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Abstract: Low-voltage electrical apparatuses (LVEAs) have many workpieces and intricate geometric structures, and the assembly 
process is rigid and labor-intensive, and has little balance. The assembly process cannot readily adapt to changes in assembly 
situations. To address these issues, a collaborative assembly is proposed. Based on the requirements of collaborative assembly, a 
colored Petri net (CPN) model is proposed to analyze the performance of the interaction and self-government of robots in 
collaborative assembly. Also, an artificial potential field based planning algorithm (AFPA) is presented to realize the assembly 
planning and dynamic interaction of robots in the collaborative assembly of LVEAs. Then an adaptive quantum genetic algorithm 
(AQGA) is developed to optimize the assembly process. Lastly, taking a two-pole circuit-breaker controller with leakage 
protection (TPCLP) as an assembly instance, comparative results show that the collaborative assembly is cost-effective and 
flexible in LVEA assembly. The distribution of resources can also be optimized in the assembly. The assembly robots can interact 
dynamically with each other to accommodate changes that may occur in the LVEA assembly.
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1  Introduction

Low-voltage electrical apparatuses (LVEAs) are 

used to achieve the switching, control, protection, detec‐

tion, transformation, and adjustment of circuits or 

non-electric objects (Li DL, 2004). LVEAs have wide 

applications in daily life. Due to their various and 

complex structures, they are often assembled on a 

traditional assembly line. Nevertheless, due to varied 

and rapidly changing requirements, traditional assem‐
bly lines cannot satisfy market requirements. These tra‐
ditional assembly lines of LVEA are labor-intensive 
and inflexible, and cannot enable a manufacturer to 
obtain a dominant position within a fiercely competi‐
tive global market (Ge et al., 2021). Many manufac‐
turers of LVEAs have emphasized the application of 
a new assembly method to replace traditional assem‐
bly lines. Based on the structural characteristics and 
usage requirements of LVEAs, there are some require‐
ments proposed for LVEA assembly: the assembling 
resources should be allocated quickly, and the assem‐
bling processes should be orderly, stable, and auto‐
matic. Additionally, the types of assembled products 
should be able to be varied. Therefore, it is challeng‐
ing to construct a new assembling method for assem‐
bling LVEAs.

Nowadays, robot assembly (RA) is extensively 
applied in product assembly. Compared with traditional 
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assembly lines, RA can achieve 24-h uninterrupted 
operation with no need for skilled assembly workers. 
In the assembly of LVEAs, the application of RA could 
greatly reduce labor costs (Li L et al., 2020; Wang 
YY et al., 2021). The study of LVEA assembling 
methods has become much more significant.

Many different applications of RA have been 
extensively researched by scholars, such as in the 
methods, planning, and balancing of assembly (Gao 
et al., 2009). The results have been useful in the study 
of LVEA assembly. Yu and Yang (2018) proposed a 
design method for a flexible assembly to achieve real-
time adjustment of assembly tasks based on the assem‐
bly characteristics of multi-batch small-scale products. 
Çil et al. (2017) constructed a robotic parallel assem‐
bly system and optimized its assembly process using 
a beam search approach. For the multi-criterion opti‐
mization of a multi-product assembly line, Tavakoli 
(2020) proposed an integer programming model opti‐
mized by the hybrid tabu search simulated annealing 
algorithm (Zheng et al., 2021). For a mixed-model 
sequencing problem with stochastic processing time 
in a multi-station assembly line, Li XL et al. (2021) 
proposed a hybrid particle swarm optimization (PSO) 
algorithm to deal with the scheduling problem of flexi‐
ble assembly systems without intermediate buffers.

In addition to constructing the assembly method 
and optimizing the assembly planning for RA, it is 
necessary to optimize the balancing of the complete 
assembly lines. This is known as the robot assembly 
line balancing problem (RALBP). In assembly pro‐
duction, two main types of assembly balancing prob‐
lem occur. The first pertains to minimizing the number 
of assembly robots within a specific assembly cycle 
(RALBP-1). The second is related to minimizing the 
assembly time for a process involving a specific num‐
ber of robots (RALBP-2) (Grzechca, 2014; Samouei 
et al., 2016). Regardless of the problem types, the 
ultimate goal of balanced optimization is to reduce 
the jobless rate of assembly equipment and improve the 
efficiency of an entire assembly line. For the balance 
optimization problem involving robot assembly lines, 
Rubinovitz et al. (1993) modeled the RALBP-1 problem 
and applied the best-first search and branch-definition 
algorithm for optimization. After that, other scholars 
applied genetic algorithms (GAs), hybrid genetic algo‐
rithms (Levitin et al., 2006), and PSO algorithms to 

optimize the RALBP-2 problem of linear robot assem‐
bly lines (Nilakantan et al., 2015; Chen and Tan, 2018). 
The balance optimization problem of a robot assem‐
bly line is an extension of the general assembly bal‐
ance optimization problem in RA applications (Bay‐
bars, 1986). Özcan and Toklu (2009) applied a hybrid 
improved meta-heuristic algorithm to optimize the 
RALBP-1 problem for simple linear and U-shaped 
assembly lines. Other researchers proposed planning 
methods for human–robot collaborative assembly lines 
(Rizwan et al., 2020; Wang H et al., 2022), and a perfor‐
mance evaluation model was established to evaluate 
the feasibility of multi-resource collaborative assembly 
systems (Johannsmeier and Haddadin, 2017). The pub‐
lications mentioned above are summarized in Table S1 
(see supplementary materials for Tables S1‒S15).

First, based on the requirements of LVEA assem‐
bly, robots require certain communicative functions. 
The real-time assembly information for each robot 
needs to be obtained quickly to make a decision for sub‐
sequent assembly tasks. The whole assembly line needs 
to be able to accommodate changes that are needed for 
making various new products. Second, robots require 
certain capacities for self-government. When a fault 
happens in the assembly process, a robot must be able 
to continue to carry out assembly tasks itself, not dis‐
turbed by the fault of other assembly cells. The whole 
assembly line needs to maintain stability due to the rela‐
tive independence of all robots. Third, with a variety 
of assembly products and an uncertain assembly situ‐
ation, the robots need to have dynamic interactions 
with each other. However, according to Table S1, exist‐
ing assembly lines or methods do not satisfy the assem‐
bly requirements of LVEAs. Hence, in this paper, we 
propose a collaborative assembly for LVEA, which will 
fully satisfy the assembly requirements of LVEAs. 
The main contributions of this paper are as follows:

1. A collaborative assembly method is proposed 
for the assembly of LVEAs.

2. An artificial potential field based planning algo‐
rithm (AFPA) is proposed to achieve assembly planning 
and dynamic interaction in the collaborative assembly 
of LVEAs.

3. An adaptive quantum genetic algorithm (AQGA) 
is proposed to optimize the assembly processes.

4. A colored Petri net (CPN) model is constructed 
for the analysis of the collaborative assembly.
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The main content of this paper is shown in Fig. S1 
(see supplementary materials for Figs. S1–S16).

2  Problem definition

In the assembly of an LVEA, many specific tasks 
have predetermined precedence relationships and as‐
sembly times for each robot. With assembly balance 
planning, each robot can perform many more tasks in 
a given time. However, when changes occur in the 
assembly processes, such as production shifts or robot 
failures, the balance will be broken. The whole assem‐
bly line needs to be adjusted to accommodate the new 
situation, and the adjustment has a high cost. In the 
collaborative assembly of an LVEA, the robots can 
exchange information with each other, and when uncer‐
tainty happens, the robots can quickly adjust them‐
selves to maintain the stability of the assembly pro‐
cesses. For the whole assembly process of an LVEA, 
the robot assembly is collaborative, and it is neces‐
sary to maintain the dynamic interaction of the robots 
to improve assembly efficiency. In brief, the collabor‐
ative assembly of an LVEA has two main challenges: 
(1) robot interaction and self-government; (2) assem‐
bly planning and balance optimization. To solve the 
problems mentioned above, certain assumptions are 
made, as follows:

1. Each robot can perform only two kinds of sim‐
ple assembling actions.

2. The assembly time of a task is constant and 
known. The time may vary according to the types of 
tasks.

3. Each task can be completed by one kind of sim‐
ple assembling action.

4. The time consumed in material flow is not con‐
sidered in this study.

5. The precedence diagrams are known, and the 
division of tasks is not allowed.

6. The assembly time of the LVEA is constant.

3  Overview of methodology

This section provides a practical overview with 
respect to the identification of the collaborative assem‐
bly in the assembly of an LVEA. The collaborative 

assembly processes consist of many necessary basic 
actions (inserting, putting, rotating, pressing, sticking, 
and welding) that can be arranged and combined in a 
particular order to complete the assembly. Each robot 
can perform two different basic actions. Therefore, 
during the assembly processes, based on the informa‐
tion and characteristics of the LVEA released by the 
product information database, robots can be scheduled 
to achieve specific assembly functions according to a 
specific assembly action sequence. When the product 
type is changed, the assembly sequence of robots can 
be quickly reorganized to complete the assembly of 
the LVEA. The framework of the proposed assembly 
line is shown in Fig. 1. Additionally, for the efficient 
running of a collaborative assembly line, the collab‐
orative assembling methodology is proposed in this 
section. The architecture of the collaborative method‐
ology for LVEA assembly is shown in Fig. S2. It con‐
sists of four parts, parts I–IV. Each part has a specific 
function. Collaborative assembly can be achieved in 
LVEA assembly with the cooperation of these four 
parts.

In part I, assembly planning with AFPA is pro‐
posed to assign assembly tasks to robots. The robot 
number and task priority coefficient are obtained. In 
part II, an AQGA is proposed to optimize the robot 
number and task priority coefficient (assembly bal‐
ance optimization). The distribution of tasks is opti‐
mized in this part. Accordingly, the assembly plan‐
ning of the collaborative assembly is realized by the 
combination of parts I and II. In part III, the dynamic 
interaction based on AFPA is proposed. In this part, 
the robots can autonomously select tasks based on 
the priority coefficients of all tasks. The robots can 
communicate assembly information with each other 
to maintain dynamic interaction by applying AFPA. 
In part IV, CPN is applied to construct the collabora‐
tive assembly model. The feasibility of the collabora‐
tive assembly for LVEA is analyzed with the CPN 
model.

For the evaluation of the proposed collaborative 
assembly, LE and SI (Özcan and Toklu, 2009; Bat‐
taïa and Dolgui, 2013) are introduced. As shown in 
Eqs. (1) and (2), the maximum value of LE is used 
to reduce the number of robots, and the distribution 
of the assembly tasks among robots is balanced by 
reducing SI. Therefore, in part III, LE and SI are 
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applied to evaluate the performance of AFPA. In parts 
I and II, multi-objective optimization fitness (see 
Eq. (3)) is introduced to evaluate the performance of 
AQGA. SI0 and LE0 are the initial values of SI and 
LE, respectively.

With dynamic interaction performance, the collab‐
orative assembly has good compatibility in the assem‐
bly of various LVEAs. Eq. (4) is introduced to evaluate 
the compatibility of the assembly line. In Eq. (4), it 
is assumed that there are two types of LVEAs. The 
first is model r, and the second is model p. Sr and Sp are 
the numbers of robots used in assembling model r and 
model p, respectively. ELr and ELp are the maximum 
values of EL when assembling model r and model p, 
respectively. SIr and SIp are the minimum values of 
SI when assembling model r and model p, respectively. 
When Sr=Sp, ELr=ELp, SIr=SIp, the value of Cmp is 
equal to 1, and the assembly line has much better 
compatibility.

LE =
1

mC∑s = 1

m

STs , (1)

SI =
1
m∑s = 1

m

( )STmax − STs , (2)

Fitness =
100 − LE
100 − LE0

+ 2
SI
SI0

m
C

, (3)

Cmp =
Sr + 1
Sp + 1

ELr + 1
ELp + 1

SIr + 1
SIp + 1

, (4)

where STs is the assembly time of assembly station s, 
STmax is the maximum assembly time in all assembly 
stations, m is the number of assembly stations, and C 
is the assembly cycle of the product.

4  Artificial potential field based planning 

algorithm

In the collaborative assembly of an LVEA, each 
robot has its own tasks. For robots of the same type, con‐
fliction may occur when they select the same task. For 
the tasks with no restriction in the assembly sequence, 
confliction may occur when the tasks are selected by 
one robot. Therefore, in the collaborative assembly 
of LVEA, interactive feedback is necessary between 
the robots and tasks, and for the flexibility of the col‐
laborative assembly, robustness is necessary in the 
assembly of LVEA. To satisfy these requirements pro‐
posed above, an AFPA is proposed in this paper.

The classical artificial potential field (APF) method 
is a path planning approach to make a robot move 
from its starting point to a goal (Khatib, 1986) while 
avoiding obstacles on its way. In an APF, an attract‐
ing APF which attracts robots is assigned to the des‐
tination point, and a repelling APF which repels robots 
is assigned to the obstacles (Montiel et al., 2015; Tan 
et al., 2018). Based on the influence of these two 

Fig. 1  A collaborative assembly
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combined potentials, the robots can move to their des‐
tinations. The definition of APF (Zhang JY and Liu, 
2007) is listed in Fig. S3.

Based on the theory of APF, AFPA is proposed for 
the collaborative assembly of LVEA. In the control of 
AFPA, each task is attracted by the robots, and the dif‐
ferent kinds of tasks have different values of the attract‐
ing force. According to the value of the attracting force, 
the assembly tasks can be selected in sequence.

In the collaborative assembly of LVEA, the as‐
sembly tasks can be distributed to the robots quickly 
before assembly, and the robots can interact with each 
other dynamically during the assembly process. Hence, 
AFPA has two functions to control the collaborative 
assembly: (1) distribution of the tasks before assembly; 
(2) dynamic control of the interaction between robots 
and tasks.

4.1  Distribution of tasks

In the distribution of the tasks, the main goal is 
to achieve the scheduling of the robots statically. The 
sequence of assembly tasks is determined, and the prior‐
ity coefficient γ i of each task is obtained. It is assumed 

that in AFPA, ρsti exists between each assembly robot 

and assembly task (one or more assembly actions):

ρsti = ωstiηsti , (5)

where ρsti is the static potential distance for task i, ωsti 

is the static potential of task i in AFPA, and ηsti is the 

static field charge of task i in AFPA.

ωsti = exp (1 − 1
msti ti ) , (6)

where msti is the static quality factor of task i and ti is 
the time cost in the completion of task i.

Therefore, the potential field force is calculated 
as follows:

Fst-attij = eρsti μstj, (7)

Fst-repij =− 1

e3ρsti
μstj, (8)

where Fst - attij is the static potential attractive force of 
task i, Fst - repij is the static repulsive force generated by 
task i, and μstj is the class factor.

μstj =
ì
í
î

1, j = α,

0, j ≠ α,
(9)

where α=1, 2, … is the type number of the assembly 
robot.

ηsti is given as follows:

ηsti = ( )eFst - co ( i − 1) − 1 eFst - co ( i − 1) . (10)

Therefore, the force of potential field is

Fst-coij = Fst-attij + Fst-repij. (11)

According to the math model proposed above, the 
distribution process of tasks with AFPA is as follows:

1. Initialize each assembly task with Fst - attij=0 
and Fst - repij=0.

2. Analyze and calculate the static potential ωsti 
and static field charge ηsti of each assembly task in the 

potential field.
3. Calculate the static potential forces generated 

by the robots for assembly tasks Fst - coij = Fst - attij +
Fst - repij. The robot with the largest potential force 
Fst - co_max performs the corresponding assembly tasks. 
Reset the potential field load of the selected task to 0.

4. Analyze and calculate the static potential ωsti 
and static field charge ηsti of each assembly task in the 
potential field again. Recalculate the static situational 
forces Fst - coij for unfinished tasks.

5. If Fst - coij = Fst - co_max, perform the ith assembly 
task and reset the static potential and static field load 
of the ith task to 0; otherwise, continue searching 
for Fst - co_max.

6. Repeat steps 2–5 until the static potential of 
the final assembly task and the static field load are reset 
to 0.

In this distribution process, the values of ti, μsti, 

and msti are given first, the priority coefficient γ i of 

the tasks is obtained, the scheduling of the assembly 
robots is achieved, and finally the sequence of tasks 
is determined.

4.2  Construction of a dynamic interaction pattern 
based on AFPA in the assembly

After the distribution of assembly tasks with 
AFPA, each assembly robot acquires assembly tasks 
correspondingly. If any robot fails, the corresponding 
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tasks will not be completed, which will affect the 
assembly of the product. Therefore, it is necessary to 
set up a dynamic interaction pattern between the assem‐
bly robots and tasks. Each assembly robot can be fully 
applied during the assembly process, and the assem‐
bly process will not be stalled due to robot failures. In 
this study, a dynamic interaction pattern based on AFPA 
is introduced to achieve dynamic, collaborative inter‐
action between a robot and a task. The related mathe‐
matical model is defined below.

In the dynamic interaction, the assembly task 
model is constructed first. Each task has a correspond‐
ing essential quality attribute.

Mt i =
ì
í
î

eλi,  if task i is the initial task,

Keλi,     otherwise,                     
(12)

where K = Πu
j=1Mt j is the product of the primary quality 

attributes of the predecessor tasks directly adjacent 
to task i, u is the number of tasks that are of the same 
assembly type as task i, and Mt i is the primary quality 
attribute of task i. The value of the boundary attribute 
λ i of task i is shown as

λ i = ε i ∑
i = 1

n

ε i , (13)

where n is the number of assembly tasks. Concurrently, 
the task has a corresponding task excitation factor ε i 
and task guidance factor σ i.

ε i = γ iσ i + 1, (14)

σ i = 1 − 1
n − u

. (15)

The role of the assembly robot in the assembly 
task has a particular scope; namely, there is a bound‐
ary between the assembly robot and the assembly task. 
Only within this boundary can the robot act on the cor‐
responding assembly task. This boundary is defined 
as the potential field boundary in this study. For each 
assembly task, the corresponding boundary entry value 
is given by the potential field boundary St i:

St i = Otl i − 1 λ i, (16)

where Otl i−1 is the boundary coefficient of the adjacent 
predecessor task i−1 of task i. When the corresponding 

assembly task i−1 is completed, Otli−1=1; when task i−1 
is not completed, Otli−1∈(0, 1).

Valv = min ( λ1, λ2, …, λn ), (17)

where Valv is the entrance threshold of the potential 
field boundary. Only when St i⩾Valv, can assembly 
tasks pass through potential field boundaries.

When assembly tasks cross the potential field 
boundary, they are subject to the dynamic forces F rtij 
of robot j on task i:

F rtij =
Δ jψ jMr jMt i

dr 2
ij

, (18)

where Mr j is the mass property of robot j, dr ij is the dy‐
namic potential distance between robot j and task i, and 
ψ j is the state parameter of assembly robot j. ψ j satisfies

ψ j =
ì
í
î

1, when robot j is idle,

− 1, otherwise.
(19)

Additionally, Δ j is the type factor of assembly 
robot j. If the assembly tasks belong to assembly robot 
j, then Δ j=1; otherwise, Δ j=0.

When ψ j=1, the task is attracted by F rtij; when ψ j=

−1, the task is repelled by F rtij for the case of AFPA.
According to the math model proposed above, the 

dynamic interaction pattern with AFPA in assembly 
is as follows:

1. Initialize each assembly task. The correspond‐
ing boundary coefficient Otl i ranges in (0, 1). Accord‐
ing to the priority coefficient γ i, calculate the stimu‐

lus factor ε i and its boundary attributes for each task 
in the initial state.

2. Each assembly robot issues an assembly instruc‐
tion ψ j=1. The potential field boundary is opened, 

and the threshold of the boundary entry is taken as 
Valv=min( λ1, λ2, …, λn ). Calculate the boundary entry 

value St i for each assembly task.
3. Determine whether St i of each task is greater 

than the threshold of the boundary entrance. If St i is 
higher than Valv, the corresponding task i enters the 
potential field boundary.

4. Each assembly robot attracts the task in the po‐
tential field. The potential field force F rtij is calculated. 
The robot and the assembly task are matched in order 
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according to the magnitude of the potential force. When 
the robot obtains the corresponding assembly task, the 
state parameter of the assembly robot ψ j=−1.

5. When task i is completed, its corresponding 
boundary coefficient Otl i is set to 1. The initial adja‐
cent predecessor task boundary coefficient Otli−1 is reset 
to its original value, in (0, 1). The state parameter of 
the assembly robot is ψ j=1.

6. Return to step 3 and perform the calculation 
again until all assembly tasks are completed.

In this process, the priority coefficient γ i of the 

tasks is given first, and the dynamic interaction pat‐
tern is established last.

5  AQGA algorithm

In the collaborative assembly, with the different 
assembly sequences of each assembly task, the re‐
quired assembly time and the number of assembly 
robots vary. According to the structure of LVEA, it 
is necessary to balance and optimize the number of 
robots. In this study, the assembly time for LVEA is 
selected. Then, the number of assembly robots (that 
is, the RALBP-1 assembly balance problem) needs 
to be optimized. This is a non-deterministic polyno‐
mial (NP-hard) problem. Many previous studies have 
proven that evolutionary algorithms are effective in 
solving NP-hard problems (Li L et al., 2021). To this 
end, an AQGA is introduced.

The quantum genetic algorithm (QGA) is a proba‐
bilistic search optimization algorithm based on the com‐
bination of quantum computing theory and evolution‐
ary algorithms. In QGA, the chromosomes are repre‐
sented by qubit encoding, and the evolutionary search 
is completed by quantum gate action and a quantum 
gate update (Yang et al., 2003). Since QGA has a 
small population size that does not affect the per‐
formance of the algorithm, QGA has a high conver‐
gence speed and strong global searchability. Hence, 
it has attracted attention from researchers worldwide. 
In this study, a QGA and an AFPA are combined to 
achieve collaborative assembly control. The specific 
mathematical model of AQGA can be given as follows.

In QGA, the smallest information unit is repre‐
sented by a qubit. The state of a qubit can be expressed 
as follows:

Φ j = α j 0 + β j 1 , (20)

where α j and β j meet the following conditions:

| α j |
2

+ | β j |
2

= 1,  j=1, 2, …, n. (21)

Concurrently, a pair of complex numbers (α j, β j) is 

known as a probability bit of a qubit, expressed as 

[α j, β j ]
T

.

In the real number encoded QGA, the probability 
amplitude is directly applied for encoding. The spe‐
cific encoding scheme is shown in Eq. (22):

q i =
é
ë
êêêê

|
|
|||||

|
|||| cos θ i1

sin θ i1

  
|
|
|||||

|
|||| cos θ i2

sin θ i2

 … 
|
|
|||||

|
|||| cos θ in

sin θ in

ù
û
úúúú . (22)

In Eq. (22), θ ij = 2π·rand, rand is a random num‐
ber in (0, 1), i=1, 2, …, m, j=1, 2, …, n, m is the size 
of the population, and n is the number of quanta.

Assuming that the optimization variable solution 
range is [Xmin, Xmax], the observed state of the quan‐
tum superposition is solved with

qchi =
é

ë
ê
êê
ê ù

û
ú
úú
ú0.5 [ Xmax (1 + cos θ ij ) + Xmin (1 − sin θ ij ) ]

0.5 [ Xmax (1 + sin θ ij ) + Xmin (1 − cos θ ij ) ]
,

(23)

where i=1, 2, …, m, j=1, 2, …, n.
In the quantum phase rotation update, a method 

based on the gradient of the objective function is pro‐
posed (Li SY and Li, 2006) for controlling the rota‐
tion phase step size, as shown in Eq. (24). Accord‐
ingly, we introduce an adaptive function based on maxi‐
mum fluctuation. The adaptive function can further 
control the step size search accuracy to avoid local 
optima.

Δθ1 = sign (Comp )
é

ë

ê
êê
ê
ê
ê
1 −  ∇g ( χ ) − ∇gmin

 ∇gmax − ∇gmin

ù

û

ú
úú
ú
ú
ú

,   (24)

where sign(Comp) is the phase turning function, Comp=
det(ω0, ω1), ω0=[α0, β0]

T is the probability magnitude 

of the optimal solution for the current search, and ω1=
[α1, β1]

T is the probability amplitude of the current 

solution.
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Δθ2 = kexp (1 − 1
avg ) . (25)

In Eq. (25), k is the adaptive coefficient, and avg 
is the mean fluctuation function:

avg = max (δ1,δ2 ), (26)

δ1 = | mean (fit (qchi ) ) − min (fit (qchi ) ) | ,      (27)

δ2 = | mean (fit (qchi ) ) − mean (fit (q′chi ) ) | ,     (28)

where δ1 is the absolute value of the difference between 
the average Fitness value and the minimum Fitness 
value, and δ2 is the absolute difference in the mean 
Fitness between the two generations. Accordingly, the 
improved quantum phase rotation update formula is

θ = θ0 + Δθ1Δθ2, (29)

where θ is the updated quantum phase and θ0 is the 
original quantum phase. The specific implementation 
process of AQGA is initiated as follows:

1. Initialize the population. The population size 
n, number of qubits m, and probability of quantum 
mutation Pm are given. Population Q contains many 
individuals, i. e., Q={q1, q2, … , qn}, where qj (j=1, 
2, … , n) is the jth individual, and n is the number of 
individuals in the population. A specific description 
is as shown in Eq. (22).

2. Construct the observed state of quantum super‐
position state Qchi according to the probability ampli‐
tude of each body in Qi, where Qchi={qchi1, qchi2, …, qchin}, 
and qchij (j=1, 2, …, n) is the observation state of the 
j th individual. A specific description is as shown in 
Eq. (22). In QGA, the process of constructing the obser‐
vation state Qchi from the probability amplitude Q 
includes a decoding process, and the actual values of the 
optimization parameters are obtained after decoding.

3. Calculate the Fitness of the observed state and 
the optimal value.

4. Retain the best individual and determine whether 
the termination condition is met. If the condition is 
satisfied, the algorithm is terminated; if not, go to the 
next step.

5. Calculate the phase of the quantum-revolving 
gate according to Eq. (23), and apply the updated quan‐
tum phase in Eq. (23) to act on the probability ampli‐
tudes of all individuals in the population.

6. Perform quantum phase mutation operations 
to generate a new population, and update Qchi.

7. Perform fitness evaluation calculations and cal‐
culate the optimal solution after phase update mutation.

8. Compare the previous optimal solutions with 
the optimal solutions after phase update mutation. If 
the optimal solution is degraded, the previous optimal 
solution is retrieved. If the optimal solution evolves, 
the optimal solution is replaced.

9. Increase the evolution generation and return  
to step 2. The calculation will not be completed until 
the minimum robot number is obtained.

6  Construction of the collaborative assembly 

model based on CPN

To analyze the performance of the proposed col‐
laborative assembly of an LVEA, the assembly model 
must be constructed. Since the collaborative assembly 
process of an LVEA is characterized by parallel, asyn‐
chronous, event-driven, deadlock, and conflict elements 
(Xie, 2006; Zeng et al., 2014), the entire assembly is 
a discrete event dynamic system (Charbonnier et al., 
1999; Zelenka, 2010; Wang JX et al., 2023). The pri‐
mary modeling methods of this type of system are 
classified as follows (New, 1994; André et al., 2016; 
Pan et al., 2020; Zhang K et al., 2022): (1) graphic–
analytic hybrid modeling theory, e. g., queuing theory, 
Markov chains, and Petri net modeling theory, (2) mod‐
eling theory based on artificial intelligence, e.g., agent 
systems and Holon whole subsystems, (3) granularity 
calculation analysis theory, and (4) modeling theory 
based on matrix operation, among others.

Based on the assembly characteristics of LVEA, 
CPN modeling theory is applied to establish the assem‐
bly model in this study. This model reflects the sequence, 
parallel, synchronous, and asynchronous characteris‐
tics of discrete events, and colored tokens are used to 
colorize different assembly tasks and instructions. The 
CPN theory is based on the place/transition Petri nets 
(Desel and Reisig, 1998), which are the most promi‐
nent and best studied class of Petri nets. The formal 
definition of CPN (Jensen, 1990) is given in Fig. S4.

Accordingly, based on the overall design idea for 
the collaborative assembly, and the CPN modeling the‐
ory, the CPN collaborative assembly model comprises 
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mainly the place set P, transition set T, and arc set A. 
Based on the CPN modeling theory, the corresponding 
place, transition, and arc set for each unit in the collab‐
orative assembly are designed with the software pack‐
age CPN Tools (v.4.0.1). The places and transitions in 
the assembly model are defined in Figs. S5 and S6, 
respectively.

7  Simulation analysis

To verify the effectiveness of the collaborative 
assembly of LVEA, in this work we adopted a two-
pole circuit-breaker controller with leakage protection 
(TPCLP), which is one kind of LVEA, as an example for 
simulation analysis. The processor of the computer used 
in this simulation was an Intel® CoreTM i5-6200U 
CPU with 4 GB memory.

During the assembly of TPCLP, six assembly 
functions were required: inserting, putting, rotating, 
pressing, sticking, and welding. After disassembling and 
analyzing the product, in the assembly of this product, 
45 assembly tasks had to be performed, each of which 
was represented by a corresponding letter. In collab‐
orative assembly, each robot can perform only two 
assembly functions, so three robots with different func‐
tions were needed to complete the assembly. The corre‐
sponding relationship between the robot and the as‐
sembly task is shown in Table S2, where Rp repre‐
sents an assembly robot with insertion and putting 
functions, Rs represents a robot with rotation and pres‐
sure functions, and Rw represents an assembly robot 
with welding and adhesion functions. The constraint 
relationship between tasks is shown in Fig. S7, in 
which the number next to each task name mentioned 
above is the time consumed in completing the assem‐
bly task.

During the collaborative assembly of TPCLP, 
some requirements had to be met: (1) In the assem‐
bly process, it was necessary to satisfy the assembly 
constraint relationship between the various tasks shown 
in Fig. S7. (2) During the assembly process, assembly 
conflicts between robots and assembly tasks had to 
be avoided. (3) Scheduling too many robots had to be 
avoided since this can result in a waste of resources. 
Therefore, in a given assembly cycle, the total number 
of robots employed had to be as low as possible.

To verify the feasibility of the collaborative assem‐
bly proposed above, some functions were needed in 
the simulation. First, the CPN model of collabora‐
tive assembly was established to analyze the interac‐
tion and self-government of the robots. Second, some 
evaluation parameters, such as LE, SI, and Cmp, were 
calculated to analyze the assembly planning and dy‐
namic interaction of the collaborative assembly. The 
main work of this part was as follows:

7.1  CPN model construction of the TPCLP assembly

According to the proposed collaborative assem‐
bly, taking TPCLP as an example, the specific assem‐
bly of the cooperative assembly process was analyzed 
using CPN Tools. The entire assembly method model 
primarily included a task data unit, an assembly robot 
unit, an information-processing unit, and a product 
task detection unit.

Additionally, some parameters needed to be set 
before the assembly analysis. Based on the assembly 
balance analysis of AQGA, the number of robots varied 
with the value of the assembly cycle, which can be 
found in Table S3.

In this assembly analysis, the assembly cycle was 
set to 90 time units. Accordingly, the number of robots 
was five, including two Rp-type robots, two Rs-type 
robots, and one Rw-type robot. The number of assem‐
bly products to be completed was 10. With the com‐
bination of the assembly units, the CPN collaborative 
assembly model is as shown in Fig. 2.

Based on the CPN collaborative assembly model, 
the simulation monitoring unit Monitor in CPN Tools 
was used to analyze the interaction and self-government 
of the robots. By applying the “Count Transition” func‐
tion in the simulation control unit Monitor, some changes 
were observed in the system (Asm_Rp011, Asm_ 
Rp012, Asm_Rs011, Asm_Rs012, Asm_Rw011, T_Rp, 
T_Rs, and T_Rw), and the number of completed tasks 
of the five robots was analyzed. The results are listed 
in Table S4. By the monitoring of transitions T_ Rp, 
T_Rs, and T_Rw (Fig. 2), the number of completed 
assembly tasks in the assembly process was detected. 
Overall, 330 inserting/putting tasks, 180 spinning/
pressing tasks, and 210 welding/sticking tasks were 
detected. According to the number of tasks obtained 
by each assembly robot, for the same assembly tasks, the 
number of tasks for the assembly robots was similar, 
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and each robot maintained good communication to 
balance the task distribution. Accordingly, as long as 
the same type of assembly robot operated normally, 
the failure of some robots would not affect the entire 
product assembly process. Hence, the robots had a good 
capability of self-government in the collaborative assem‐
bly of LVEA.

The randomness of the distribution process of 
the tasks should be considered during the assembly. 
In the multi-batch simulation analysis, three confi‐
dence intervals of 90%, 95%, and 99% were set to 
estimate the probability of the assembly tasks being 
completed by the robots. As shown in Fig. S8, the av‐
erage number of assembly tasks performed by each 
robot was obtained from 10 consecutive simulation 
analyses. In Fig. S8, the abscissa is a given confidence 
interval value, and the ordinate is the number of assem‐
bly tasks to be performed by each assembly robot. 
When the confidence interval was 99%, the number 
of tasks included increased, but they all fluctuated 
substantially within a stable interval. In Fig. S9, the 
selected confidence interval was 95%, and the numbers 
of simulation batches were 5, 10, 15, 20, and 25. Accord‐
ing to the confidence curve, during the operation of the 
assembly system, the number of tasks was stabilized. 

The number of assembly tasks among robots of the 
same type also tended to be the same. Therefore, it was 
found that the robots had good interactivity to main‐
tain the stability of the collaborative assembly.

7.2  Analysis of AFPA and AQGA in collaborative 
assembly

In the collaborative assembly of TPCLP, AFPA 
and AQGA were applied to control the assembly pro‐
cess. Before TPCLP assembly, the number of robots 
and the assembly planning were optimized. During the 
TPCLP assembly, the assembly processes were in a 
dynamic balance to maintain the effectiveness and sta‐
bility of the assembly. In the simulation, we analyzed 
the effectiveness of AQGA applied in the optimiza‐
tion of the assembly balance by comparison with other 
algorithms. AFPA was also analyzed to verify its per‐
formance for assembly planning and dynamic inter‐
action by comparison with some traditional assembly 
methods. The details of the simulation analysis pro‐
cesses were as follows:

First, the performance of AQGA was analyzed 
by introducing typical genetic algorithms, including 
GA, simulated annealing genetic algorithm (GASA) 
(Baykasoglu, 2006; Ren et al., 2015), QGA (Yang et al., 

Fig. 2  CPN collaborative assembly model: (a) product and task detection unit; (b) task data unit; (c) assembly robot unit; 
(d) information processing unit
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2003), and objective function gradient based quantum 
genetic algorithm (RQGA) (Li SY and Li, 2006), and 
optimization comparisons were carried out.

In the application of typical genetic algorithms, 
some critical parameters needed to be set, such as the 
population size, individual variable dimension, genetic 
generation, crossover probability, and mutation rate. 
Based on previous research on GA (Deb, 1998; Ji 
et al., 2012), the critical parameter value range was as 
shown in Table S5. If the parameter values were not 
in the given range, it was difficult to obtain the opti‐
mization results. According to the number of tasks, 
the individual variable dimension was 45. According 
to the analysis, the quantum rotation angle ranged from 
0.01 to 0.5. When the value was smaller than 0.01, 
the calculation burden was increased. However, if the 
value was larger than 0.5, the optimization results were 
missed. The relevant parameters of the compared algo‐
rithms were set as shown in Fig. S10.

In the comparative analysis of the algorithms, 
AQGA was compared with commonly used algorithms 
GA, GASA, RQGA, and QGA based on a combination 
with AFPA. In this comparison, according to Table S6, 
the theoretical assembly cycle Ct of TPCLP was set to 
70, 90, 110, 130, and 150 time units. The target values 
of the analysis and comparison were Fitness, LE, SI, 
and S. The specific analysis results were shown in Fig. 3 

when Ct was set to 90 time units. The results showed 
that the AQGA algorithm proposed in this paper had 
better optimization performance. This algorithm ex‐
hibited better convergence performance than the com‐
pared algorithms GA, GASA, RQGA, and QGA, and 
it can rapidly converge within a small number of itera‐
tions without being limited to a local optimum. The 
detailed results of the comparison of the algorithms 
at different Ct ’s are shown in Table S6. We found that 
through AQGA optimization, the Fitness, LE, SI, S 
values obtained were better than those of the com‐
pared algorithms. These results were all better than 
the optimal values provided by several other algo‐
rithms. As shown in Fig. S11, AQGA was better than 
the compared algorithms in the optimization of the 
robot number. For the different numbers of assembly 
cycles, AQGA could calculate the minimum robot 
number quickly. Hence, AQGA can improve the effec‐
tiveness of assembly balancing in the collaborative 
assembly.

To analyze the performance of AQGA more deeply, 
a non-parametric statistical test was applied. Twenty 
samples were selected. The statistical data of the different 
algorithms are listed in Table S7. The descriptive sta‐
tistics and ranks of the robot number (RBN), SI, LE, 
and Fitness are listed in Tables S8 and S9, respectively. 
By analysis of Mean, Std., Min., Max., and mean ranks, 

Fig. 3  Comparative analysis of a combination of AFPAs with different optimization algorithms: (a) robot number; (b) SI; 
(c) LE; (d) Fitness
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we can find that the values (RBN, SI, LE, and Fitness) 
obtained by AQGA were better than those of other algo‐
rithms. From Table S10, we can also find that the values 
of p were all smaller than 0.05, so the sampling data 
obtained from the algorithms AQGA, GA, GASA, 
QGA, and RQGA were significantly different.

Then, the performance of assembly planning opti‐
mization and dynamic interaction of AFPA was ana‐
lyzed. The simple straight assembly line (ST_line), two-
sided assembly line (TS_line), and U-shaped assem‐
bly line (U_line) were compared with the collaborative 
assembly to verify the good performance of AFPA. 
Fig. 4 shows the assembly resource allocation and 
optimization performance of the collaborative assem‐
bly for AFPA and AQGA. Assembly cycles of 90 and 
150 time units were selected for comparison and anal‐
ysis, the Fitness values of various assembly methods 
were compared, and the comparison of LE, SI, and 
RBN were as listed in Figs. S12–S14. It was assumed 
that during the assembly processes an assembly robot 
could perform only two assembly actions (such as 
spinning/pressing, inserting/putting, and sticking/weld‐
ing). Therefore, in the basic assembly line (ST_line, 
TS_line, and U_line), at least three different kinds of 
robots were required in each assembly station. However, 
in the collaborative assembly, each assembly station 
had only one kind of assembly robot. Hence, from 
Fig. 4 and Figs. S12–S14, it can be found that for dif‐
ferent assembly cycles, the collaborative assembly had 
excellent assembly planning optimization and dynamic 
interaction performance compared with several other 
basic assembly lines. AFPA significantly improved the 
utilization efficiency of each robot and optimized the 
assembly resource distribution. Furthermore, for the 
same assembly cycle, the collaborative assembly was 

able to reduce the number of assembly robots to reduce 
assembly cost.

To analyze the performance of AT_line more 
deeply, a non-parametric statistical test was applied to 
analyze the performance of AT_line, ST_line, TS_line, 
and U_line. In this analysis, 16 samples were selected. 
The statistical data, descriptive statistics, and ranks of 
different assembly lines in terms of RBN, SI, LE, 
and Fitness are listed in Tables S11–S13. By analysis 
of Mean, Std., Min., Max., and mean ranks listed in the 
supplemental materials, we found that the values of 
RBN, SI, LE, and Fitness obtained by AT_line were 
better than those of other algorithms. From Table S14, 
we can also find that the values of p were all smaller 
than 0.05, so the sampling data obtained from assembly 
lines AT_line, ST_line, TS_line, and U_line were sig‐
nificantly different.

To analyze the dynamic interaction performance 
of AFPA, the values of LE, SI, S, Ct, and Cr (actual 
assembly cycle of the product) were analyzed for com‐
parison with the values obtained before dynamic inter‐
action, and the compatibility assembly of various prod‐
ucts was introduced to analyze the performance of 
dynamic interaction.

In this simulation different assembly cycles of 70, 
90, 120, and 150 time units were set to analyze changes 
in the values of LE, SI, and Cr, compared with the values 
obtained before the dynamic interaction of AFPA. The 
results are shown in Table 1 and Fig. S15. Comparative 
analysis showed that, through the optimization of the 
dynamic assembly process with AFPA, the assembly 
collaboration between the assembly robots was greatly 
improved and the robots were fully used in the assembly 
process. Additionally, the algorithm can reduce the 
assembly time and improve the assembly efficiency. 

Fig. 4  Fitness values of various assembly methods for different assembly cycles: (a) 90 time units; (b) 150 time units
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Under the control of the optimization of the dynamic 
assembly process with AFPA, the product assembly pro‐
cess was rendered relatively stable. The values of LE, 
SI, and Cr remained essentially unchanged or fluctuated 
within a fixed range of values for different cycles.

During the assembly of TPCLP, cooperative assem‐
bly was achieved by comprehensively applying AFPA 
and AQGA. Table S15 shows that compared with sev‐
eral existing assembly lines, for the different assembly 
cycles, the collaborative assembly was able to achieve 
a dynamic interaction between robots with fewer robots, 
so it could improve the assembly efficiency and reduce 
the assembly cost.

To analyze the compatibility of the collaborative 
assembly, another kind of TPCLP, called type 2, was in‐
troduced in the simulation (the first kind of TPCLP dis‐
cussed above is called type 1). Compared to the assem‐
bly of type 1, type 2 had the same assembly number but 
different kinds of assembly tasks, as shown in Fig. S16.

In the simulation, the collaborative assembly line 
AT_line was compared with the existing traditional 
assembly lines in terms of compatibility of the assem‐
bly process. The results are shown in Fig. 5.

According to Fig. 5, in the different assembly 
cycles, the Cmp of the basic assembly methods (ST_ 
line, TS_line, and U_line) was much larger or smaller 
than 1. The most significant value was 2.767, and the 
smallest value was 0.119. However, the Cmp of AT_line 
was close to 1. The most substantial value was 1.038, 

and the smallest value was 0.958. Hence, with the 
dynamic interaction of AFPA, the collaborative assem‐
bly line had better compatibility.

8  Conclusions

In this paper, we propose the collaborative assem‐
bly of LVEAs. Three objectives were considered: (1) 
self-government of robots; (2) assembly balance of the 
collaborative assembly; (3) assembly planning and 
dynamic interaction of the collaborative assembly. The 
results are summarized as follows:

1. Through the construction of the CPN collab‐
orative assembly model, the self-government of robots 
was analyzed in the collaborative assembly. As shown 
in Figs. S8 and S9, with the different confidence inter‐
vals (90%, 95%, and 99%), all of the assembly robots 
completed the tasks with a relatively stable number. 
At five different numbers of simulation batches, each 
robot completed the tasks with a relatively stable 
number. Hence, the robots had good performance to 
avoid assembly confliction in the collaborative assem‐
bly. We also found that when one robot was in fault, 
the assembly process was not interrupted. The robot 
had good self-government ability to improve the pas‐
sive fault tolerance of the assembly process.

2. AQGA applied to balance the collaborative 
assembly had better convergence performance than the 

Fig. 5  Cmp comparison among different assembly methods: (a) ST_line vs. AT_line; (b) TS_line vs. AT_line; (c) U_line 
vs. AT_line

Table 1  Effectiveness of dynamic balance with AFPA

Ct

70

90

120

150

Optimization of static assembly resources

S

11

5

4

3

LE

0.31

0.53

0.5

0.53

SI

0.72

0.53

0.29

0.24

Cr

70

90

120

150

Optimization of dynamic interaction

S

11

5

4

3

LE

0.74

0.82–0.84

0.76–0.79

0.89

SI

0.49

0.23–0.31

0.35–0.43

0.24

Cr

63

87–90

103

107
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compared algorithms GA, GASA, RQGA, and QGA. 
Furthermore, with the optimization of AQGA, the Fit‐
ness, LE, SI, and S values obtained were better than 
those optimized with the compared algorithms. Hence, 
AQGA had better performance in collaborative assem‐
bly balance.

3. AFPA was proposed to perform assembly plan‐
ning and dynamic interaction of the collaborative 
assembly. Figs. S11–S14 showed that in the applica‐
tion of AFPA, the collaborative assembly method could 
achieve assembly planning and dynamic interaction in 
the LVEA assembly. Furthermore, compared with the 
traditional assembly line, the collaborative assembly 
method achieved better LE, SI, S, and Cmp.

Thus, we can conclude that collaborative assem‐
bly is effective in the assembly of LVEAs.

Considering an actual assembly situation, how‐
ever, there are two research directions for LVEA col‐
laborative assembly. First, the collaborative assembly 
has passive fault tolerance, but when the assembly pro‐
cess is interrupted by multiple faults, the efficiency of 
LVEA assembly will be affected. Therefore, the active 
fault tolerance of the collaborative assembly needs to 
be studied. Second, in LVEA collaborative assembly, 
the control of assembly robots is distributed. There‐
fore, the distributed interactive communication method 
needs to be researched.
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