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Abstract: In this study, we solve the finite-time leader-follower consensus problem of discrete-time second-order
multi-agent systems (MASs) under the constraints of external disturbances. First, a novel consensus scheme is
designed using a novel adaptive sliding mode control theory. Our adaptive controller is designed using the traditional
sliding mode reaching law, and its advantages are chatter reduction and invariance to disturbances. In addition,
the finite-time stability is demonstrated by presenting a discrete Lyapunov function. Finally, simulation results are
presented to prove the validity of our theoretical results.
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1 Introduction

In the last few years, distributed cooperative
control has been an important research direction
within the area of multi-agent systems (MASs) be-
cause of its high efficiency and robustness compared
to control of the classical single agent (Olfati-Saber
and Murray, 2004; Olfati-Saber et al., 2007; Ren,
2008; Ren and Beard, 2008). The distributed co-
operative control method is applied to both theo-
retical and practical areas. The theoretical research
includes consensus (Li ZK et al., 2009; Xie DS et al.,
2016; Zhang HG et al., 2020b, 2021b), formation con-
trol (Oh et al., 2015), coverage control (Atınç et al.,
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2014), rendezvous (Li P et al., 2018), flocking (Olfati-
Saber, 2006), reinforcement learning (Li Q et al.,
2021; Xia LN et al., 2022a), and attack (Li Q et al.,
2019b; Xia LN et al., 2022b). At the same time, the
MAS has been used in many practical areas, such
as design of sensor networks (Cruz-Piris et al., 2018)
and unmanned aerial quadrotors (Han et al., 2020).

Among the numerous distributed cooperative
MAS control methods, the consensus problem is a
basic and significant research topic. It is the key
to solving other cooperative control problems. Nor-
mally, consensus can be classified into three types:
leaderless consensus (Cui Q et al., 2020), leader-
follower consensus (one leader or a virtual leader) (Li
Q et al., 2020; Zhang J et al., 2021), bipartite con-
sensus (Li Q et al., 2019a; Zhang HG et al., 2021a),
and containment control (multiple leaders) (Cui GZ
et al., 2018; Wang W et al., 2020; Zhang HG et al.,
2020a). The consensus problem states that, with the
evolution of time, the global or partial MAS states
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tend to be asymptotically stable. Specifically, in the
case of leader-follower consensus, it requires that the
states of all followers drive into the trajectory of a
single leader, which is widely used in the field of for-
mation control as well.

An important performance index of the consen-
sus problem is the convergence rate. In many articles
(Chowdhury et al., 2018; Deng et al., 2020; Wang QL
and Sun, 2020), the MAS consensus is asymptotic;
that is to say, the consensus situation can be reached
only when the time tends towards infinity. However,
we need to achieve finite-time consensus (FTC) in
real applications, which means that the trajectory
of the system can converge to the designed equilib-
rium state within a finite time horizon and remain
there since then. Therefore, various kinds of con-
trollers have been constructed to meet the demand
of FTC stabilization problems in MAS research. In
Zou et al. (2020), second-order FTC was discussed
in a switched MAS, and in Shi et al. (2019) it was
extended to the FTC of high-order MASs. Ning and
Han (2019) and Lu et al. (2021) studied the pre-
scribed and bipartite FTC, respectively. Liu XY
et al. (2019) compared the FTC and fixed-time con-
sensus (FxTC), in which the MAS can reach con-
sensus within a fixed time. At the same time, the
importance of FTC research was demonstrated be-
cause FTC has been used in a wider range of control
areas (Min et al., 2018) and extended to practical
applications such as the financial sector (Wang YL
et al., 2021).

Significantly, most finite-time controllers are
discussed based on the continuous models in the
MAS field (Tong et al., 2018). In fact, the useful
information may not be transmitted continuously in
practice due to unreliable communication channels
or the limited perceptual capabilities of agents. In
addition, in a real-time computer control system, the
controller demand must be discrete. Therefore, we
focus on the study of discrete-time MASs, in which
the agents can obtain only the state information
at discrete times from their neighbors. There have
been some recent research findings about the MAS
discrete-time consensus. Leader-follower and high-
order switched discrete MASs have been reported
(Liu JW and Huang, 2021; Liu YF and Su, 2021;
Zhang YY et al., 2021), and the time-varying situ-
ation has been discussed in Zhang JL et al. (2021).
Wang B and Tian (2021) and Zhang WL et al. (2021)

gave the discrete consensus with multiplicative un-
certainties delays and unconfined cyber-attacks in
MAS, respectively. Wang QS et al. (2021) pre-
sented a new method to achieve the optimal consen-
sus of discrete MAS and Zhou et al. (2021) extended
the discrete-time research in the area of financial
systems.

Another crucial problem concerns disturbances.
Most disturbances originate from uncertainty and
the impact of external disturbances, and severely af-
fect the dynamic performance of the MAS. At the
same time, MAS control performance and accuracy
will be reduced. Research on anti-disturbance con-
trol has been carried out using multiple traditional
control methods, such as robust control (Wang JY
et al., 2021), adaptive control (Liang et al., 2021),
back stepping control (Wang XY et al., 2018), fuzzy
control (Shao and Ye, 2021), and sliding mode con-
trol (SMC) (Yu and Long, 2015; Sinha and Mishra,
2020).

SMC has significant advantages against the un-
certainty of the system and the influence of exter-
nal disturbances, especially for closed-loop systems
(Young et al., 1999). The traditional SMC method
is essentially a variable structure nonlinear control
(Utkin, 1977). It can drive a decentralized controller
to reach the sliding surface, which is constructed as a
state function of the system in finite time and main-
tained on the sliding surface thereafter. The pro-
gramming of the sliding surface is irrelevant to the
system parameter of the system and the external dis-
turbances. Many researchers have noticed the excel-
lent performance of SMC, such as robustness and ex-
pandability, and have conducted extensive research,
especially in the field of MASs (Sun et al., 2018;
Wang GD et al., 2018; Qin et al., 2019; Zhang Z et al.,
2019; Sinha and Mishra, 2020; Yao et al., 2020). Fur-
thermore, Liu HY et al. (2020) extended the research
in fractional-order MASs, Fei et al. (2020) combined
the sliding mode method with the neural network,
and Chen et al. (2020) introduced SMC in the appli-
cation of a non-holonomic spherical robot.

However, the SMC algorithm can cause high-
frequency chattering of the control system. Because
of the discontinuous control structure, the control
trajectory may not reach the sliding surface without
inertia, and a zigzag trajectory may be superimposed
in the practical sliding mode, which causes devas-
tating consequences in the controller. To solve the
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chattering problem, Gao et al. (1995) first proposed
the reaching law theory of discrete-time variable
structure control to eliminate the high-frequency
chattering of SMC. Recent applications to avoid
chattering include the synthetic trigger function (Liu
JH et al., 2019) and the adaptive event-triggered con-
troller strategy (Xu and Wu, 2021).

Motivated by the above observations, the main
task of this paper is to analyze the FTC of a discrete-
time, leader-follower MAS under the controller of
discrete-time SMC. The main contributions are sum-
marized below:

1. Aiming at the second-order MAS over a di-
rected graph, based on the traditional SMC method,
we propose a new adaptive discrete sliding mode con-
troller that leads the followers to achieve finite-time
tracking control of the single leader’s position and
velocity information in a discrete-time MAS.

2. The existence and reachability of discrete
sliding mode are discussed in our research. Using
the method of finite-time stability by constructing a
discrete Lyapunov function (Hamrah et al., 2019) in
a discrete system, it is demonstrated that the pre-
sented control algorithm can ensure the stability of
the discrete MAS in finite time. Furthermore, the
stability is not affected by variation of the discrete
sampling time.

3. Compared with the existing discrete SMC
method, the adaptive discrete sliding mode con-
troller can adjust the time-varying parameter ε to
decrease the inherent chattering of traditional SMC.
Meanwhile, the speed at which the sliding mode
switching surface is reached is not affected. Using
the saturation function sat(·), which is widely used
in the ideal SMC, and substituting the signum func-
tion sgn(·), the advantage of the proposed controller
in our research is used to the greatest extent to create
robustness and invariance to internal system pertur-
bation and external disturbances.

2 Preliminaries and formulation of
problems

2.1 Graph theory

A weighted graphG = (V , E ,A) is defined as the
MAS communication topology with n agents. For
the definition of the graph, we set V = {1, 2, · · · , n}
as the node set and E ⊆ V ×V as the edge set. Then

we set the weighted adjacency matrix A = [aij ] ∈
R

n×n as an n-order real matrix. An edge of G from
node i to node j is expressed by (i, j), and on behalf
of that, node j can consume information from node i.
If (i, j) ∈ E , then aij > 0, if not, aij = 0, and we set
aii = 0, which means that the graph has no self-loop.
We call (j, i) ∈ E because node j is the neighborhood
of node i. So, we define Ni = {j | j ∈ V , (j, i) ∈ E}
as the neighbor set of i. The directed spanning tree
exists when and only when V has a root node, and
the root node can lead to a directed path to all other
nodes. If (j, i) ∈ E ↔ (i, j) ∈ E , then we define G

as an undirected graph. Another crucial definition
is the Laplacian matrix L = [lij ] ∈ R

n×n, which is
based on the adjacency matrix presented above A :

lij =

{∑n
j=1,j �=i aij , i = j,

−aij , i �= j.

From the definition of the Laplacian matrix, we
have L · 1n = 0, where 1n = [1, 1, . . . , 1]T is a col-
umn vector. For a leader-follower MAS, we designate
node 0 as the leader and the series 1, 2, ..., n as the
followers. Another graph, Ḡ = (V̄ , Ē , Ā), represents
the n followers and a single leader in leader-follower
MASs. Specifically, V = V ∪ {0}, and E and A
are the corresponding edge set and adjacency ma-
trix, respectively. We set the Laplacian matrix of
the leader-follower directed graph as L̄, and denote
another column vector B = [b1, b2, . . . , bn]

T, where
bi = 1 represents the follower agent with i being a
neighborhood of the leader, and bi = 0 otherwise.
The matrix B̄ = diag(b1, b2, · · · , bn). We assume
that the followers receive information only from the
leader, and that the followers cannot provide infor-
mation to the leader. We call the leader globally
reachable if each follower has a directed path from
the leader.

2.2 Problem formation

In this subsection, we propose the issue of
leader-follower consensus by considering second-
order discrete linear dynamics. The dynamic func-
tion includes one single leader and the remaining n

agents are followers. The leader is labeled 0, while
the followers are labeled {1, 2, · · · , n}. First, we
suppose that the dynamics of follower agents is as
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follows:{
xi (k + 1) = xi (k) + Tkvi (k) ,

vi (k + 1) = vi (k) + Tk [ui (k) + di (k)] ,
(1)

where i = 1, 2, . . . , n, and ui(k), xi(k), vi(k) ∈ R are
the control input, position, and velocity of the ith fol-
lower agent at sampling time k, respectively. di(k)

represents the matched slowly varying disturbance
acting on the follower agents at time k. Tk indicates
the sampling period and k (or k + 1) is the abbrevi-
ation for kTk (or (k + 1)Tk). Similarly, the leader’s
dynamics is presented by another second-order dis-
crete linear system:{

x0(k + 1) = x0(k) + Tkv0(k),

v0(k + 1) = v0(k).
(2)

Similar to the above definition, x0(k), v0(k) ∈
R indicate the position and velocity of the leader,
respectively.

We assume ξi(k) = [xi(k), vi(k)]
T, and the

leader’s column vector is denoted by ξ0(k) =

[x0(k), v0(k)]
T. Then, from Eqs. (1) and (2), we

obtain{
ξi(k + 1) = Aξi(k) +B [ui(k) + di(k)] ,

ξ0(k + 1) = Aξ0(k),
(3)

where A =

[
1 Tk

0 1

]
,B = [0, Tk]

T.

To explain the process of consensus controller
design and stability analysis, we introduce some
necessary assumptions and lemmas.
Assumption 1 The disturbance di(k) is bounded
and meets the condition |di(k)| ≤ d, where d is a
positive number, i = 1, 2, . . . , n.
Assumption 2 The communication topology
graph for the above leader-follower MAS has at least
one single directed spanning tree, which can be ex-
pressed as B̄ �= 0.
Lemma 1 (Tsai et al., 2018) To avoid the SMC
chattering phenomenon, we can use the saturation
function to replace the traditional sign function. The
saturation function is defined as

sat (s) = sat (Si(k)) =
Si(k)

|Si(k)|+ δi
,

where δi is an arbitrary small positive constant.
Lemma 2 We set L̄ = L + B ∈ R

n×n as the
Laplacian matrix of graph Ḡ. It is positive definite
if Assumption 2 holds.

Lemma 3 (Hamrah et al., 2019) Define a discrete-
time system output variable yk ∈ R

n. Then, con-
sider a positive definite Lyapunov function Vk =

V (yk) , V : R
n → R. Define the real numbers

α, h ∈ (0, 1), and γk = γ (Vk) is also a positive defi-
nite function. We have

γk
γ0

≥ 1− h for Vk ∈ (βV0, V0) , 0 < β 
 1, (4)

if the following inequality is satisfied:

ΔVk = Vk+1 − Vk ≤ −γk(Vk)
α. (5)

We can say that the discrete system achieves
Lyapunov stability. The output variable yk con-
verges to y = 0 if k ≥ N , in which the finite positive
integer N ∈ N.
Proof Based on the definition of Lyapunov stabil-
ity, the difference of the Lyapunov function ΔVk is
negative definite along the trajectories of the above
discrete-time system, while the right-hand side of
inequality (4) tends to 0 when, and only when, Vk =
0.

Using the definition of γk, the equality form of
inequality (4) is given as follows:

Vk+1 = Vk − γkV
α
k

= Vk

(
1− γk

V 1−α
k

)
.

(6)

We set the initial value V0 of the above Lya-
punov function as

V0 = g0 (γ0)
1

1−α , g0 > 0. (7)

Then, substituting the value of V0 in inequality
(5), we have

V1 − g0 (γ0)
1

1−α = −γ0g
α
0 (γ0)

α
1−α = −gα0 (γ0)

1
1−α

⇒ V1 = (g0 − gα0 ) (γ0)
1

1−α .

(8)
We define

g1 := g0 − gα0 . (9)

Thus, the value of V1 is defined as

V1 = g1 (γ0)
1

1−α . (10)

The value range of parameter g0 should be g0 >

1. We have noticed that if g0 ≤ 1, Eq. (8) means
that g1 ≤ 0. This leads to a paradox unless g1 = 0,
because the variable V1 must be non-negative based
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on the definition of the Lyapunov function. So, the
value of the Lyapunov function has converged to 0 at
the first iteration step, which means k = 1. To avoid
this case, suppose g0 > 1; then, substituting the
variable V1 in inequality (5), we can have a similar
iteration expression for V2 :

V2 = g2 (γ0)
1

1−α , g2 := g1 − a1g
α
1 , a1 :=

γ1
γ0

. (11)

If we continue iterating in this method, we can
obtain the following expression for Vk+1 and the re-
currence relation involving gk for ak:

Vk+1 = gk+1 (γ0)
1

1−α , k ≥ 1,

gk+1 := gk − akg
α
k , ak := γk

γn
.

(12)

We suppose that Vk is in the scope of inequality
(5); then, based on Eq. (11) and inequality (5), we
have

gk+1 ≤ gk − (1− h)gαk

= hgαk − (1− g1−α
k

)
gαk .

(13)

Because Vk+1 is positive definite, gk+1 should be
greater than or equal to 0 according to Eq. (11). Fur-
thermore, if Vk is within the range given in inequality
(5), we have

gk
g0

=
Vk

V0
∈ (β, 1), (14)

in which parameter β is arbitrarily small, especially
for βg0 < 1. Rearrange the right-hand side of in-
equality (13) as follows:

gk+1 ≤ 0 ⇔ h ≤ 1− c1−α
k ⇔ c1−α

k ≤ 1− ε. (15)

When gk → βg0 < 1 falls in the interval of
Vk, a finite positive integer k = N − 1 can meet
condition (14). For example, gN−1 ≤ (1 − h)

1
1−α , so

gN ≤ 0. In addition, gN ≥ 0 because VN ≥ 0 and
γ0 > 0. Hence, gN = 0 based on the contradictory
conditions. Therefore, we use Eq. (11) again, and
it can be concluded that gj = 0 and Vj = 0 under
j ≥ N . Consequently, yj can converge to 0 under
j ≥ N . We now have finite-time stability of the
discrete system.
Definition 1 The consensus control for the
discrete-time second-order MAS (1) and (2) can be
reached in finite time, if for any initial states, there is
a point of time T ∈ [0,+∞), such that the following
conditions are satisfied:{

limk→T |xi(k)− x0(k)| = 0,

limk→T |vi(k)− v0(k)| = 0, i = 1, 2, . . . , n,

(16)

and{
xi(k) = x0(k),

vi(k) = v0(k), ∀k ≥ T, i = 1, 2, . . . , n.
(17)

3 Main results

In this section, we aim to achieve leader-follower
consensus by designing a distributed discrete sliding
mode controller. Using the control scheme, the fol-
lowers can track the position and velocity trajectory
of the leader in finite time. We assume that all agents
in the designed discrete MAS can update their own
position and velocity information at sampling time
Tk, and that the position and velocity information
can be observed in real time.

First, let us define the position and velocity
tracking errors:{

x̃i(k) = xi(k)− x0(k),

ṽi(k) = vi(k)− v0(k), i = 1, 2, . . . , n.
(18)

We can use ξ̃i(k) = [x̃i (k) , ṽi (k)]
T as the vector

form of the tracking error:

ξ̃i(k) = ξi(k)− ξ0(k). (19)

Then we define the local neighborhood consen-
sus error for our discrete second-order MAS (1) and
(2) as

e(ξi(k)) =

n∑
j=1

aij [ξi(k)− ξj(k)]

+ bi [ξi(k)− ξ0(k)] ,

(20)

where i = 1, 2, . . . , n.
Based on Eqs. (3) and (20), we obtain

e(ξi(k + 1)) =Ae (ξi(k)) + (lii + bi)B [ui(k) + di(k)]

−
n∑

j=1

aijB [uj(k) + dj(k)]

=Ae(ξi(k)) + (lii + bi)Bui(k)

−
n∑

j=1

aijBuj(k) + biBdi(k).

(21)
We define lii as the main diagonal element of

the graph Laplacian matrix L. Our aim is to make
the consensus error vector e(ξi(k)) tend toward 0 in
finite time.
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To ensure the convergence of the consensus error
in finite time, we construct a new adaptive discrete
SMC scheme. First, the sliding mode surface func-
tion has been designed as

Si(k) = Ceei(k), (22)

where ei(k) is short for the consensus error vector
e(ξi(k)).

Similarly, we have Si(k + 1) = Ceei(k + 1),
where the sliding mode parameter Ce should satisfy
the pole-placement approach and the second-order
Hurwitz condition such that Ce = [c1, 1], c1 > 0

and c1 ∈ N.
Our aim is to design a stable discrete time slid-

ing mode controller based on the classical exponen-
tial reaching law. Discrete movement from an arbi-
trary state, which is driven by our novel control law
in Theorem 1, can reach the sliding surface in a fi-
nite number of steps, and the system can remain on
the sliding surface without zigzagging, that is, the
so-called ideal quasi-sliding mode. This can reduce
the occurrence of chattering.

The sliding surface function that satisfies the
ideal quasi-sliding mode condition is expressed as
Si(k) = Ceei(k) = 0. The sliding mode parameter
Ce is a constant, so when the above equation holds,
the consensus error ei(k) = 0.
Theorem 1 Using the following control law:

ui(k) = [τ (lii + bi)CeB]−1 {[εTMi sat (Si(k))

+ (qTMi − τ)Si(k)]− τCeAe(ξi(k)) + Φ},
(23)

where Φ = τCeB
∑n

j=1 aij [uj(k) + dj(k)], q >

0, τ > 0, and T = Tk < 4/(1 + 2q), the leader-
follower second-order discrete MAS (1) and (2) un-
der the directed topology can reach the finite-time
consensus:{

limk→T |xi(k)− x0(k)| = 0,

limk→T |vi(k)− v0(k)| = 0, i = 1, 2, . . . , n.

(24)
Proof First, we design a new discrete adaptive
sliding mode controller according to the traditional
exponential reaching law (Gao et al., 1995). We
define the traditional exponential reaching law as
follows:

Si(k+1)−Si(k) = −qTSi(k)−εT sgn(Si(k))+Di(k),

(25)

where Di(k)=[d1(k), d2(k), ..., di(k)], i=1, 2, . . . , n,
and parameter ε can influence the chattering phe-
nomenon performance and the speed at which the
sliding surface is reached. Our ideal parameter ε

should change over time. At the beginning of the
sliding mode movement, ε should be larger, and with
the increase of time, ε needs to decline exponentially
to eliminate the chattering.

We use ε = |Si(k)|/2 as the adaptive parameter
instead of a fixed parameter, and replace the signum
function sgn(·) with the saturation function sat(·).
The improved adaptive sliding mode reaching law is
defined as

ΔSi(k) = Si(k + 1)− Si(k)

= −qTSi(k)− |Si(k)|
2

T sat (Si(k)) .
(26)

Then we construct a positive definite Lyapunov
function of consensus error vector Vk (Si(k)) =
1
2Si(k)S

T
i (k) > 0. Thus, the iteration of the above

Lyapunov function can be calculated as

ΔVk = Vk+1 − Vk

=
1

2
[Si(k + 1) + Si(k)] [Si(k + 1)− Si(k)]

T
.

(27)
We assume that

ST
i (k + 1) = Φ′ST

i (k), (28)

in which

Φ′ =

[
Si(k)S

T
i (k)

]1−1/p − τ[
Si(k)ST

i (k)
]1−1/p

+ τ
, τ > 0, 1 < p < 2.

(29)
Inserting Eq. (29) into Eq. (28), we have

ΔSi(k) = Si(k + 1)− Si(k)

= − τ[
Si(k)ST

i (k)
]1−1/p

[Si(k + 1) + Si(k)] .

(30)
Then, inserting Eq. (30) into Eq. (27), we can

update ΔVk as

ΔVk =− τ

2
[Si(k + 1) + Si(k)][Si(k + 1) + Si(k)]

·
(

1[
Si(k)ST

i (k)
]1−1/p

)T

=− ρ (Si(k))
[
Si(k)S

T
i (k)

]1/p
,

(31)
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where

ρ (Si(k)) = ρk = 4τ
21−1/p

(
1
2Si(k)S

T
i (k)

)2−2/p((
Si(k)ST

i (k)
)1−1/p

+ τ
)2 .
(32)

Therefore, we obtain

ΔVk ≤ −ρ (Si(k)) (Vk)
1/p (33)

under the following circumstances:

0 < ρk <
4τ

21−1/p
for 0 < 2Vk < ∞, (34)

to ensure the monotonic decrease of ΔVk < 0.
Based on Lemma 3, and from inequality (5), we

can have Vk (Si(k)), and the consensus error vector
ei(k) converges to 0 in a finite number of steps of the
discrete-time domain. So, the local neighborhood
consensus error tends to 0 in finite time. This means
that the discrete MAS achieves consensus in finite
time.

Based on the sliding mode function (22) and the
improved adaptive sliding mode reaching law (26),
we can use the iteration of the sliding mode function
ΔS = Si(k+1)−Si(k) to construct the new adaptive
sliding mode controller.

Using the definition of the local neighborhood
consensus error vector e(ξi(k)) and the iteration
form of the error vector e(ξi(k + 1)), the adaptive
sliding mode reaching law (26) can be updated us-
ing the following iterative form of the sliding mode
surface function Si(k + 1) = Ceei(k + 1):

Si(k + 1) =Cee (ξi(k + 1))

=CeAeξi(k) + (lii + bi)CeB [ui(k)

+di(k)]−
n∑

j=1

aijCeB [uj(k) + dj(k)] .

(35)
Then, inserting Eq. (35) in Eq. (26) and reorga-

nizing the function, we have

τCe{Ae (ξi(k)) + (lii + bi)B [ui(k) + di(k)]

−
n∑

i=1

aijB [uj(k) + dj(k)]}

=− (qTM + τ)Si(k)− εTMi sat (Si(k)) .
(36)

Finally, we arrive at the adaptive sliding mode
controller:
ui(k) = [τ (lii + bi)CeB]

−1 {[εTMi sat (Si(k))

+ (qTMi − τ)Si(k)]− τCeAe(ξi(k)) + Φ} .
(37)

Remark 1 To guarantee the stability of the de-
signed control scheme, the existence and reachability
of our novel adaptive discrete sliding mode controller
are discussed. We set another Lyapunov function
Vk1 = S2

i (k)/2. Once the following condition

ΔVk1 = S2
i (k + 1)− S2

i (k) < 0, Si(k) �= 0 (38)

is met based on the Lyapunov stability theorem,
Si(k) = 0 is a globally asymptotically stable
switched sliding surface, which means that any ini-
tial position of the state (velocity) will tend toward
the switched sliding surface. Taking the reachability
condition as

S2
i (k + 1) < S2

i (k) (39)

when the sampling time Tk is small enough, the ex-
istence and reachability of the discrete sliding mode
can be described as{

[Si(k + 1)− Si(k)] sgn (Si(k)) < 0,

[Si(k + 1) + Si(k)] sgn (Si(k)) > 0.
(40)

Substituting function (25) with the adaptive pa-
rameter ε = |Si(k)|/2 and the adaptive sliding mode
reaching law

Si(k+1)−Si(k) = −qTSi(k)−|Si(k)|
2

T sgn (Si(k)) ,

(41)
we have

[Si(k + 1)− Si(k)] sgn (Si(k))

=

(
−qTSi(k)− |Si(k)|

2
T sgn (Si(k))

)
sgn (Si(k))

=− (q + 0.5)T |Si(k)| < 0,

(42)
[Si(k + 1) + Si(k)] sgn (Si(k))

=

(
(2− qT )Si(k)− |Si(k)|

2
T sgn (Si(k))

)
· sgn (Si(k))

=(2− 0.5T − qT ) |Si(k)| > 0.

(43)

This completes the proof of existence and reach-
ability of our novel adaptive discrete sliding mode.
Remark 2 As a typical controller design method of
variable structure control sliding mode, the reaching
law method has the advantage of causing the motion
to get close to the sliding surface monotonically. Us-
ing the reaching law method, we can solve the SMC
high-frequency chattering problem very well.



1064 Song et al. / Front Inform Technol Electron Eng 2022 23(7):1057-1068

Remark 3 Based on the proof of Theorem 1,
we can obtain the time-variant adaptive parameter
ε in the process of system movement. To guarantee
the convergence performance of sliding mode surface
function Si(k), we first analyze the traditional expo-
nential reaching law:

Si(k+1)−Si(k) = −qTSi(k)− εT sgnSi(k), (44)

Si(k + 1) = (1− qT )Si(k)− εT
Si(k)

|Si(k)|
=

(
1− qT − εT

|Si(k)|
)
Si(k) = pSi(k).

(45)
Thus,

|p| = |Si(k + 1)|
|Si(k)| , p = 1− qT − εT

|Si(k)| . (46)

Obviously, p < 1, and when |Si(k)| > εT
2−qT , we

have

p > 1−Tq− εT (2− qT )

εT
= 1−Tq− (2− qT ) = −1.

(47)
We can have |p| < 1, which means |Si(k+1)| <

|Si(k)|, and |Si(k)| is decreasing; thus, the conver-
gence of sliding function Si(k) can be guaranteed.

Based on the decreasing condition |Si(k)| >

εT/(2− qT ), Tq+ εT/|Si(k)| < 2 is required. Then
the adaptive parameter is reorganized as

ε <
1

T
(2− qT ) |Si(k)| . (48)

Thus, the sampling time Tk meets the condition

Tk <
4

1 + 2q
, (49)

and Si(k) can monotonically approach the sliding
mode surface.

4 Simulations

In this section, the efficacy of the proposed slid-
ing mode consensus is verified in a discrete-time MAS
through simulations.

We consider the directed communication topol-
ogy graph with five followers and one leader. The
graph is shown in Fig. 1. We assume that the leader
node is labeled 0, and that the follower nodes are
labeled 1–5.

0 1 2

5 4 3

Fig. 1 Communication topology graph of the second-
order discrete-time multi-agent system

Based on Fig. 1, we can define the adjacency
matrix A, pinning gain matrix B, and Laplacian
matrix L as follows:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1 0 0 0 1

0 1 0 1 0

0 1 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B = diag (1, 0, 0, 0, 1) ,

L =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

−1 2 0 0 −1

0 −1 2 −1 0

0 −1 0 2 −1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Let the discrete sampling interval be T = 0.01.
The external disturbance was applied to each fol-
lower as di(k) = 0.002cos(0.86k). The system matri-
ces A and B were set as

A =

[
1 0.01

0 1

]
,B =

[
0

0.01

]
.

The useful parameters were defined as follows:
sliding gain Ce = [2.5, 1], reaching law gain q = 1.1,
and the Lyapunov gain τ = 10.

Then we set the initial position and velocity
state of each follower agent as [1, 1], [2, 2], [3, 3], [4, 4],
and [5, 5].

From Figs. 2 and 3, we can see that all the fol-
lower position and velocity trajectories can reach
finite-time consensus under the proposed control
scheme. Furthermore, the consensus time was less
than 10 s.

Fig. 4 shows the trajectories of the control in-
put ui(k) of each follower agent. Compared with
previous research results, the use of the saturation
function to replace the sign function and the time
varying parameter ε can greatly reduce the chatter-
ing of the traditional control law.
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Fig. 5 presents the sliding surface function of
each follower agent. The sliding surface reached and
remained at a quasi-sliding mode band within (–0.1,
0.1) in finite time.

We performed a comparative experiment to

show the effectiveness of our controller. First, we
replaced the sign function as our saturation func-
tion, as defined in Lemma 1. The contrast effect of
the trajectories in sliding surface Si(k) with the sign
function is shown in Fig. 6.

S i
k

s
s
s

s
s

Fig. 5 Sliding surface function of finite-time leader-
follower consensus with disturbances

S i
k

s
s
s

s
s

Fig. 6 Sliding surface function of finite-time leader-
follower consensus with disturbances by the sign
function

From Fig. 6, the sliding surface Si(k) reached
the steady-state region with a delay of more than 2 s
compared to using the saturation function.

Second, we considered parameter ε. This is the
main parameter for the SMC system to overcome ex-
ternal disturbances. Using our proposed controller,
the time varying parameter was updated to the adap-
tive form: ε = |Si(k)|/2. Compared with the fixed
value, the adaptive parameter ε was larger at the
beginning to accelerate toward stability, and then
decreased to reduce the chattering. The contrast
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effect of the trajectories in sliding surface Si(k) with
a fixed ε is shown in Fig. 7.

S i
k

s
s
s

s
s

Fig. 7 Sliding surface function of finite-time leader-
follower consensus with disturbances by a fixed ε

The chattering phenomenon was severe and may
have a bad effect on the performance of the system.
Our aim is to avoid the damage and extend the life
of the system.

Based on the above comparison of Figs. 6
and 7 with Fig. 5, we conclude that the use of
the saturation function and adaptive sliding mode
parameter in the proposed controller is helpful and
effective.

5 Conclusions

In this study, we proposed a new control
algorithm to solve the finite-time leader-follower
consensus problem of second-order discrete-time
multi-agent systems with external disturbances. We
built a distributed adaptive sliding mode controller
to realize finite-time consensus. Specifically, a time-
varying sliding mode parameter ε was adopted and a
saturation function was designed for use in the novel
sliding mode function to eliminate the influence of
chattering. The results of the numerical simulations
showed the efficiency and effectiveness of our control
protocol.
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