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Abstract: This paper presents applications of the continuous feedback method to achieve path-following and a
formation moving along the desired orbits within a finite time. It is assumed that the topology for the virtual leader
and followers is directed. An additional condition of the so-called barrier function is designed to make all agents
move within a limited area. A novel continuous finite-time path-following control law is first designed based on the
barrier function and backstepping. Then a novel continuous finite-time formation algorithm is designed by regarding
the path-following errors as disturbances. The settling-time properties of the resulting system are studied in detail
and simulations are presented to validate the proposed strategies.
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1 Introduction

Currently, the theory of the formation control
problem has emerged as a hot topic and attracted
great attention from researchers. To achieve better
measurements of biological variables across a range
of spatial and temporal scales in the applications in
oceanic and planetary explorations (Bertozzi et al.,
2005; Fiorelli et al., 2006), unmanned systems are re-
quired to simultaneously follow a set of given orbits
with a desired formation, which is a special forma-
tion control problem called the coordinated path-
following control problem.
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In the area of coordinated path-following con-
trol, many scholars focused on the asymptotic sta-
bility of the resulting multi-agent systems. In Cao et
al. (2009), a discrete-time consensus-based algorithm
was developed to force each follower to track a leader
with the desired dynamics, which is also called the
consensus tracking control problem. The continuous-
time consensus tracking control laws were given in
cases of time-invariant formation in Cao and Ren
(2012), the time-varying formation in Yu et al.
(2018), and the containment motion in Zhang FX
and Chen (2022). In Ghabcheloo (2007), a coordi-
nated path-following control law was designed by pa-
rameterizing the desired trajectories while synchro-
nizing the orbital parameters. This idea was used in
the case of uncertain dynamics in Peng et al. (2013).
Noting the geometry of the orbit, a novel geometry
extension method was proposed and then integrated
into the consensus of the generalized arc-lengths (the
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smooth functions) to achieve the coordinated path-
following task in Zhang FM and Leonard (2007) and
Chen and Tian (2015). The geometry extension
method was also used to solve the asymptotic co-
ordinated path-following problem with time-varying
flows in Chen et al. (2021a, 2021b). However, the
coordinated path-following control problem within a
finite settling time is still unsolved.

Recently, finite-time control laws in multi-agent
systems concentrate on the consensus (or consensus
tracking) problems. In Xiao et al. (2009), a finite-
time consensus tracking law was designed for a struc-
ture that consists of one leader and bidirectional con-
nected followers based on the sliding-mode method.
The sliding-mode method was used in the case of
directed topologies in Cao et al. (2010) and Wang
L and Xiao (2010), in the case of uncertainties in
Khoo et al. (2009), and in under-actuated systems
in Li TS et al. (2018). The finite-time properties of
a sliding-mode-based consensus tracking system can
be analyzed using the degree of homogeneity; details
can be found in Guan et al. (2012) and Dou et al.
(2019). Note that the above control laws are non-
smooth and thus sometimes cannot be directly used
in actual continuous systems (Qian and Lin, 2001).
There is a trend toward designing a continuous finite-
time controller for the coordinated control problem.
In Li SH et al. (2011), a continuous finite-time con-
sensus law was designed for second-order multi-agent
systems under one leader and bidirectional connected
followers. A similar idea was designed in Du et al.
(2013) using dynamic output feedback. In Huang
et al. (2015), an adaptive finite-time consensus algo-
rithm was designed for uncertain nonlinear mechan-
ical systems. The continuous finite-time consensus
method was developed to deal with high-order non-
holonomic mobile robots with bidirectional topolo-
gies in Du et al. (2017) and surface vehicles under
the assumption that all followers can access to the
leader in Wang N and Li (2020). Note that the objec-
tives of the coordinated path-following control prob-
lem include path-following and formation, which are
different from those of the consensus problem. It is
essential to give a finite-time method to the coordi-
nated path-following problem.

This paper gives a continuous solution to the
finite-time control problem of coordinated path-
following under directed topologies. To solve the
trajectory restriction problem, we present a new bar-

rier function definition that is integrated into back-
stepping to design a novel continuous finite-time
path-following control input projected on the nor-
mal vector on the orbit. Another continuous finite-
time formation control input projected on the tan-
gential vector on the orbit is designed by regard-
ing the path-following errors as disturbances. Note
that the proposed method in this paper is different
from our previous adaptive method in Chen et al.
(2021b) concerning two conditions: (1) directed net-
worked second-order agents are under consideration
and the first-order systems are replaced with bidirec-
tional topologies; (2) a continuous finite-time design
method is used to replace the adaptive methods.

2 Preliminaries and problem formula-
tion

2.1 Graph theory and barrier functions

The network topology of the coordinated path-
following system can be described by a digraph
G = {V , E}, where nodes V = {V0,V1, · · · ,Vn}
are associated with a virtual leader labeled V0 and
n vehicles labeled V1,V2, · · · ,Vn, and E ⊆ V × V
is a set of network links. A directed path from
node Vi to node Vj is a sequence of edges (Vi,Vi1),
(Vi1 ,Vi2) , . . . ,

(Vil−1
,Vil

)
, (Vil ,Vj) in the network

topology with distinct nodes Vik , k = 1, 2, . . . , l. A
digraph is called a directed tree if there exists a node,
called the root, that has directed paths to all the
other nodes in the digraph. Let, for i, j = 0, 1, . . . , n,
aii = 0 and aij = 1 if (Vi,Vj) ∈ E , and aij = 0

otherwise. In addition, define the Laplacian matrix
L � [lij ]

n
i,j=0 with lii =

∑n
j=1 aij and lij = −aij , for

any i �= j, i, j = 0, 1, . . . , n.
Assumption 1 The digraph consisting of a virtual
leader and n vehicles contains a directed spanning
tree with root V0.

For the considered coordinated path-following
system, the Laplacian matrix L can be written as

L =

[
0 01×n

l0 L1

]
,

where l0 = [l10, l20, · · · , ln0]T ∈ R
n×1 and L1 ∈

R
n×n. Suppose that Assumption 1 holds. L1 is a

nonsingular M-matrix and all eigenvalues of L1 have
positive real parts (Zhang Y and Tian, 2009). ρL1

denotes the smallest eigenvalue of L1.
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To keep each agent’s trajectory staying in a re-
stricted area when applying the geometry extension
method, a new definition of the barrier function Ψi

is given:
Definition 1 A C2 function Ψi : (−εi, εi) → R is a
barrier function with barrier 2εi > 0 if the following
conditions hold:

(C1) lim
λi→−ε+i

Ψi (λi) = +∞ and

lim
λi→−ε+i

∇Ψi (λi) = −∞;

(C2) lim
λi→ε−i

Ψi (λi) = +∞ and lim
λi→ε−i

∇Ψi (λi) =

+∞;
(C3) ∇Ψi (0) = 0;
(C4) |∇Ψi| ≥ cΨ |λi| with a bounded positive

constant cΨ .
Remark 1 The barrier function in Defini-
tion 1 is different from those in traditional defini-
tions, because condition (C4) is added and used
to yield the finite-time convergence of the re-
sulting system with the state constraint Ωi ={
pi ∈ R

2 | |λi (pi(t))| < εi
}
. It is noted that the ad-

ditional condition (C4) is not difficult to satisfy in
traditional barrier functions. For example,

Ψ(λi) =

∫ λi

λi0

[

c1

(
1

εi − τ
− 1

εi + τ

)

+ c2 (ln(εi + τ)− ln(εi − τ))

]

dτ,

(1)

where c1 and c2 are positive constants. In this case,
one can select parameter c2 from 0.3 to 0.8 to yield
condition (C4), as shown in Fig. 1.

λi

cΨλi

−εi

Ψi

Δ

(a) (b)

εi

Ψi

λi

cΨλi

−εi

Ψi

Δ

εi

Ψi

Fig. 1 Sketches of Ψi, ∇Ψi, and cΨλi with respect
to different c2 values: (a) c2 = 0.3; (b) c2 = 0.8

(cΨ = 0.7, εi = 2, and c1 = 0.2)

2.2 Some lemmas

Lemma 1 (Chen and Tian, 2015) Consider
any simple, closed, and regular orbit satisfying the
following conditions:

(C5) ‖Ci0(φi)‖ > ε ≥ 0;
(C6) 0 < ε ≤

∥
∥
∥dCi0(φi)

dφi

∥
∥
∥ < +∞;

(C7)
∣∣
∣Ci0(φi),

dCi0(φi)
dφi

∣∣
∣ �= 0.

Identifying the orbit by map Ci0, there exists
a constant εi > 0 such that Ci(·) (·, ·) is a diffeomor-
phism on [0, 2π)×(−εi, εi). Moreover, there exists an
open set Ωi ⊂ R

2, which is a tubular neighborhood of
the orbit, and a smooth function λi : Ωi → (−εi, εi),
which is called the orbit function (its value is called
the orbit value), such that the following conditions
hold:

(C8) ‖∇λi‖ =
∥
∥∥ ∂λi

∂pi

∥
∥∥ �= 0, for all pi ∈ Ωi;

(C9) λi (pi) = c, for all points pi on the orbit
identified by Cic with c ∈ (−εi, εi).

Cic is a level line of the orbit function λi(pi), and
the orbit value associated with orbit Ci0 is zero.
Definition 2 (Chen et al., 2021a) The generalized
arc-lengths ξi are C1 functions of the arc-lengths si

and
∣
∣
∣∂ξi∂si

∣
∣
∣ ≥ cξ > 0.

Lemma 2 (Chen et al., 2021a) The C1 invertible
mappings ξi : R → R define a change of coordinates,
which allows formulation of the coordinated path-
following problem with state variables si into the
consensus problem described by

lim
t→∞ (ξi(t)− ξ0(t)) = 0, (2)

with state variables ξi(si). To form the desired for-
mation, the desired arc-length s∗i of the ith follower
is determined by the arc-length of the leader s0 via
s∗i = gsis0(s0), where gsis0 : R → R is an invertible
mapping explicitly defined by the desired formation.
By Eq. (2), ξ0 and ξi are such that

ξi(s
∗
i ) = ξ0(s0).

Note that s0 = g−1
sis0(s

∗
i ) yields ξi = ξ0 ◦ g−1

sis0 ,
which properly defines ξi for any given ξ0, since gsis0
is known. Here, “◦” is the symbol for composition
of functions; that is, ξi is the composition of ξ0 and
g−1
sis0 .

2.3 Problem formulation

In this study, we first consider the cases of static
virtual leader and dynamic virtual leader. In a
fixed inertial reference frame, the model of the static
virtual leader is the first-order dynamics such that
ṗ0 = 0, where p0 = [px0 , py0 ]

T ∈ R
2 is its position.

For i = 1, 2, · · · , n, the dynamic equation for the
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ith follower satisfying the second-order dynamics is
given by {

ṗi = vi,

v̇i = ui,
(3)

where pi = [pxi , pyi]
T ∈ R

2 and vi = [vxi , vyi ]
T ∈ R

2

denote the position and velocity, respectively. ui =

[uxi , uyi ]
T ∈ R

2 denotes the control input.
Suppose that the desired orbit associated with

each agent is a simple, closed, and regular curve
with nonzero curvature. According to Lemma 1, this
curve can be extended geometrically to a set of level
curves, which can be defined by a smooth function
(the orbit function) λi : Ωi → (−εi, εi); the desired
orbit can be defined by λi(pi) = 0, where Ωi ⊂ R

2 is
an open set and pi ∈ R

2.
The path-following error can be described by

the value of the orbit function and the path-following
task is achieved if

lim
t→T

λi(pi(t)) = 0, (4)

with a finite time T > 0 and pi(t) ∈ Ωi, for all t ≥ 0,
where

Ωi =
{
pi ∈ R

2 | |λi (pi(t))| < εi
}
. (5)

Let the arc-lengths be given by

si (λi, φi) �
∫ φi

φ∗
i

∂si (λi, τ )

∂τ
dτ, (6)

where φ∗
i is the parameter associated with the

starting point of the arc of si. The generalized arc-
lengths ξi : R → R of si are used to describe the
formation along the curves. ∂ξi/∂si is a constant
and and satisfies cξ ≤ |∂ξi/∂si| ≤ cξ̄ with two posi-
tive constants cξ and cξ̄. From Lemma 2, the task of
achieving coordinate formation in finite time T can
be described as follows:

lim
t→T

ξi(t) = ξ0. (7)

The finite-time coordinated path-following con-
trol problem is as follows: For i = 1, 2, · · · , n, con-
sider system (3) and the initial position pi(0) ∈ Ωi.
Suppose that Assumption 1 holds. Design a finite-
time coordinated path-following control ui such that
the closed-loop system satisfies Eqs. (4) and (7).
Remark 2 The discontinuous laws based on sgn(·)
(Khoo et al., 2009; Xiao et al., 2009; Cao et al., 2010;

Wang L and Xiao, 2010; Guan et al., 2012; Li TS
et al., 2018; Dou et al., 2019) might cause signal
chattering in the closed-loop system. In practice, it
is difficult to accomplish these discontinuous laws.
Remark 3 This paper is devoted to design-
ing a continuous finite-time control law for di-
rected networking second-order agents for the coordi-
nated path-following problem. However, Chen et al.
(2021b) dealt with the adaptive design for first-order
agents with unknown time-varying parameters and
bidirectional topologies.

3 Main results

In this study, we first consider the cases of
static virtual leader and dynamic virtual leader. The
design precedence is as follows: (1) decouple the
whole system as a path-following subsystem and a
formation subsystem; (2) regard vNi as a virtual
controller v̂Ni and design uNi by backstepping to
achieve finite-time path-following along the given or-
bits (Theorem 1); (3) regard vTi as a virtual con-
troller v̂Ti and design uTi by backstepping to achieve
finite-time formation along the given orbits (Theo-
rem 2); (4) according to Theorems 1 and 2, give
Theorem 3 to show the finite-time convergence of the
coordinated path-following control system. Then a
corollary is given to show the case of the dynamic
virtual leader.

Section 3.1 gives the open-loop system (i.e., the
error equations of the coordinated path-following
control system), which is used to design the path-
following control law in Section 3.2 and the formation
control law in Section 3.3.

3.1 Open-loop system

By differentiating λi, the path-following dynam-
ics of agent i is obtained as follows:

λ̇i = ‖∇λi‖ vNi , (8)

where vNi = NT
i vi denotes the velocity projected on

vector Ni which is normal to the level orbit of the
current position of agent i and Ni =

∇λi

‖∇λi‖ . Differ-
entiating both sides of vNi yields

v̇Ni = uNi +ΔNi , (9)

where uNi = NT
i ui denotes the control input pro-

jected on the normal vector Ni, ΔNi = vTi Ṅi, and
Ṅi =

(∇2λi)vi
‖∇λi‖ − NiN

T
i (∇2λi)vi
‖∇λi‖ .
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Let Ti denote the vector which is tangent to
the level orbit of the current position of agent i and
Ti = RTNi = [R1, R2]

TNi, where R1 = [0, 1]T and
R2 = [−1, 0]T. Then the dynamics of ξi is given by

ξ̇i =
∂ξi
∂si

vTi +Δξi , (10)

where vTi = TT
i vi and Δξi

= ∂ξi
∂si

∂si
∂λi

‖∇λi‖ vNi . The
proof of Eq. (10) is provided in the supplementary
materials. Differentiating both sides of vTi yields

v̇Ti = uTi +ΔTi , (11)

where uTi = TT
i ui denotes the control input pro-

jected on the tangent vector Ni and ΔTi = RTṄivi.

Let ςi =
n∑

j=0

aij (ξi − ξj) denote the formation

errors. The dynamics of ςi is described by

ς̇i =

n∑

j=0

aij

(
∂ξi
∂si

vTi +Δξi −
∂ξj
∂sj

vTj −Δξj

)
. (12)

As a result, the equations of the formation track-
ing control system are given by Eqs. (8), (9), (11),
and (12).

3.2 Path-following controller design

Let us first consider the path-following subsys-
tem consisting of Eqs. (8) and (9) and let the virtual
control v̂Ni be

v̂Ni = −k1 (∇Ψi)
1
α , (13)

where 1 ≤ α = p1

p2
, p1 and p2 are positive odd

integers, and the control gain k1 will be selected
later. Consider the path-following candidate Lya-
punov function as

VP =

n∑

i=1

Ψi(λi) + γ1

n∑

i=1

∫ vNi

v̂Ni

(
τα − v̂αNi

)2− 1
α dτ ,

(14)
where γ1 = 1

(2− 1
α )k

1+α
1

. The first term on the right-

hand side of Eq. (14) contributes to achieving the
path-following objective, i.e., Eq. (4). The second
term contributes to guaranteeing the convergence of
the differences v̄Ni = vαNi

− v̂αNi
. Let ṽNi = vNi −

v̂Ni . Differentiating both sides of Eq. (14) along the

trajectories of Eqs. (8), (9), and (13) yields

V̇P ≤
n∑

i=1

‖∇λi‖ |∇ΨiṽNi | −
n∑

i=1

k1 ‖∇λi‖ (∇Ψi)
1+ 1

α

+ γ1

n∑

i=1

v̄
2− 1

α

Ni
(uNi +ΔNi) + fP,

(15)
where

fP =

n∑

i=1

k−1
1 ‖∇λi‖ |∇2Ψi| |v̄Ni |1−

1
α |vNi | |ṽNi | .

The proof of inequality (15) is provided in the
supplementary materials.

Since |ṽNi | =
∣
∣
∣(vαNi

)
1
α − (v̂αNi

)
1
α

∣
∣
∣, according to

Lemmas A.1 and A.2 in Qian and Lin (2001), we
have
⎧
⎪⎪⎨

⎪⎪⎩

|ṽNi | ≤ 21−
1
α

∣
∣vαNi

− v̂αNi

∣
∣

1
α ,

|∇ΨiṽNi | ≤ |∇Ψi|1+
1
α + cφ1 |v̄Ni |1+

1
α ,

|v̄Ni | |∇Ψi|
1
α ≤ |∇Ψi|1+

1
α + cφ2 |v̄Ni |1+

1
α ,

(16)
where φ1=2−1− 1

α (1 + α)/α, φ2 = 1 + α, cφ1 =

2−1− 1
αφ−α

1 /(1 + α), and cφ2 = φ
− 1

α
2 α/(1 + α).

The proof of inequality (16) is provided in the
supplementary materials.

Note that |vNi ||ṽNi | ≤ |v̂Ni
||ṽNi |+ |ṽNi |2. From

Eq. (13) and inequality (16), we can conclude that

fP ≤
n∑

i=1

k−1
1 ‖∇λi‖

∣
∣∇2Ψi

∣
∣
[
22−

2
α |v̄Ni |1+

1
α

+ k12
1− 1

α

(
|∇Ψi|1+

1
α + cφ2 |v̄Ni |1+

1
α

)]
.

(17)

On the set ΦP = {(λi, ṽNi) |VP ≤ cP }, for some
cP > 0, one has cλ ≤ ‖∇λi‖ ≤ c

λ̄
and

∣
∣∇2Ψi

∣
∣ ≤ cΨ2

with some cλ > 0, cλ̄ > 0, and cΨ2 > 0. Exploiting
inequalities (16) and (17), we conclude that

V̇P ≤γ1

n∑

i=1

v̄
2− 1

α

Ni
(uNi +ΔNi) +

n∑

i=1

cP2v̄
1+ 1

α

Ni

−
n∑

i=1

(
k1cλ − cP1

)
(∇Ψi)

1+ 1
α ,

(18)

which yields

uNi = −ΔNi − k2v̄
−1+ 2

α

Ni
, (19)

where
{
k1 > c−1

λ (cP1 + βP1) ,

k2 >
(
2− 1

α

)
k1+α
1 (cP2 + βP1).
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Herein, cP1 = c
λ̄

+ cλ̄2
1− 1

α cΨ2 , cP2 =

c
λ̄

(
cφ1 + k−1

1 22−
2
α cΨ2 + 21−

1
α cφ2cΨ2

)
, and βP1 is an

arbitrary positive constant. Note that

(∇Ψi)
1+ 1

α + v̄
1+ 1

α

Ni
≥
(
(∇Ψi)

2 + v̄2Ni

)(1+ 1
α )/2

.

(20)

The proof of inequality (18) is provided in the
supplementary materials.

Suppose that VP(t) �= 0. Substituting Eq. (19)
into inequality (18) yields

V̇P ≤ −βP1

n∑

i=1

(
(∇Ψi)

2
+ v̄2Ni

)(1+ 1
α )/2

= −gPV
(1+ 1

α )/2

P ,

(21)

where gP = βP1V
−(1+ 1

α )/2

P

∑n
i=1

(
(∇Ψi)

2
+

v̄2Ni

)(1+ 1
α )/2

. By Eq. (19), the closed-loop equation
associated with the path-following subsystem for
the ith follower is

{
λ̇i = −k1 ‖∇λi‖ (∇Ψi)

1
α + ‖∇λi‖ ṽNi ,

˙̄vNi = −αvα−1
Ni

k2v̄
2
α−1

Ni
− ˙̂vαNi

.
(22)

Remark 4 It is obvious that the closed-loop
system (22) for path-following is not homogeneous.
Therefore, the finite-time stability analysis methods
given in Guan et al. (2012) and Dou et al. (2019)
cannot be applied in this study.

Note that 0 < (1 + 1
α )/2 < 1. To apply

Theorem 4.2 in Bhat and Bernstein (2000) (which
is provided in the supplementary materials), we will
show that gP has a lower bound. From condition
(C4), we have

⎧
⎨

⎩
Ψi =

∫ λi

λi0
∇Ψi (τ)dτ ≤ c−1

Ψ |∇Ψi|2 + |∇Ψi| εi,
∫ vNi

v̂Ni

(
τα − v̂αNi

)2− 1
α dτ ≤ 21−

1
α

∣
∣vαNi

− v̂αNi

∣
∣2,

with λi0 = λi (0), which yields

VP ≤ βP3

n∑

i=1

[
(∇Ψi)

2
+
(
vαNi

− v̂αNi

)2]
+ cP3, (23)

where βP3 = max

{
c−1
Ψ , 21−

1
α

(2− 1
α )k

1+α
1

}
and cP3 =

n∑

i=1

|∇Ψi| εi. As a result, we have

gP ≥
βP1

n∑

i=1

(
(∇Ψi)

2
+ v̄2Ni

)(1+ 1
α )/2

(
βP3

n∑

i=1

(
(∇Ψi)

2
+ v̄2Ni

)
+ cP3

)(1+ 1
α )/2

≥ βP4,
(24)

where βP4 is positive and bounded. According to
Theorem 4.2 in Bhat and Bernstein (2000), we es-
tablish the following theorem:

Theorem 1 Suppose that the initial positions of
vehicles are such that pi(0) ∈ Ωi. Assume moreover
that Assumption 1 holds. Then the path-following
objective (Eq. (4)) can be achieved by the finite-time
control uNi given in Eq. (19), for i = 1, 2, · · · , n.

Proof From inequality (21), we conclude that the
function VP is bounded all the time, which implies
that the objective (Eq. (5)) is satisfied according to
conditions (C1) and (C2). From inequalities (21)
and (24), we conclude that λi = 0 and that v̄Ni

(i = 1, 2, · · · , n) are the finite-time stable equilibria
of the closed-loop path-following subsystem (22).

3.3 Coordinated formation controller design

In the following, we will consider the formation
subsystem consisting of Eqs. (11) and (12). Let the
virtual control v̂Ti be

v̂Ti = −
(
∂ξi
∂si

)−1

k3ςi
1
α , (25)

where k3 is a positive control gain and will be selected
later. Consider the coordinated formation candidate
Lyapunov function as

VF =
1

2

n∑

i=1

ς2i +γ2

n∑

i=1

∫ vTi

v̂Ti

(
τα − v̂αTi

)2− 1
α dτ , (26)

where γ2 = 1

(2− 1
α)k

1+α
3

. In Eq. (26), the first term

on the right-hand side contributes to achieving the
formation objective, i.e., Eq. (7), and the second
term contributes to guaranteeing the convergence of
the differences v̄Ti = vαTi

− v̂αTi
. Let ṽTi = vTi −

v̂Ti . Differentiating both sides of Eq. (26) along the
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trajectories of Eqs. (11), (12), and (25) yields

V̇F =− k3

n∑

i=1

ςi

n∑

j=0

aij

(
ς

1
α

i − ς
1
α

j

)
+ fF

+ γ2

n∑

i=1

v̄
2− 1

α

Ti
(uTi +ΔTi) + gF1 + gF2,

(27)

where

fF =

n∑

i=1

ςi

n∑

j=0

aij

(
∂ξi
∂si

ṽTi −
∂ξj
∂sj

ṽTj

)
, (28)

gF1 =

n∑

i=1

ςi

n∑

j=0

aij

(
Δξi −Δξj

)
, (29)

gF2 =
1

k3

n∑

i=1

(
∂ξi
∂si

)−α∫ vTi

v̂Ti

(
τα − v̂αTi

)1− 1
α dτ

·
n∑

j=0

aij

(
∂ξi
∂si

vTi +Δξi −
∂ξj
∂sj

vTj −Δξj

)
.

(30)
The proof of Eq. (27) is provided in the supple-

mentary materials.
Note that

fF ≤
n∑

i=1

|ςi|
⎛

⎝γ3cξ̄ |ṽTi |+ γ4cξ̄

n∑

j=0

∣
∣ṽTj

∣
∣

⎞

⎠ , (31)

where γ3 = max∀i
{∑n

j=0 aij

}
and γ4 =

max∀i,j {aij}. From Lemmas A.1 and A.2 in Qian
and Lin (2001), we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ṽTi | ≤ 21−
1
α

∣
∣vαTi

− v̂αTi

∣
∣

1
α ,

|ςi| |ṽTi | ≤ |ςi|1+
1
α + cF1

∣
∣vαTi

− v̂αTi

∣
∣1+

1
α ,

|ςi|
∣
∣ṽTj

∣
∣ ≤ |ςi|1+

1
α + cF1

∣
∣∣vαTj

− v̂αTj

∣
∣∣
1+ 1

α

,

(32)

where cF1 = 2−1− 1
αφ−α

F1 /(1 + α) and φF1 =

2−1− 1
α (1 + α)/α. Substituting inequality (32) into

inequality (31) yields

fF ≤ cσ1

n∑

i=1

|ςi|1+
1
α + cvT1

n∑

j=0

∣∣v̄Tj

∣∣1+
1
α , (33)

where cσ1 = γ3cξ̄+(n+1)γ4cξ̄ and cvT1 = γ3cξ̄cF1+

nγ4cξ̄cF1. Note that

gF2 ≤ gF21 + gF22, (34)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gF21 =
n∑

i=1

k−1
3 c−α

ξ

∣
∣vαTi

− v̂αTi

∣
∣1−

1
α
∣
∣vTi

− v̂Ti

∣
∣

·
n∑

j=0

aij

∣∣
∣∂ξi∂si

vTi − ∂ξj
∂sj

vTj

∣∣
∣,

gF22 =
n∑

i=1

k−1
3 c−α

ξ

∣
∣vαTi

− v̂αTi

∣
∣1−

1
α
∣
∣vTi

− v̂Ti

∣
∣

·
n∑

j=0

aij

∣
∣
∣Δξi

−Δξj

∣
∣
∣.

(35)
Due to the fact that
⎧
⎨

⎩
|vTi |

∣∣vTi
− v̂Ti

∣∣ ≤ |ṽTi |2 +
∣∣v̂Ti

∣∣ |ṽTi | ,∣
∣vTj

∣
∣
∣
∣vTi

− v̂Ti

∣
∣ ≤ ∣∣ṽTj

∣
∣|ṽTi |+

∣∣
∣v̂Tj

∣∣
∣ |ṽTi | ,

(36)
from Eq. (25), inequality (32), and Eq. (35), one has

gF21 ≤
n∑

i=1

(
cg1|v̄Ti |1+

1
α + cg2|ςi|

1
α |v̄Ti |

)

+

n∑

i=1

n∑

j=0

(
cg3
∣
∣v̄Tj

∣
∣

1
α |v̄Ti |+ cg4 |ςj |

1
α |v̄Ti |

)
,

(37)
where cg1 = k−1

3 c−α
ξ γ3cξ̄2

2− 2
α , cg2 =

c−α−1
ξ γ3cξ̄2

1− 1
α , cg3 = k−1

3 c−α
ξ γ4cξ̄2

2− 2
α , and

cg4 = c−α−1
ξ γ4cξ̄2

1− 1
α .

The proof of inequality (37) is provided in the
supplementary materials.

From Lemmas A.1 and A.2 in Qian and Lin
(2001), we have
⎧
⎪⎪⎨

⎪⎪⎩

|ςi|
1
α |v̄Ti | ≤ |ςi|1+

1
α + cF2|v̄Ti |1+

1
α ,

|ςj |
1
α |v̄Ti | ≤ |ςj |1+

1
α + cF2|v̄Ti |1+

1
α ,

∣
∣v̄Tj

∣
∣

1
α |v̄Ti | ≤

∣
∣v̄Tj

∣
∣1+

1
α + cF2|v̄Ti |1+

1
α ,

(38)

with cF2 = αφ
− 1

α

F2 /(1 + α) and φF2 = 1 + α, which
yields

gF21 ≤ cvT2

n∑

i=1

|v̄Ti |1+
1
α + cσ2

n∑

i=1

|ςi|1+
1
α , (39)

where cvT2 = cg1+ cg2cF2+ncg3+ncg3cF2+ncg4cF2
and cσ2 = cg2 + ncg4.

From inequalities (34) and (39), we have

gF2 ≤ cvT2

n∑

i=1

|v̄Ti |1+
1
α + cσ2

n∑

i=1

|ςi|1+
1
α + gF22.

Substituting the above inequality and
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inequality (33) into Eq. (27) yields

V̇F ≤− k3

n∑

i=1

ςi

n∑

j=0

aij

(
ς

1
α
i − ς

1
α
j

)
+ γ2

·
n∑

i=1

v̄
2− 1

α

Ti
(uTi+ΔTi) + (cσ1+cσ2)

n∑

i=1

|ςi|1+
1
α

+ (cvT1 + cvT2)

n∑

i=1

v̄
1+ 1

α

Ti
+ gF1 + gF22,

(40)
which makes the choices such that

uTi = −ΔTi − k4v̄
2
α−1

Ti
, (41)

where the control gain k4 will be set later. As a
result, the closed-loop formation subsystem for the
ith follower is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ς̇i = −k3
n∑

j=0

aij

(
ς

1
α

i − ς
1
α

j

)
+

n∑

j=0

aij

·
(
Δξi

−Δξj

)
+

n∑

j=0

aij

(
∂ξi
∂si

ṽTi − ∂ξj
∂sj

ṽTj

)
,

˙̄vTi = −αvα−1
Ti

k4v̄
2
α−1

Ti
− ˙̂vαTi

.

(42)
Let ς = [ς1, ς2, · · · , ςn]. Substituting

−k3ς
TL1ς

1
α ≤ −k3ρL1

n∑

i=1

|ςi|1+
1
α and Eq. (41) into

inequality (40) yields

V̇F ≤− (k3ρL1 − cσ1 − cσ2)

n∑

i=1

|ςi|1+
1
α + gF1

− (k4γ2 − cvT1 − cvT2)

n∑

i=1

v̄
1+ 1

α

Ti
+ gF22,

in which control gains are chosen as follows:
{
k3 ≥ ρ−1

L1
(cσ1 + cσ2 + βF1) ,

k4 ≥ (2− 1
α

)
k1+α
3 (cvT1 + cvT2 + βF1) ,

(43)

where βF1 is an arbitrary positive constant. As a
result, we have

V̇F ≤ −βF1

n∑

i=1

|ςi|1+
1
α − βF1

n∑

i=1

v̄
1+ 1

α

Ti
+ gF1 + gF22.

(44)

Let lF = max

{
1, 21−

1
α

(2− 1
α )k

1+α
3

}
. Then we have

VF ≤ lF

n∑

i=1

(
ς2i + v̄2Ti

)
, (45)

which yields V
(1+ 1

α )/2

F ≤ l
(1+ 1

α )/2

F

(
n∑

i=1

ς1+
1
α+

n∑

i=1

v̄
1+ 1

α

Ti

)
. Suppose that VF(t) �= 0. Inequality (44)

can be rewritten as

V̇F ≤ −βF2V
(1+ 1

α )/2

F + gF3, (46)

where βF2 = βF1

/
l
(1+ 1

α )/2

F and gF3 = gF1 + gF22.
Due to 0 < (1 + 1

α )/2 < 1, βF2 has a lower
bound. gF3 approaches zero as limt→T λi(t) = 0

and limt→T v̄Ni(t) = 0, as proved in Theorem 1. We
give the following result directly:
Theorem 2 Suppose that the initial positions
of vehicles are such that pi(0) ∈ Ωi. Assume more-
over that Assumption 1 holds. Then the formation
objective (Eq. (7)) can be achieved by the finite-time
control uTi given in Eq. (41), for i = 1, 2, · · · , n.
Proof The proof follows the same argument as the
proof of Theorem 5.3 in Bhat and Bernstein (2000)
(which is provided in the supplementary materials).
Hence, it is omitted.

Theorems 1 and 2 yield the following result:
Theorem 3 Suppose that the initial positions of
vehicles are such that pi(0) ∈ Ωi. Assume more-
over that Assumption 1 holds. For i = 1, 2, · · · , n,
the finite-time coordinated path-following control
problem is solved by the coordinated path-following
control:

ui =

[
NT

i

TT
i

]−1 [
uNi

uTi

]
, (47)

where uNi and uTi are as given in Eqs. (19) and (41),
respectively.
Remark 5 Different from the consensus prob-
lem studied in Li SH et al. (2011), this study ad-
dresses the coordinated path-following control prob-
lem, which includes two subproblems, i.e., path-
following and formation control. Moreover, the di-
graph in this paper, assumed to consist of a virtual
leader and n vehicles, contains a directed spanning
tree with root V0, while in Li SH et al. (2011), each
follower was required to access to the leader’s states.

Now, let us consider a special case: the virtual
leader has a velocity ξ̇0 = η0 along the respond-
ing orbit and its velocity accesses to each follower,
where η0 and η̇0 are bounded signals. In this case,
the open-loop equations of the path-following sub-
system are Eqs. (8) and (9), which are the same
as those of the static case. Let ξ̃i = ξi − ξ0.
The time derivative of ξ̃i is ˙̃

ξi = ∂ξi
∂si

ṽTi + Δξi
,
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where ṽTi = vTi −
(

∂ξi
∂si

)−1

η0. Differentiating both

sides of ṽTi yields ˙̃vTi = uTi + Δ̃Ti , where Δ̃Ti =

ΔTi −
(

∂ξi
∂si

)−1

η̇0. Let ς̃i =
n∑

j=1

aij

(
ξ̃i − ξ̃j

)
be the

formation errors. The dynamics of ς̃i is

˙̃ςi =
n∑

j=1

aij

(
∂ξi
∂si

ṽTi +Δξi −
∂ξj
∂sj

ṽTj −Δξj

)
, (48)

which is similar to Eq. (12). As a result, the expres-
sions of ṽNi and ũNi are the same as Eqs. (13) and
(19) in the static case, respectively. The expressions
of ṽTi and ũTi are also the same as Eqs. (25) and
(41), respectively, in the static case by replacing ςi
and ΔTi with ς̃i and Δ̃Ti , respectively.

We now give the following corollary directly:
Corollary 1 Consider that a virtual leader has a
velocity η0 along the responding orbit and that the
access to each follower has been considered. Sup-
pose that the initial vehicle positions are such that
pi(0) ∈ Ωi. For i = 1, 2, · · · , n, the finite-time co-
ordinated path-following control problem is solved
by the coordinated path-following control law (47),
where uNi and uTi are as given in Eqs. (19) and (41),
respectively.

4 Simulations

In this section, we first apply the proposed con-
trol laws in Theorem 3 to coordinate the vehicles
moving along the elliptic orbits with a triangle pat-
tern in case 1, and then use the control algorithm pro-
posed in Corollary 1 to achieve the in-line formation
in case 2. The selected trajectories of the agents are
concentric ellipses with a different semi-major axis

and semi-minor axis, that is, Cl0 :
p2
xl

(ela)2
+

p2
yl

(elb)2
= 1,

where el = 1+0.5l, a = 3, b = 2, and l = 0, 1, 2, 3, 4.
1. Case 1: static virtual leader
The topology for the virtual leader and follow-

ers is shown in Fig. 2. The parameters are selected
as k1 = k3 = 2.7, k2 = k4 = 34, and α = 9

7 . The
initial generalized arc-length of the virtual leader is
ξ0(0) = 0. The motion of the agents is illustrated
in Fig. 3, where “◦”, “�”, “�”, and “+” denote the
agents’ positions at t = 0, 1, 2, and 7 s, respectively.
In this figure, one can see that the four followers con-
verge to the given orbits and achieve the desired for-
mation. The path-following errors λi and formation
errors ξi − ξ0 are plotted in Figs. 4 and 5, respec-

tively. The above figures show that path-following
and formation tracking are achieved.

2. Case 2: dynamic virtual leader
We use the coordinated path-following control

algorithm given in Corollary 1 to achieve the in-line
pattern. The parameters are selected as k1 = k2 =

k3 = k4 = 10 and α = 5
3 . The motion of the agents,

the path-following errors λi, and the formation errors
ξi−ξ0 are illustrated in Figs. 6, 7, and 8, respectively.

v1

v2

v4

v3

v0

Fig. 2 A directed topology
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−6
−10 −6−8 −4 −2 20 4 6 8 10

2

4

p0

p1
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p3

p4

x

6

y

Fig. 3 Motion of the agents in the static virtual leader
case
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Fig. 4 Path-following errors in the static virtual
leader case
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ξ1−ξ0

−ξ0
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ξ3−ξ0
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Fig. 5 Formation errors in the static virtual leader
case

Fig. 6 Motion of the agents in the dynamic virtual
leader case

t (s)

Fig. 7 Path-following errors in the dynamic virtual
leader case

5 Conclusions

A continuous feedback method to solve the
finite-time coordinated path-following control prob-
lem is presented, where the topology for the virtual
leader and followers is directed. Because the movable
ranges of the agents are restricted, a novel barrier
function is given. A finite-time coordinated path-
following control law in the static virtual leader case

t (s)

Fig. 8 Formation errors in the dynamic virtual leader
case

is designed first. Then the control law is obtained
in the dynamic virtual leader case, where its velocity
can be accessed by each follower. Conditions on the
control gains to guarantee that the path-following
errors and the formation errors converge to zeros
in finite time are presented. In ongoing work, the
experiments involving finite-time coordinated path-
following problems will be considered.
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