
664 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

An incremental software architecture recovery technique

driven by code changes∗

Li WANG1,2, Xianglong KONG1, Jiahui WANG3, Bixin LI‡1

1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2Jiangsu Automation Research Institute, Lianyungang 222061, China

3Huawei Digital Technology Lab, Suzhou 215125, China

E-mail: wangli1218@seu.edu.cn; xlkong@seu.edu.cn; 18262609320@163.com; bx.li@seu.edu.cn

Received Sept. 29, 2021; Revision accepted Dec. 29, 2021; Crosschecked Mar. 1, 2022; Published online Apr. 6, 2022

Abstract: It is difficult to keep software architecture up to date with code changes during software evolution.
Inconsistency is caused by the limitations of standard development specifications and human power resources, which
may impact software maintenance. To solve this problem, we propose an incremental software architecture recovery
(ISAR) technique. Our technique obtains dependency information from changed code blocks and identifies different
strength-level dependencies. Then, we use double classifiers to recover the architecture based on the method of
mapping code-level changes to architecture-level updates. ISAR is evaluated on 10 open-source projects, and the
results show that it performs more effectively and efficiently than the compared techniques. We also find that the
impact of low-quality architectural documentation on effectiveness remains stable during software evolution.

Key words: Architecture recovery; Software evolution; Code change
https://doi.org/10.1631/FITEE.2100461 CLC number: TP311

1 Introduction

Software architecture encompasses the princi-
ples and decisions of design and plays an impor-
tant role in software lifecycle, especially in software
evolution. It is difficult to maintain up-to-date ar-
chitectural documentation because it should contain
knowledge from all software stakeholders; therefore,
significant literature exists concerning software ar-
chitecture recovery (Kong et al., 2018; Cho et al.,
2019; Schmitt Laser et al., 2020; Pourasghar et al.,
2021). Software architecture recovery refers to the
process of identifying and extracting architectural in-
formation from lower-level representations of a soft-
ware system, such as source code (Mendonça and

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 61872078)

ORCID: Li WANG, https://orcid.org/0000-0002-4093-7303;
Bixin LI, https://orcid.org/0000-0001-9916-4790
c© Zhejiang University Press 2022

Kramer, 1998). Software recovery is a costly task in
both academia and industry. For example, Garcia
et al. (2013b) took two years of effort to recover the
architecture of Google Chromium with the assistance
of related developers.

Because of high cost of software architecture re-
covery, efforts have been dedicated to automated re-
covery, which applies automatic methods to extract
architectural information, such as code dependency
and module functionality (Lima et al., 2019; Link
et al., 2019; Silva et al., 2019; Sözer, 2019; Lee and
Lee, 2020). Most of the current techniques rely on
the information extracted from source code (Andrit-
sos and Tzerpos, 2005; Tamburri and Kazman, 2018).
Code-based recovery techniques extract dataflow- or
controlflow-based dependencies between code enti-
ties, and then identify components by applying clus-
tering or prediction methods. The complexity and
changeability of software code result in the hidden

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 665

drawback of architecture recovery techniques. On
one hand, researchers usually extract architectural
information by analyzing and clustering code enti-
ties based on the dependencies between them. In-
formation loss is inevitable during aggregation and
extraction, which may impact the effectiveness of ar-
chitecture recovery. On the other hand, software
evolution is constant, and it is costly to apply archi-
tecture recovery techniques to constantly update ar-
chitecture. Software evolution refers to the dynamic
behaviors of software maintenance and continuous
updating throughout its lifecycle (Lehman, 1996; Ali
and Maqbool, 2009). Code change is the most impor-
tant form of software evolution, and it includes addi-
tion, deletion, and modification (Mens and Tourwe,
2004). Effectiveness and efficiency of automated ar-
chitecture recovery are directly impacted by the ef-
forts of code analysis and clustering methods.

There are also some empirical studies on current
code-based recovery techniques (Anquetil and Leth-
bridge, 2003; Maqbool and Babri, 2004; Kobayashi
et al., 2012; Garcia et al., 2013a); however, the con-
clusions from these studies are usually different from
each other and there are no “silver bullets” for archi-
tecture recovery. There is no technique that always
performs better than others in the recovery of mas-
sive projects. In practice, most large-scale projects
have one or more high-quality architecture docu-
ments which are generated at the beginning of devel-
opment or are revised through maintenance. Well-
documented architecture clearly presents the struc-
ture of specific versions, and developers usually pay
much attention to the design documents at the begin-
ning of a project’s lifecycle. Current software archi-
tecture recovery techniques still have a lot of room for
improvement in effectiveness due to information loss
during dependency processing (Garcia et al., 2013b).
Therefore, our goal is to recover architecture based
on some existing high-quality design documents. We
can track code changes during software evolution,
and we aim to build a mapping mechanism between
code-level changes and architecture-level updates. In
this way, we can recover architecture based on a par-
tial dependency graph that is related to the changed
code entities.

In this study, we propose an incremental soft-
ware architecture recovery (ISAR) technique which
consists of three steps. We first extract informa-
tion from the changed code (Tufano et al., 2019).

Then, we apply file-level code preprocessing on a
dependency graph to map code-level changes and
architecture-level updates. Finally, we recover the
architecture including the update caused by code
evolution. Our technique requires documentation of
the previous version to update the architecture, and
its quality directly impacts the performance of ISAR.
The final step applies double classifiers to adjust the
recovered architecture.

To evaluate the effectiveness and effi-
ciency of ISAR, we conduct experiments on
10 open-source projects with two other ar-
chitecture recovery techniques, i.e., Bunch
(https://www.cs.drexel.edu/~spiros/bunch) (Man-
coridis et al., 1999) and directory-based dependency
processing (DBDP) (Kong et al., 2018). The results
of our experiments show that ISAR performs the
best in terms of effectiveness and efficiency. We also
find that ISAR’s effectiveness decreases obviously
during evolution, but it stabilizes after several
released versions. This means that ISAR can work
well with low-quality architectural documenta-
tion. In summary, our paper makes the following
contributions:

1. We propose an ISAR technique which recov-
ers architecture based on existing architectures and
related code changes.

2. We build a mapping between code-level
changes and architecture-level updates, which
can help researchers improve software recovery
techniques.

3. We evaluate ISAR on 10 projects with two
other recovery techniques, and find that our ap-
proach can generally improve the effectiveness and
efficiency.

2 Approach

In this section, we present details of the ISAR
technique. The technique comprises three main
steps: information extraction from code, file-level
code preprocessing, and incremental software archi-
tecture update.

The ISAR framework is presented in Fig. 1.
First, the changed code files and file-level depen-
dency graph are obtained by analyzing code before
and after software evolution. Second, the changed
code files and file-level dependency graph are pre-
processed to determine the changed elements. These

~

666 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

Original
code file

Updated
code file

Code
information
extraction

Changed file

Updated file
dependency

graph

Obtain
incremental

files

Cluster
incremental

files

Preprocessing

Incremental
entity set

Bayesian
classifier

Orphan adoption
algorithm classifier

Incremental
architecture update

Updated
software

architecture

Fig. 1 Incremental software architecture recovery (ISAR) framework

changed elements are preliminarily clustered to form
an incremental entity set. Finally, these incremen-
tal entities are processed using double classifiers to
achieve the top-down incremental update of the soft-
ware architecture.

2.1 Information extraction from code

The purpose of code information extraction is
to obtain the changed code files and to build the file-
level dependency graph after code changes. Code
changes can be divided into five levels: directory
level, file level, class level, method level, and state-
ment level. The elements and types of changes are
different in different levels. Table 1 describes the ele-
ments and operations that cause changes at different
levels.

In this study, we focus on file-level code changes.
The changed code elements need to be clustered from
bottom to top into three kinds of change files, as
shown in Table 2. We use the multi-level change
detection tool (Wu et al., 2005) to obtain changed
code files. The tool uses the abstract syntax tree
(AST) built by Java development tools (JDT) to
parse two different versions of code and to obtain
multi-level changed files between target versions.

The file-level dependency graph is an abstrac-
tion of dependency information between files. As
shown in Fig. 2, the node represents the code file
and the directed edge represents the dependency be-
tween two files. For example, A → B means that file
A depends on file B. In binary <A, B> on the de-
pendency edge, element A denotes the dependency
type and elementB denotes the number of dependen-
cies. The numbers on the dependent edges indicate
the file dependency strength. The dependency types
and the number of dependencies between files are ob-
tained by analyzing the AST, which can provide the
basis for generating file-level dependency graphs.

In this study, we focus on 10 types of dependen-
cies: generalization, implementation, combination,

Table 1 Elements and operations at different levels

Level of change Element Operation

Directory level Directory
Addition
Deletion
Renaming

File level
File

Addition
Deletion
Modification

Class level

Common class Addition
Internal class Deletion
Enum class Modification
Anonymous class Movement

Method level Method

Addition
Deletion
Modification
Movement

Statement level Statement

Addition
Deletion
Modification
Movement

Table 2 Three types of file-level changes

Changed file Types of change

Added file
Add statement, add method, add class,

add file, add directory

Deleted file
Delete statement, delete method, delete class,

delete file, delete directory

Modified file

Modify statement, move statement,
modify method, move method, modify class,
move class, move file, rename file,
rename directory

A

B C

<3, 1> <4, 2> 0.12 <5, 1> <6, 2> 0.23

<4, 1> 0.11

<6, 1> <7, 2> 0.35

Fig. 2 An example of the file-level dependency graph

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 667

association, call, instantiation, parameter, return,
declaration type, and import. Among them, gen-
eralization, implementation, and combination are
the top three strongest dependencies (Glukhikh
et al., 2012; Lutellier et al., 2018), and may have
stronger relationships with architecture updates.
The strength of code dependency can reflect the de-
gree of dependence on the architecture level. The
code entities that have stronger dependencies are
more likely to be clustered into one module during
architecture recovery. If A and B represent two files,
the strength of dependency between them is defined
as follows:

DependFileAB =
1

ln(LOCA)

i=n∑

i=1

δiDependTypei,

(1)
where LOCA represents the number of valid lines in
file A, DependTypei (i = 1, 2, · · · , n) represents the
number of dependencies of type i, and δi represents
the weight of dependency type i.

2.2 File-level code preprocessing

The purpose of file-level code preprocessing is to
obtain the incremental entity set. First, when a file is
added, deleted, or modified, the dependency between
the file and other files may change. However, when a
file does not change, its dependency may change due
to the changes in other files. There are four types
of dependency changes in code files: adding a new
type of dependency, deleting a type of dependency,
increasing the number of dependencies, and reduc-
ing the number of dependencies. In this study, the

code file whose dependency changes is defined as an
incremental file (Table 3).

According to Table 3, the incremental files
can be divided into six sets: Set_Incre_Add, Set_
Incre_Del, Set_Incre_TypeAdd, Set_Incre_
TypeDel, Set_Incre_DepAdd, and Set_Incre_
DepDel. There is also a set of non-incremental files,
i.e., Set_NoIncreFile.

Second, we cluster incremental files with strong
dependencies, namely, generalization, implementa-
tion, and combination. The incremental files with
strong dependencies are clustered to form code mod-
ules. This approach can effectively reduce the num-
ber of objects to be updated and reduce the time
needed for updating. Because the code module con-
cept is added at this step, the concept of “entity”
needs to be introduced. The incremental file set
is upgraded to the incremental entity set. The el-
ements in the incremental entity set include incre-
mental files and incremental modules. The files in
Set_Incre_Del are not to be clustered because they
will be removed directly during the updating process.
The clustering conditions are as follows:

Rule 1: When incremental file A is strongly de-
pendent on non-incremental file B, A and B are clus-
tered. A is classified into the module containing B.

Rule 2: When incremental file A is strongly de-
pendent on incremental file B, A and B are merged
into module C. The dependency between C and
other files is the union set of the dependency of A
and B. The dependency strength is calculated by
summation.

Table 3 Information of incremental file types

File type Type of dependency change Type of incremental file

Added file
No change Incre_Add
Increasing the number of dependencies Incre_DepAdd

Deleted file
No change Incre_Del
Reducing the number of dependencies Incre_DepDel

Modified file

No change NoIncreFile
Increasing the number of dependencies Incre_DepAdd
Reducing the number of dependencies Incre_DepDel
Adding a new type of dependency Incre_TypeAdd
Deleting a type of dependency Incre_TypeDel

Unchanged file

No change NoIncreFile
Increasing the number of dependencies Incre_DepAdd
Reducing the number of dependencies Incre_DepDel
Adding a new type of dependency Incre_TypeAdd
Deleting a type of dependency Incre_TypeDel

668 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

Rule 3: When module C strongly depends on
unchanged file D, we cluster all incremental files in
C to D and delete C from the incremental entity set.

In Fig. 3, A, B, D, and F are code files and C is
a code module. Suppose that A and B have strong
dependency with type 1 and that the dependency
strength is 0.3. According to the above rules, A and
B are clustered into C. The type of dependency
between C and D is type 2, the dependency strength
is 0.1+0.2=0.3, the type of dependency between C

and F is type 3, and the dependency strength is 0.2.

A

2, 0.3

1, 0.3 B

D F

2, 0.1 2, 0.2 3, 0.2

C

D F

3, 0.2

Fig. 3 An example of file clustering

2.3 Incremental software architecture update

Incremental software architecture update uses
double classifiers to classify entities in the six kinds
of incremental sets obtained by preprocessing to real-
ize top-down incremental update. It can ensure the
consistency of code and architecture. Incremental
software architecture update includes the following
two steps:

Step 1: We delete the incremental entities and
their dependencies. The components of incremental
entities may change after the classification by double
classifiers. These incremental entities and their
dependencies need to be removed from the file depen-
dency graph. Algorithm 1 presents the details. First,
we add the file dependency graph, module-file depen-
dency graph, component-module hierarchy graph,
and component dependency graph to the software
architecture graph. Second, all the nodes and edges
of entities in Set_Incre_Del, Set_Incre_TypeAdd,
Set_Incre_TypeDel, Set_Incre_DepAdd, and
Set_Incre_DepDel are removed from the module-
file dependency graph. Then, we delete the modules
and entities that do not exist in the new version of
architecture graph. Finally, all elements in the six
incremental entity sets except Set_NoIncreFile are
merged and added into UPDATE for subsequent
entity classification.

Step 2: We apply the entity classification using

double classifiers, which can update software archi-
tecture incrementally. The two classifiers used in
this study are a Bayesian classifier and an Orphan
adoption algorithm classifier.

2.3.1 Bayesian classifier

The Bayesian classifier follows the Bayes theo-
rem to check whether an incremental entity can be

Algorithm 1 Deletion of incremental entities and
dependencies
Input: previous architecture graph preArcG and the sets of
incremental entities
Output: architecture graph ArcG and the incremental entity
set UPDATE
1: create Module-FileTable()
2: create Component-ModuleTable()
3: create Component-DependTable()
4: put preModule-FileGraph into Module-FileTable
5: put preComponent-ModuleGraph into Module-FileTable
6: put preComponent-DependGraph into Component-

DependTable
7: for entity in sets of incremental entities do
8: if entity.type == file then
9: delete filenode in the module-file graph (MFG)

10: delete edges in the MFG
11: end if
12: if entity.type == module then
13: delete all filenode in the MFG
14: delete all edges in the MFG
15: end if
16: end for /∗ Sets of incremental entities consist of Set_

Incre_Del, Set_Incre_TypeAdd, Set_Incre_TypeDel,
Set_Incre_DepAdd, and Set_Incre_DepDel ∗/

17: for module in the MFG do
18: if module.filenum == 0 then
19: delete module
20: end if
21: end for
22: for component in MFG do
23: if component.filenum == 0 then
24: delete component
25: end if
26: end for
27: ArcG←MFG
28: for entity in sets of incremental entities do
29: if entity.type == file then
30: add entity into UPDATE
31: end if
32: if entity.type == module then
33: create _entity
34: _entity.type←module
35: _entity.fileSet←entity.fileSet
36: _entity.edges←entity.edges
37: add _entity to UPDATE
38: end if
39: end for
40: return ArcG and UPDATE

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 669

classified into a component according to the cluster-
ing probability between them. The basic formula
is

P (Cj |Fi) =
P (Fi|Cj)P (Cj)

P (Fi)
, (2)

where j ranges from 1 to n (n represents the number
of components) and i ranges from 1 to m (m repre-
sents the number of entities to be classified). P (Cj)

and P (Fi) are the prior probabilities of components
Cj and Fi, respectively. P (Fi|Cj) is the posterior
probability of Fi given Cj . P (Cj |Fi) is the posterior
probability of Cj given Fi.

In Fig. 4, nodes represent files, rectangles rep-
resent components, arrows represent dependencies,
and the numbers of the dependence instances are
presented in the arrows. According to the Bayes
formula, P (C1) = 4

9 , P (C2) = 2
9 , P (C3) = 3

9 ,
P (Fa|C1) = 3

4 , P (Fa|C2) = 1
2 , P (Fa|C3) = 1

3 ,
P (C1|Fa) = 1

3 , P (C2|Fa) = 1
9 , and P (C3|Fa) = 1

9 .
In this case, Fa has the highest probability of being
divided into component C1.

Fb

Fc

C1

Fa

2

1

Fd

C3

Fe

C2

1

1

Fig. 4 Component-file dependency graph

2.3.2 Orphan adoption algorithm classifier

The Orphan adoption algorithm classifier (Tzer-
pos and Holt, 2000) uses naming rules and structural
rules to find components with the highest strength
of dependence for Orphan resources (i.e., incremen-
tal entities). When the dependence strength is the
same, we can use tie-breakers to carry out the final
classification. The rules are as follows:

Rule 1: The incremental entity is included
in the candidate component, which reduces the
penetration.

Rule 2: The incremental entity is included in
the candidate components, and the output of the
candidate components increases the least.

2.3.3 Combined use of these two classifiers

First, the Bayesian classifier is used to calculate
the probability of the incremental entity F being
allocated to each component, and the probability is
sorted non-incrementally according to the value. The
probabilities that incremental entity F is assigned to
components Ci and Cj are P (Ci|F) and P (Cj |F), re-
spectively. P (Ci|F) and P (Cj |F) are the maximum
probability and the secondary maximum probability,
respectively. The usage rules of these two combined
classifiers are as follows:

Rule 1: If P (Ci|F) ≥ 50 and P (Ci|F) ±
P (Cj |F) ≥ α, then incremental entity F is allocated
to component Ci, where 0 ≤ α ≤ 1. The larger the
value of α, the greater the probability that incremen-
tal entity F is allocated to component Ci. Through
our experiments in Section 3, α is taken as 0.3.

Rule 2: If P (Ci|F)± P (Cj |F) < α and P (Ci|F)

is not 0, we select the top-k components that have the
highest probabilities of incremental entity F being
allocated to them. The Orphan adoption algorithm
classifier is used to select the components to which
incremental entity F should finally be allocated. The
larger the value of k, the higher the classification
accuracy, and the higher the time cost. k is taken as
10 in this work.

In rule 1, only the Bayesian classifier is used to
classify incremental entity F . This is because the
probability that file F is allocated to component A

is far greater than those of other components. If the
Orphan adoption algorithm classifier is used for sec-
ondary classification, the results could be the same
with a significant probability, which will increase the
time cost. In rule 2, the Bayesian classifier and
the Orphan adoption algorithm classifier are used to
classify the incremental entities. This is because only
the Bayesian classifier cannot complete the classifi-
cation accurately. The Orphan adoption algorithm
classifier is used to analyze the dependency between
the incremental entities.

According to the double-classifier usage rules,
we classify the files and modules in the incremen-
tal entity set UPDATE from the preprocessing step.
First, entities in UPDATE are classified using these
double classifiers. When the incremental entities
are classified to a new component, all the non-
incremental files associated with the incremental
entities are put into UPDATE for re-classification.

670 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

Second, we classify the entities that have been classi-
fied at step 1 at the module level. Finally, we adjust
the component clustering, including adding, delet-
ing, and splitting components. Details of the incre-
mental software architecture update algorithm are
shown in Algorithm 2. The rules used in Algorithm 2
are as follows:

Algorithm 2 Incremental software architecture
update
Input: architecture graph ArcG and UPDATE
Output: newArcG /∗ All entities in UPDATE are classified
by the Bayesian classifier ∗/
1: for entity in UPDATE do
2: if Bayesian_Classifier(entity) == true then
3: update newCFG() /∗ When an incremental entity

is classified from the original component to another
component, all files associated with the incremental
entity are re-classified in UPDATE ∗/

4: end if
5: if entity.OwningComponents != entity.PreComponent

then
6: put entity.fileSet into UPDATE
7: else if OA(entity) == true then
8: update newCFG()
9: else

10: put entity into Failset
11: end if
12: end for
13: for entity in UPDATE do
14: classify the entity to various modules
15: end for /∗ Iterative module classification ∗/
16: AddComp(Failset) /∗ Adjusting components ∗/
17: DeleteComp(ArcG) /∗ When no entity is detected in a

component, delete the component ∗/
18: newArcG=SpiltComp(ArcG)
19: return newArcG

Rule 1: To add components, there are two situ-
ations for entities in Failset that cannot be classified.
One is that some entities (including files and mod-
ules) do not have any dependency relationship with
other entities and they belong to isolated entities.
We will add components to which these isolated en-
tities can be classified. The other one is that there
are dependency relationships among these entities.
We will cluster these entities from bottom to top to
form new components.

Rule 2: When no entity is detected in a compo-
nent, we delete the component.

Rule 3: When the component scale is larger than
30% of the system scale, the component is considered
to be too large to split.

3 Experiments and results

The incremental software architecture update
technique can generate accurate relationships be-
tween code elements based on historical versions of
architecture, which can help developers understand
and maintain software projects. In this section, we
aim to answer the following research questions:

RQ1: How effective is the software architecture
update technique?

RQ2: How does the software architecture update
technique perform with the evolution of projects?

RQ3: How efficient is the software architecture
update technique?

3.1 Experimental setup

3.1.1 Subject projects

To answer the above research questions, we se-
lected 10 Java projects from GitHub according to
their popularity, i.e., Okhttp, Mabatis, Mockito,
Junit, Retrofit, Jadx, Terrier, Clone, Freecol, and
Fastjson, which have been widely used in existing
studies (Sievi-Korte et al., 2019; Kong et al., 2020;
Jia et al., 2021; Liu et al., 2021; Pourasghar et al.,
2021; Zhang et al., 2021). For each project, we se-
lected the first five released versions on GitHub. All
of these projects have high-quality documentation,
which makes the manual recovery of software archi-
tecture possible for our team.

The initial architectures of the studied projects
were recovered manually according to the existing
works (Garcia et al., 2013b; Kong et al., 2018). The
manual recovery included four steps. First, we ex-
tracted the file-level dependency graph based on
Eclipse JDT and listed the detailed relationships be-
tween files. Second, we checked the partitioning of
file directories and clustered the coupled files within
the same directory into a module. Third, we it-
eratively grouped the modules according to their
dependency relationships and functionalities, which
were partially obtained through the online documen-
tation. Finally, an architect from Huawei Digital
Technology Lab (i.e., the third author of this pa-
per) revised the architecture based on the publicly
available information and her experience.

Table 4 presents the details of these selected
projects. LOC presents the number of valid lines in
subject projects, which is calculated using CLOC

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 671

(https://github.com/AlDanial/cloc) in the experi-
ments. The description presents the basic function-
ality of each project.

3.1.2 Selected recovery techniques

To evaluate the effectiveness of our incremental
software architecture recovery technique, we selected
Bunch (Mancoridis et al., 1998) and DBDP (Kong
et al., 2018) to compare the recovered architecture.
Bunch is a classical architecture recovery technique,
and has been widely used in existing studies (Schmitt
Laser et al., 2020; Campo et al., 2021). DBDP is an-
other effective architecture recovery technique which
extracts information from code and the structure of
directories. DBDP is viewed as a promising method
for extracting architectural information from code
and directories (Pourasghar et al., 2021). DBDP is
compatible with the two kinds of hill-climbing al-
gorithms to resolve the optimization problem, i.e.,
the nearest and steepest ascent hill climbing (NAHC
and SAHC) used by Bunch. There are two reasons
for the selection of these techniques. First, these two
techniques have generated promising results in exist-
ing studies (Schmitt Laser et al., 2020; Pourasghar
et al., 2021). Second, it is possible for us to obtain
source code for these two techniques, which helps
us easily apply automation in our experiments. In
our experiments, we collected the results generated
by NAHC and SAHC and used the more accurate
one in the comparison. The clustering algorithm is
Bunch.TurboMQ and the results are presented as the
median level of graph.

3.1.3 Measurements

MojoSim is widely used to measure the effec-
tiveness of software architecture recovery techniques

(Wu et al., 2005; Bittencourt and Guerrero, 2009;
Bazylevych and Burtnyk, 2015; Lutellier et al., 2015,
2018). It can calculate the similarity between the re-
covered architecture and ground-truth architecture.
A high similarity value means that the recovered ar-
chitecture is accurate. It is defined by the following
formula:

MoJoSim(A,B) =

(
1− mno(A,B)

n

)
× 100%, (3)

where A indicates the architecture that is updated
by our technique, B indicates the ground-truth ar-
chitecture, mno(A,B) is the minimum number of
Move and Join operations needed to convert A to B,
and n is the number of architecture entities. The
100% value of MoJoSim(A,B) means that the up-
dated architecture A is the same as the ground-truth
architecture B.

Turbo MQ extends the basic modularization
quality (Basic MQ) to support a dependency graph
with edge weights. Turbo MQ can measure the qual-
ity of the recovered architecture without the ground-
truth architecture. Turbo MQ evaluates the archi-
tecture based on the degree of high cohesion and low
coupling, and is calculated by the following formula:

Turbo MQ =

N∑

i=1

CFi, (4)

where CFi (i.e., cluster factor of module i) is defined
as

CFi =
μi

μi + 0.5
∑

j(εij + εji)
. (5)

To calculate the cluster factor of modules i and
j, we collected μi as the number of intra-relationships
of module i and εij + εji as the number of inter-
relationships between cluster i and cluster j. A

Table 4 Subject system statistics

Project LOC Number of files Description

Okhttp 53 114 325 An Android lightweight framework for network requests
Mabatis 51 044 918 A persistence layer framework to support customized SQL
Mockito 40 411 863 A simulation test framework for simple verification error production
Junit 3512 47 A regression testing framework for Java
Retrofit 19 193 235 A restful HTTP network request framework
Jadx 45 619 574 An open source tool to decompile APK files
Terrier 55 485 1122 A program for rapid development of web and desktop search engines
Clone 10 198 91 Game written in Java
Freecol 118 428 773 A turn-based strategy game; the open source version of colonization
Fastjson 117 300 1972 An open source tool for parsing and packaging JSON formatted data

672 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

higher value of Turbo MQ means that the organiza-
tion of the architecture is better, i.e., more satisfying
the principle of design.

3.1.4 Experimental steps

For each studied subject, we performed the fol-
lowing steps:

Step 1: We collected the first five released ver-
sions of the 10 projects in Table 4 from GitHub,
which gave us 50 different programs in total.

Step 2: To obtain the ground-truth architecture,
we implemented architecture recovery manually on
the first version for each project. The manual recov-
ery was designed according to the exist works (Gar-
cia et al., 2013b; Kong et al., 2018). The architec-
ture was generated based on the file-level dependency
graph and the publicly available documents.

Step 3: For each studied project, we recovered
the architecture with Bunch and DBDP to build the
comparative experiments.

Step 4: For each selected project, we collected
the code changes from its previous version. The first
version of a project was marked as the initial version,
so it had no changes. There were a total of 166 code
blocks which were changed during the project evolu-
tion. These changes helped us recover architecture
based on the previous architecture version.

Step 5: For the last four versions of the projects,
we recovered the architecture with our incremental
software architecture recovery technique based on
the previous version, and collected all the results to
analyze the effectiveness and efficiency.

In the experiments, the file-level dependency
graph was obtained through Eclipse JDT. We ran the
three architecture recovery techniques, i.e., ISAR,
Bunch, and DBDP, on a Ryzen 3950X server with
128 GB of memory.

3.2 Result analysis

3.2.1 RQ1: improvements in effectiveness

To evaluate the effectiveness of our technique,
we applied ISAR, Bunch, and DBDP on the second
version of the studied projects. There are two rea-
sons to choose the second version: the ground-truth
architecture of the second version is available accord-
ing to step 2 and its previous version of ground-truth
architecture, i.e., the first version, is also available.
Our technique, i.e., ISAR, needs the architecture of

the previous version of the target project because it
can establish a mapping between code-level changes
and architecture-level updates. The ground-truth
architecture of the second version is obtained man-
ually. We collected the results and calculated the
MojoSim scores on the basis of the related ground-
truth architecture. Table 5 presents the results.

Table 5 MoJoSim scores of the studied techniques

Project
MoJoSim score

ISAR Bunch DBDP

Okhttp 0.92 0.71 0.88
Mabatis 0.95 0.73 0.89
Mockito 0.92 0.72 0.88
Junit 0.95 0.65 0.75
Retrofit 0.85 0.57 0.85
Jadx 0.76 0.55 0.64
Terrier 0.90 0.68 0.88
Clone 0.91 0.77 0.90
Freecol 0.91 0.61 0.75
Fastjson 0.92 0.62 0.82

Average 0.90 0.66 0.82

From the results in Table 5, we have the follow-
ing observations:

First, ISAR obtains the highest MojoSim scores
on the second version of the studied projects. This
means that the architecture generated by ISAR ob-
tains the highest value of similarity with the ground-
truth architecture compared with the architectures
produced by Bunch and DBDP. The overall 0.90
ISAR MojoSim score is a very promising result. We
recovered the architecture based on the previous ar-
chitecture and code changes, and the results take the
advantage of the manual recovery. Because DBDP
is implemented based on Bunch, it usually obtains a
higher score than Bunch.

Second, the MojoSim scores of the Retrofit and
Jadx projects are much lower than those of the other
studied projects. We looked into the source code of
these two projects and found that their dependen-
cies are much more centralized than other results.
These two projects have a high-weighted module in
their architecture, which seriously affects other small
module scores. For these two projects, all the studied
techniques generated several different small modules,
which makes the MojoSim scores lower than those of
the other projects.
Finding 1 For the studied projects, ISAR performs
the best in terms of effectiveness.

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 673

3.2.2 RQ2: effectiveness during evolution

All the studied projects have high-quality design
documents, which help us obtain the ground-truth
architecture of the first version. When the projects
change with various requirements, the architecture
may not be updated in a timely manner. There-
fore, we evaluated ISAR on the last four versions
of the studied projects to investigate how the effec-
tiveness changes during evolution. Table 6 presents
the results of Turbo MQ for ISAR on the projects.
Because ISAR needs the previous version to gener-
ate architecture, we could not collect the results of
the first version. A high Turbo MQ score means
that the structure of the architecture is good; i.e., it
satisfies the “high cohesion and low coupling” design
principle.

From Table 6, we can see that the effectiveness
of ISAR decreases obviously during evolution. The
degree of the decline is acute at first and becomes
stable between the last two versions. The reason for

Table 6 Turbo MQ scores on the projects of ISAR

Project
Turbo MQ score

Version 2 Version 3 Version 4 Version 5

Okhttp 12.78 10.89 8.47 8.32
Mabatis 13.01 11.66 9.65 8.88
Mockito 11.89 10.08 8.23 7.95
Junit 2.55 2.51 2.41 2.12
Retrofit 6.89 6.88 5.64 5.44
Jadx 7.11 6.84 5.78 4.78
Terrier 14.55 12.66 10.44 10.32
Clone 13.24 13.04 10.47 9.19
Freecol 20.64 16.55 14.34 12.08
Fastjson 19.87 14.52 13.94 12.99

Average 12.25 10.56 8.94 8.21

the downtrend is that our technique recovers archi-
tecture on the basis of the previous version, which
results in a loss in the stock of information during
evolution. However, we still have a good result be-
cause the decline can be stabilized after several re-
leased versions, so our technique can play proper
roles for the projects that do not have high-quality
previous design documents.
Finding 2 Although low-quality architectural doc-
umentation can obviously impact the effectiveness of
ISAR, it can still obtain promising results, i.e., an
average 8.21 Turbo MQ score on the last version.

3.2.3 RQ3: efficiency improvements

We collected time consumption data of ISAR,
Bunch, and DBDP on the last four versions of the
studied projects. Table 7 presents the execution
time of the techniques; the execution time of the
three studied techniques for the four versions of se-
lected projects are shown. From the table, we can
see that the execution time of ISAR is much shorter
than those of the two other techniques. This is be-
cause our technique does not start with the whole
dependency graph of the target project. ISAR needs
to translate only the architecture-level changes to
the previous version, whereas the two other tech-
niques need to apply the clustering algorithm sev-
eral times during recovery. The complex struc-
ture of the dependency graph makes the architec-
ture recovery time-consuming. For the small-sized
projects, ISAR efficiency improvements are not obvi-
ous. In cases of recovery on large-sized projects, i.e.,
Freecol and Fastjson, ISAR can significantly improve
the efficiency. Consequently, we claim that ISAR

Table 7 Time consumption of studied techniques

Project
Time (s)

Version 2 Version 3 Version 4 Version 5

ISAR DBDP Bunch ISAR DBDP Bunch ISAR DBDP Bunch ISAR DBDP Bunch

Okhttp 8378 32 175 22 547 8641 30 445 25 963 9655 30 927 21 874 7931 29 488 22 554
Mabatis 12 456 72 866 57 412 11 456 68 543 55 478 7645 39 012 36 885 6468 58 238 54 365
Mackito 14 748 57 915 38 452 12 658 59 611 36 462 18 984 65 025 60 742 12 750 60 924 58 168
Junit 1988 3139 2151 1964 3830 2485 1648 3295 2185 2277 3934 2987
Retrofit 2834 7032 5647 2904 7397 5784 3545 8290 5620 2733 7128 5583
Jadx 12 445 51 904 41 875 14 489 55 391 39 845 15 794 55 031 41 321 10 494 50 415 40 871
Terrier 9897 63 008 52 965 8478 57 687 51 492 10 021 59 422 50 774 10 487 61 140 49 863
Clone 6291 11 008 8456 4445 9313 7458 5156 10 420 6985 5265 9772 7059
Freecol 16 854 121 856 98 635 15 687 119 743 88 919 18 900 131 695 108 990 15 805 118 097 106 983
Fastjson 19 124 149 658 99 873 18 871 139 198 97 668 18 844 133 109 90 869 19 657 121 886 110 493

674 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

can obtain the most accurate architecture in the
shortest time.
Finding 3 ISAR performs the best in terms of ef-
ficiency due to the reduction of target dependencies.

In summary, ISAR can obviously improve the
effectiveness of architecture recovery with the help
of existing high-quality architectural documentation.
If there is no available previous version architecture,
architects may obtain the design through some ex-
isting recovery techniques or manual work, and then
ISAR can significantly improve the efficiency of re-
covery for the following versions.

4 Threats to validity

1. Threats to construct validity
The metrics used in these experiments threaten

the construct validity. To reduce this threat, we se-
lected widely used measurements, i.e., MojoSim and
Turbo MQ. We used Turbo MQ scores to evaluate
the effectiveness of ISAR during evolution without
the ground-truth architecture. In future work, we
will evaluate the techniques in terms of more mea-
surement types.

2. Threats to internal validity
The main threat to internal validity is the poten-

tial negligence in our manual recovery. The projects
in our experiments have been widely used in exist-
ing works, and we obtained some detailed design
documents from online communities which help us
a lot during recovery. To examine the accuracy of
architectures we recovered manually, we studied as
many related documents as possible, and discussed
the conformation of the recovered architecture with
some professional architects from the industry. To
reduce this threat, we will try to communicate with
the related developers to obtain the detailed design
document and send them the results we recovered
manually.

The other threat to internal validity is the po-
tential faults in existing tool configurations, or in our
data analysis. To reduce this threat, we carefully re-
viewed all the configurations, code, and data analysis
scripts used in the study.

3. Threats to external validity
The selected versions of projects, dependency

extracting tools, and automatic architecture recov-
ery tools used in our experiments may pose threats
to external validity. The projects used in our experi-

ments are all popular Java programs on GitHub. We
obtained the source code of the first five released ver-
sions from their online repositories. We used Eclipse
JDT to extract code dependencies and built a file-
level dependency graph.

We selected two existing techniques in the ex-
periments, i.e., Bunch and DBDP. Bunch is imple-
mented based on a genetic algorithm and a hill-
climbing algorithm. Because of the iterative random
process, the recovered architecture is not unique for
a specific project. DBDP is based on Bunch, but it
applies a new dependency preprocessing approach to
improve the effectiveness. To reduce these threats,
we will conduct the study with more dependency ex-
tracting tools, more architecture recovery tools, and
more projects.

5 Related works

In the literature, there are many software archi-
tecture recovery techniques. According to the mod-
ule extraction method, the current techniques can
be divided into four categories: cluster-, pattern-,
graph-, and classification-based architecture recov-
ery techniques.

Cluster-based architecture recovery techniques
commonly extract the structure of modules based
on some clustering algorithms, i.e., mountain climb-
ing and genetic algorithm (Mitchell and Mancoridis,
2006; Sözer, 2019). The techniques may improve the
modular clustering technology for object-oriented
systems (Zhao et al., 2015), take advantage of clus-
ter ensembles to obtain accurate architecture (Cho
et al., 2019), apply collaborative clustering technol-
ogy in the field of software modularization (Naseem
et al., 2013), or apply meta-heuristic search tech-
niques (Mitchell, 2003; Yang et al., 2021) during clus-
tering. Teymourian et al. (2020) proposed a fast clus-
tering algorithm for large-sized projects, which per-
forms operations on the dependency matrices. Most
clustering algorithms are hierarchical and search-
based, and cluster-based architecture recovery tech-
niques can present an explicit structural design, but
they are usually time-consuming.

Pattern-based architecture recovery techniques
commonly follow a pattern-driven approach to help
understand software (Tzerpos and Holt, 2000). This
kind of technique is based on some common pat-
terns, such as the directory structure pattern, source

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 675

file pattern, leaf set pattern, and body-head pattern.
Tamburri and Kazman (2018) investigated a general
usage pattern to match code entities with architec-
ture information. Monroy and Pinzger (2021) mined
the pattern through interaction with stakeholders
and obtained the architecture based on a concep-
tual model. Teymourian et al. (2020) recovered ar-
chitecture descriptions based on centrality measures,
which can guide the architect to distribute the enti-
ties to different architectural layers. The condition
of the architecture pattern limits the usage range
of this kind of technique because most of them are
domain-specific.

Graph-based architecture recovery techniques
usually have two ways of generating architecture.
One is to construct a module dependency graph and
use vectors to divide the graph into subgraphs to
increase cohesion and to reduce coupling between
nodes (Akthar and Rafi, 2010). The other method
converts the recovery process to a graphical pat-
tern matching process by constructing a software
entity relationship graph (Sartipi, 2003). Pouras-
ghar et al. (2021) combined a pattern-based method
and a cluster-based method to build a graph-based
clustering algorithm that can use the depth of re-
lationships to calculate similarity between artifacts.
The main drawbacks of graph-based techniques are
that the results are usually a locally optimal solution
and that the techniques work very slowly when faced
with large graphs.

Classification-based architecture recovery tech-
niques usually use Bayesian classification to divide
updated software modules into subsystems to update
incomplete or outdated documents in the software
(Maqbool and Babri, 2007). The use of Bayesian
classification focuses only on code addition and ig-
nores deletion and modification. Link et al. (2021)
applied text classification on the identification and
extraction of architectural information. The effec-
tiveness of these techniques is limited by the classi-
fier, which is generated based on rich knowledge of
architecture.

We present an incremental software architecture
recovery technique driven by code changes, which
uses a Bayesian classifier and an Orphan adoption
classifier to make incremental software architecture
updates based on original architectural documenta-
tion. Different from traditional methods, our tech-
nique takes into account the similarity of code during

evolution, and we update the previous architecture
from the changed spots instead of comprehensive
clustering or classification.

6 Conclusions

Traditional software architecture recovery tech-
niques do not take into account the similarity be-
tween two versions of software architecture during
evolution. This kind of information loss results
in excessive time consumption during architecture
recovery. Therefore, in this paper, we presented
an incremental software architecture recovery tech-
nique driven by code changes, i.e., ISAR. We used a
Bayesian classifier and an Orphan adoption classifier
to update software architecture based on features of
the previous version and changed entities. We evalu-
ated ISAR by conducting experiments on 10 projects
and comparing it with two other recovery techniques.
The results showed that ISAR performs the best in
terms of effectiveness and efficiency. There is still
room for improvement of architecture recovery effec-
tiveness. Follow-up work can start with the method
of combining multiple classifiers to further improve
the effectiveness of software architecture recovery.

Contributors
Bixin LI designed the technical framework. Li WANG

and Xianglong KONG implemented the approach and drafted

the paper. Jiahui WANG proposed the initial idea and con-

firmed the correctness of the recovered architecture. Bixin

LI revised and finalized the paper.

Compliance with ethics guidelines
Li WANG, Xianglong KONG, Jiahui WANG, and Bixin

LI declare that they have no conflict of interest.

References
Akthar S, Rafi S, 2010. Recovery of software architecture

using partitioning approach by Fiedler vector and clus-
tering. Comput Inform Sci, 3(1):72-75.
https://doi.org/10.5539/cis.v3n1p72

Ali S, Maqbool O, 2009. Monitoring software evolution
using multiple types of changes. Int Conf on Emerging
Technologies, p.410-415.
https://doi.org/10.1109/ICET.2009.5353135

Andritsos P, Tzerpos V, 2005. Information-theoretic software
clustering. IEEE Trans Softw Eng, 31(2):150-165.
https://doi.org/10.1109/TSE.2005.25

Anquetil N, Lethbridge TC, 2003. Comparative study of
clustering algorithms and abstract representations for
software remodularisation. IEE Proc Softw, 150(3):185-
201. https://doi.org/10.1049/ip-sen:20030581

676 Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677

Bazylevych R, Burtnyk R, 2015. Algorithms for software
clustering and modularization. Xth Int Scientific and
Technical Conf “Computer Sciences and Information
Technologies”, p.30-33.
https://doi.org/10.1109/STC-CSIT.2015.7325424

Bittencourt RA, Guerrero DDS, 2009. Comparison of graph
clustering algorithms for recovering software architec-
ture module views. 13th European Conf on Software
Maintenance and Reengineering, p.251-254.
https://doi.org/10.1109/CSMR.2009.28

Campo M, Amandi A, Biset JC, 2021. A software architec-
ture perspective about Moodle flexibility for supporting
empirical research of teaching theories. Educ Inform
Technol, 26(1):817-842.
https://doi.org/10.1007/s10639-020-10291-4

Cho C, Lee KS, Lee M, et al., 2019. Software architecture
module-view recovery using cluster ensembles. IEEE
Access, 7:72872-72884.
https://doi.org/10.1109/ACCESS.2019.2920427

Garcia J, Ivkovic I, Medvidovic N, 2013a. A comparative
analysis of software architecture recovery techniques.
28th IEEE/ACM Int Conf on Automated Software En-
gineering, p.486-496.
https://doi.org/10.1109/ASE.2013.6693106

Garcia J, Krka I, Mattmann C, et al., 2013b. Obtaining
ground-truth software architectures. 35th Int Conf on
Software Engineering, p.901-910.
https://doi.org/10.1109/ICSE.2013.6606639

Glukhikh MI, Itsykson VM, Tsesko VA, 2012. Using depen-
dencies to improve precision of code analysis. Autom
Contr Comput Sci, 46(7):338-344.
https://doi.org/10.3103/S0146411612070097

Jia XY, Chen SQ, Zhou XQ, et al., 2021. Where to handle an
exception? Recommending exception handling locations
from a global perspective. IEEE/ACM 29th Int Conf
on Program Comprehension, p.369-380.
https://doi.org/10.1109/ICPC52881.2021.00042

Kobayashi K, Kamimura M, Kato K, et al., 2012. Feature-
gathering dependency-based software clustering using
Dedication and Modularity. 28th IEEE Int Conf on
Software Maintenance, p.462-471.
https://doi.org/10.1109/ICSM.2012.6405308

Kong XL, Li BX, Wang LL, et al., 2018. Directory-based
dependency processing for software architecture recov-
ery. IEEE Access, 6:52321-52335.
https://doi.org/10.1109/ACCESS.2018.2870118

Kong XL, Han WN, Liao L, et al., 2020. An analysis of cor-
rectness for API recommendation: are the unmatched
results useless? Sci China Inform Sci, 63(9):190103.
https://doi.org/10.1007/s11432-019-2929-9

Lee KS, Lee CG, 2020. Identifying semantic outliers of
source code artifacts and their application to software
architecture recovery. IEEE Access, 8:212467-212477.
https://doi.org/10.1109/ACCESS.2020.3040024

Lehman MM, 1996. Laws of software evolution revisited.
5th European Workshop Software Process Technology,
p.108-124. https://doi.org/10.1007/BFb0017737

Lima C, Assunção WK, Martinez J, et al., 2019. Product line
architecture recovery with outlier filtering in software
families: the Apo-Games case study. J Braz Comput
Soc, 25(1):7.
https://doi.org/10.1186/s13173-019-0088-4

Link D, Behnamghader P, Moazeni R, et al., 2019. The
value of software architecture recovery for maintenance.
Proc 12th Innovations on Software Engineering Conf
(formerly known as India Software Engineering Conf),
Article 17. https://doi.org/10.1145/3299771.3299787

Link D, Srisopha K, Boehm B, 2021. Study of the util-
ity of text classification based software architecture re-
covery method RELAX for maintenance. Proc 15th

ACM/IEEE Int Symp on Empirical Software Engineer-
ing and Measurement, Article 33.
https://doi.org/10.1145/3475716.3484194

Liu X, Wang HD, Ma HY, et al., 2021. The architecture
design and implementation of aircraft structural fault
assistant decision system based on data analysis. J
Phys Conf Ser, 1813:012032.
https://doi.org/10.1088/1742-6596/1813/1/012032

Lutellier T, Chollak D, Garcia J, et al., 2015. Comparing
software architecture recovery techniques using accurate
dependencies. IEEE/ACM 37th IEEE Int Conf on
Software Engineering, p.69-78.
https://doi.org/10.1109/ICSE.2015.136

Lutellier T, Chollak D, Garcia J, et al., 2018. Measuring the
impact of code dependencies on software architecture
recovery techniques. IEEE Trans Softw Eng, 44(2):159-
181. https://doi.org/10.1109/TSE.2017.2671865

Mancoridis S, Mitchell BS, Rorres C, et al., 1998. Using
automatic clustering to produce high-level system or-
ganizations of source code. Proc 6th Int Workshop on
Program Comprehension, p.45-52.
https://doi.org/10.1109/WPC.1998.693283

Mancoridis S, Mitchell BS, Chen Y, et al., 1999. Bunch:
a clustering tool for the recovery and maintenance of
software system structures. Proc IEEE Int Conf on
Software Maintenance, p.50-59.
https://doi.org/10.1109/ICSM.1999.792498

Maqbool O, Babri HA, 2004. The weighted combined algo-
rithm: a linkage algorithm for software clustering. 8th

European Conf on Software Maintenance and Reengi-
neering, p.15-24.
https://doi.org/10.1109/CSMR.2004.1281402

Maqbool O, Babri HA, 2007. Bayesian learning for software
architecture recovery. Int Conf on Electrical Engineer-
ing, p.1-6. https://doi.org/10.1109/ICEE.2007.4287309

Mendonça NC, Kramer J, 1998. An experiment in distributed
software architecture recovery. 2nd Int ESPRIT ARES
Workshop on Development and Evolution of Software
Architectures for Product Families, p.106-114.
https://doi.org/10.1007/3-540-68383-6_16

Mens T, Tourwe T, 2004. A survey of software refactoring.
IEEE Trans Softw Eng, 30(2):126-139.
https://doi.org/10.1109/TSE.2004.1265817

Mitchell BS, 2003. A heuristic approach to solving the
software clustering problem. Int Conf on Software
Maintenance, p.285-288.
https://doi.org/10.1109/ICSM.2003.1235432

Mitchell BS, Mancoridis S, 2006. On the automatic mod-
ularization of software systems using the Bunch tool.
IEEE Trans Softw Eng, 32(3):193-208.
https://doi.org/10.1109/TSE.2006.31

Monroy M, Pinzger M, 2021. ARCo: architecture recovery
in context. J Xi’an Univ Arch Technol, XIII(2):128.

Wang et al. / Front Inform Technol Electron Eng 2022 23(5):664-677 677

Naseem R, Maqbool O, Muhammad S, 2013. Cooperative
clustering for software modularization. J Syst Softw,
86(8):2045-2062.
https://doi.org/10.1016/j.jss.2013.03.080

Pourasghar B, Izadkhah H, Isazadeh A, et al., 2021. A
graph-based clustering algorithm for software systems
modularization. Inform Softw Technol, 133:106469.
https://doi.org/10.1016/j.infsof.2020.106469

Sartipi K, 2003. Software architecture recovery based on
pattern matching. Int Conf on Software Maintenance,
p.293-296.
https://doi.org/10.1109/ICSM.2003.1235434

Schmitt Laser M, Medvidovic N, Le DM, et al., 2020. AR-
CADE: an extensible workbench for architecture recov-
ery, change, and decay evaluation. Proc 28th ACM
Joint Meeting on European Software Engineering Conf
and Symp on the Foundations of Software Engineering,
p.1546-1550. https://doi.org/10.1145/3368089.3417941

Sievi-Korte O, Richardson I, Beecham S, 2019. Software
architecture design in global software development: an
empirical study. J Syst Softw, 158:110400.
https://doi.org/10.1016/j.jss.2019.110400

Silva DEU, Bittencourt RA, Calumby RT, 2019. Clustering
similarity measures for architecture recovery of evolving
software. Anais do VII Workshop de Visualização,
Evolução E Manutenção de Software, p.45-52.
https://doi.org/10.5753/vem.2019.7583

Sözer H, 2019. Evaluating the effectiveness of multi-level
greedy modularity clustering for software architecture
recovery. 13th European Conf on Software Architecture,
p.71-87. https://doi.org/10.1007/978-3-030-29983-5_5

Tamburri DA, Kazman R, 2018. General methods for soft-
ware architecture recovery: a potential approach and

its evaluation. Empir Softw Eng, 23(3):1457-1489.
https://doi.org/10.1007/s10664-017-9543-z

Teymourian N, Izadkhah H, Isazadeh A, 2020. A fast cluster-
ing algorithm for modularization of large-scale software
systems. IEEE Trans Softw Eng, early access.
https://doi.org/10.1109/TSE.2020.3022212

Tufano M, Sajnani H, Herzig K, 2019. Towards predict-
ing the impact of software changes on building activi-
ties. IEEE/ACM 41st Int Conf on Software Engineer-
ing, p.49-52.
https://doi.org/10.1109/ICSE-NIER.2019.00021

Tzerpos V, Holt RC, 2000. ACCD: an algorithm for
comprehension-driven clustering. Proc 7th Working
Conf on Reverse Engineering, p.258-267.
https://doi.org/10.1109/WCRE.2000.891477

Wu J, Hassan AE, Holt RC, 2005. Comparison of clustering
algorithms in the context of software evolution. 21st

IEEE Int Conf on Software Maintenance, p.525-535.
https://doi.org/10.1109/ICSM.2005.31

Yang TF, Jiang ZY, Shang YH, et al., 2021. Systematic
review on next-generation web-based software architec-
ture clustering models. Comput Commun, 167:63-74.
https://doi.org/10.1016/j.comcom.2020.12.022

Zhang PL, Jiang YJ, Wei AJ, et al., 2021. Domain-specific
fixes for flaky tests with wrong assumptions on under-
determined specifications. IEEE/ACM 43rd Int Conf
on Software Engineering, p.50-61.
https://doi.org/10.1109/ICSE43902.2021.00018

Zhao JF, Zhou JT, Yang HJ, et al., 2015. An orthogonal
approach to reusable component discovery in cloud mi-
gration. China Commun, 12(5):134-151.
https://doi.org/10.1109/CC.2015.7112036

	Introduction
	Approach
	Information extraction from code
	File-level code preprocessing
	Incremental software architecture update
	Bayesian classifier
	Orphan adoption algorithm classifier
	Combined use of these two classifiers

	Experiments and results
	Experimental setup
	Subject projects
	Selected recovery techniques
	Measurements
	Experimental steps

	Result analysis
	RQ1: improvements in effectiveness
	RQ2: effectiveness during evolution
	RQ3: efficiency improvements

	Threats to validity
	Related works
	Conclusions

