rate becomes larger. The
most likely reason is that more F-APs participate in
the file caching and obtain much income from FUEs
and subchannel reuse. However, the different pricing
schemes of files influence the profit under the special
storage limitation due to the law of demand opera-
tive within the economics market.

6 Conclusions

In this study, we focus on the resource allo-
cation in NOMA-based F-RAN with the F-APs of
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Fig. 8 Performance of network profit

edge caching, computing, and communication capa-
bilities. Taking the heavy cloud burden and poor-
quality backhaul link into consideration, we make
edge caching for charging, transmission, and resource
allocation in F-APs reasonably accessible for fur-
ther network performance improvement. To this
end, we define a new network performance indicator,
namely network profit, which consists of the cost of
caching and transmission energy efficiency during the
file caching and transmission phases. Then we for-
mulate an optimization problem for network profit
maximization by jointly optimizing CP, pricing of
files, and power and subchannel allocation. Two
sub-problems are formulated to solve the NP-hard
problem easily. Finally, we propose two algorithms
based on iterative dynamic programming and game
theory, and simulate them by comparison with some
existing schemes in terms of efficiency and network
performance.
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Appendix A: Proof of the Dinkelbach
solution

In Theorem 1, we use the Dinkelbach scheme
to achieve the solution to the transformed problem,
and prove its quasi-convexity as follows (Li ZD et al.,
2019):

We define an equivalent function Y (p) =

maxpG(p) − γP (p) with Theorem 2. Define two
solutions as y1 and y2, and ascertain the function
values for them to be Y (y1) and Y (y2), respectively.
Then we define the derivative of function ∂Y

∂p as G′,
and there are thus two situations in terms of two
variables. If y1 ≥ y2, y1 − y2 ≥ 0, we just focus on
whether Y ′ is positive or negative:

Y ′ = G′ − γ∗, (A1)

where γ∗ is the assumed optimal solution. Accord-
ing to the proof in Appendix B, we can see that
if y1 ≥ y2, Y (y1) ≤ Y (y2), and γ > y2 ≥ y1,
then the derivative of function Y ′(y2) ≤ 0 because
the minimum value has not been achieved. Thus,
the first-order condition of the quasi-convex function
expression

∇Y (x) (y − x) ≤ 0 (A2)

holds where x = y1, y = y2. If y1 < y2, similar
proofs can be obtained but are not mentioned here
due to the space constraint for the paper.

Appendix B: Proof of problem equiva-
lence

We prove the problem equivalence with two
steps. First, we prove the sufficient condition and
define the objective as γ∗ = G(p∗)

P (p∗) , where p∗ is the
optimal power allocation policy. Then, it is evident
that

γ∗ =
G(p∗)
P (p∗)

≥ G(p)

P (p)
; (B1)

based on this, we can derive

G(p)− γ∗P (p) ≤ 0, (B2)

G(p∗)− γ∗P (p∗) = 0. (B3)

Therefore, maxp G(p) − γ∗P (p) = 0, and the
sufficient condition is proved.

Second, the necessary condition should be
proved. Suppose that p̃ is the optimal policy and
G(p̃)− γ∗P (p̃) = 0 is established. Thus, we have

G(p)− γ∗P (p) ≤ G(p̃)− γ∗P (p̃) = 0. (B4)

The above inequality can be derived as

G(p)

P (p)
≤ γ∗,

G(p̃)

P (p̃)
= γ∗. (B5)

Therefore, Theorem 2 is proved.
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