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Abstract: In this study, we develop an adaptive neural network based boundary control method for a flexible marine
riser system with unknown nonlinear disturbances and output constraints to suppress vibrations. We begin with
describing the dynamic behavior of the riser system using a distributed parameter system with partial differential
equations. To compensate for the effect of nonlinear disturbances, we construct a neural network based boundary
controller using a radial basis neural network to reduce vibrations. Under the proposed boundary controller, the
state of the riser is guaranteed to be uniformly bounded based on the Lyapunov method. The proposed methodology
provides a way to integrate neural networks into boundary control for other flexible robotic manipulator systems.
Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control method.
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1 Introduction

As an important part of the development of
deep-sea oil and gas field systems, marine riser has
become particularly noticeable with its brand-new
form, dynamic characteristics, and high technology
(Zhao et al., 2019). In addition, marine risers with
flexible structures are much lighter and have better
flexibility and deformations than the ones with ordi-
nary rigid structures (Gao et al., 2014; He W et al.,
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2018). However, due to the distinct traits of the
flexible structure and unknown disturbances, ma-
rine riser vibrations will damage the system. There-
fore, control of vibrations and disturbances of flexi-
ble marine risers in a drilling platform is of practical
importance.

Due to the material properties and strong non-
linear characteristics such as external disturbances
and model uncertainty, ordinary mathematical mod-
els are not suitable for describing marine riser sys-
tems. Thus, the Hamilton principle is used to rep-
resent marine riser system dynamics, which is de-
scribed by the distributed parameter system (Ma
et al., 2021). Because the system state includes
space and time variables, the dynamics of the system
is formed by partial differential equations (PDEs)
(Zhang XP et al., 2005; Smyshlyaev et al., 2009).
There are also many control methods to stabilize
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vibrations in flexible marine risers (Zhao et al., 2020;
He XY et al., 2021). Due to the limitations of the
system structure, for a series of flexible structures
including marine risers, the control input is imposed
on the boundary. For example, Ge et al. (2010)
proposed an early boundary control method for a
coupled, nonlinear, flexible marine riser. In Do and
Pan (2008), a boundary controller was designed to
suppress vibrations with control input on top of the
marine riser.

Marine riser systems applied in the actual pro-
duction are always accompanied by many unknown
nonlinear disturbances (He W et al., 2011; Herrera
et al., 2017). The existence of these nonlinearities
leads to instability of the dynamic system, and it is
difficult to obtain an accurate model of these non-
linear disturbances. Elimination or approximation
of these nonlinear disturbances is the key in current
research on the stabilization of flexible marine riser
systems. For instance, Zhao et al. (2020) constructed
a new robust adaptive vibration control strategy and
proposed an update law for the riser system. Wang
JW et al. (2019) proposed an adaptive boundary
feedback controller to ensure that the closed-loop
system is exponentially stable. Nevertheless, the so-
lution to vibration control of a marine riser system
with unknown disturbances is seldom considered.

Many industrial systems may face various prob-
lems. In He W et al. (2015) and Wan et al. (2021),
top tension constraints for a flexible marine riser were
investigated, but the output constraints of the top
slope were not taken into consideration. Excessive
output may cause damage to the system hardware.
For instance, in marine riser systems, excessive bend-
ing of the riser may cause damage to the riser. Mean-
while, because the marine riser is usually very long,
the larger the output slope is, the farther the drilling
platform deviates from the center of the riser. There-
fore, it is necessary to provide output constraints to
protect marine riser systems.

Nowadays, many studies used observers to deal
with unknown disturbances (Jiang et al., 2015; Guo
et al., 2018). Although the observer does not need
to know the specific form of the disturbances, it may
make obtaining parameters to be difficult. Hence,
due to technology improvements, the radial ba-
sis function neural network (RBFNN) has received
much attention from researchers in control theory
(Chen et al., 2020; Xue et al., 2020; Wang N et al.,

2021). Because it has a simple structure, strong
nonlinear approximation ability, and good general-
izability, it has been used in many fields such as
pattern classification, function approximation, and
data mining (Yin et al., 2020; Yu et al., 2020). He W
et al. (2017) designed a neural network controller to
suppress vibrations of a flexible robot manipulator
with an input dead zone. The purpose of introduc-
ing the neural network is to eliminate the dynamics
of the mechanical arm and influence of the input
dead zone. To the best of our knowledge, little re-
search has been conducted in applying the RBFNN
for robust vibration suppression of a flexible marine
riser system with boundary disturbances. Hence,
we present an RBFNN with the marine riser system
control problem to approximate its existing nonlin-
ear disturbances and to solve the model uncertainty
problem.

The aim of this research is to design an adaptive
neural network based boundary control method to
suppress the vibrations of marine riser systems with
unknown disturbances and output constraints. The
main contributions of this paper are as follows:

1. An adaptive neural network based bound-
ary controller is developed to deal with the bounded
distributed disturbances, unknown boundary distur-
bances, and vibration problem.

2. The proposed controller achieves uniform
boundedness of the state variables and maintains the
output constraints due to the barrier term.

3. Numerical simulation analysis in various sce-
narios illustrates the effectiveness of the proposed
strategy.
Notations For simplicity, the brief notations
yt(x, t) = ∂y(x,t)

∂t , ytt(x, t) = ∂y(x,t)
∂t2 , and yx(x, t) =

∂y(x,t)
∂x are used in this paper. We denote the

set of real numbers, the set of positive real num-
bers, and n-dimensional Euclidean space by R, R+,
and R

n, respectively. Lp(0, L) denotes the class of
Lebesgue measurable space. Hn(0, L) is the Sobolev
space with the nth-order derivatives in L2(0, L).
C([0,∞);H) represents the space of continuous func-
tions from [0,∞) to H.

2 Problem formulation

Consider the typical marine riser system shown
in Fig. 1. Using the Euler–Lagrangian equation and
Hamilton principle, the marine riser system can be
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obtained as the following governing equation:

ρytt(x, t) + EIyxxxx(x, t)− Tyxx(x, t) − f(x, t) = 0,

∀(x, t) ∈ (0, L)× [0,∞).
(1)

The boundary conditions are

y(0, t) = yx(0, t) = yxx(L, t) = 0, (2)

− EIyxxx(L, t) + Tyx(L, t)

=u(t)−Mytt(L, t)− g(d(t)),
(3)

with ∀t ∈ [0,∞). The parameters ρ, T, EI ,M , and
L of this riser denote the mass per unit length, ten-
sion, bending stiffness, mass of the tip payload, and
length of the marine riser, respectively. f(x, t) rep-
resents the distributed disturbances. g(d(t)) ∈ R

with d(t) = [yt(L, t), yx(L, t)]
T represents the un-

known nonlinear disturbances given by g(d(t)) =

d1(yt(L, t))+d2(yx(L, t))+d3(t), which is on the tip
boundary of the riser and includes the velocity and
angle of this riser. Boundary condition (3) describes
the performance of the marine riser on boundary L.
In addition, both the nonlinear function g(d(t)) and
the control input u(t) act on the top end.
Remark 1 Ocean currents may cause disturbances
to the marine riser. Such disturbances can be re-
garded as f(x, t). However, there are more compli-
cated friction currents on the surface. The effect of
prevailing wind on the friction force of the surface
and the pressure exerted by the wind on the wind-
ward surface of the wave will affect the riser platform.
Such environmental disturbances can be regarded as
g(d(t)). At the same time, the marine riser platform
should not float too far, so such a constraint needs
to be limited.

The main objective of this study is to control vi-
brations of a flexible marine riser system with barrier
constraints. We need the boundary output yx(L, t)

to satisfy the constraints, that is, |yx(L, t)| < l0
(l0 ∈ R

+ can be regarded as the slope of the tip
boundary). The impact of unknown disturbances
needs to be considered. Fig. 1 shows a typical ma-
rine riser structure.

Since g(d(t)) is unknown, we approximate this
unknown function in the form of an RBFNN:

g(d(t)) = WT(t)ϕ(d(t)) + εW , (4)

where d(t) ∈ R
p is the input vector and p is the

number of neurons in the input layer. W (t) ∈ R
q is

Constraint
|yx(L, t)|<l0

Sea level

Seabed

Distributed 
disturbance 
f(x, t)

Control input
x
g(d(t)) u(t)

y(x, t)

L

y
0

Fig. 1 A typical marine riser system

the weight vector and q is the number of neurons in
the hidden layer. εW is a neural network estimation
error. ϕ(d(t)) ∈ R

q is the output of the hidden layer,
in which the Gaussian function is shown as

ϕj(d)=exp

[
− (d− μj)

T(d− μj)

δ2j

]
, j=1, 2, · · · , q,

(5)
where μj is the center of the jth hidden unit and δj
is the width of the jth hidden unit.

By applying the universal approximation prop-
erty of the RBFNN (Zhang JH et al., 2016; Guo
et al., 2018), we can obtain

g(d(t)) = (W ∗)T ϕ(d(t)) + εW , (6)

where W ∗ is the ideal weight vector.
Denote Ŵ (t) as the estimate of W ∗ and define

W̃ (t) = Ŵ (t)−W ∗. Then we have

g(d(t)) = ŴT(t)ϕ(d(t))−W̃T(t)ϕ(d(t))+εW . (7)

The output of RBFNN is

ĝ(d(t)) = ŴT(t)ϕ(d(t)). (8)

Remark 2 The effect of using RBFNN to solve
the problem depends on the choice of the radial basis
function. Both the center point and the width of the
radial basis will affect the neural network.

Before carrying this research further, the follow-
ing assumption is required:
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Assumption 1 We assume that there exists a
constant f̄ ∈ R

+ satisfying |f(x, t)| ≤ f̄ , ∀(x, t) ∈
[0, L]× [0,∞); that is, f(x, t) is bounded.
Remark 3 It is noted that the energy of the dis-
tributed disturbance f(x, t) is finite. Hence, it is rea-
sonable to assume that the disturbance is bounded.

Next, we introduce two lemmas to pave the way
for the stability analysis:
Lemma 1 (Rahn, 2001) Let ω1(x, t) ∈ R and
ω2(x, t) ∈ R with (x, t) ∈ [0, L] × [0,+∞). For any
δ > 0, the following inequality holds:

2ω1(x, t)ω2(x, t) =

∣∣∣∣∣
(√

2

δ
ω1(x, t)

)(√
2δω2(x, t)

)∣∣∣∣∣
≤ 1

δ
ω2
1(x, t) + δω2

2(x, t).

(9)
Lemma 2 (Hardy et al., 1952; Rahn, 2001) Let
ω(x, t) ∈ R with (x, t) ∈ [0, L]× [0,+∞). If ω(0, t) =
ωx(0, t) = 0, ∀t ≥ 0, then the following inequalities
hold:

|ω(x, t)|2 ≤ L

∫ L

0

ω2
x(x, t)dx, ∀x ∈ [0, L], (10)

|ω(x, t)|2 ≤ 4

9
L3

∫ L

0

ω2
xx(x, t)dx, ∀x ∈ [0, L]. (11)

3 Main results

In this section, a boundary control method is
proposed to suppress vibrations of the flexible ma-
rine riser, while the drilling platform and the riser
are kept near the center under disturbances. The
boundary controller u0(t) is designed to guarantee
that the constraint of the boundary output can be
constructed as follows:

u0(t) =− k1φ(t)− k3yxt(L, t)− EIyxxx(L, t)

+ Tyx(L, t)−
(
k2φ(t) − EIyxxx(L, t)

+ Tyx(L, t) +Mφ(t)
yx(L, t)yxt(L, t)

l20 − y2x(L, t)

)

·
(
ln

2l20
l20 − y2x(L, t)

)−1

,

(12)
where k1, k2, and k3 are control gains to be deter-
mined, and φ(t) is defined as

φ(t) = yt(L, t) + αLyx(L, t), (13)

where α = k3

ML .
Remark 4 The required states in the controller can
be measured by sensors. yx(L, t) can be measured by
a tilt angle sensor and yxxx(L, t) can be measured by
a shear force sensor. Then, we can obtain yt(L, t)

and yxt(L, t) by difference operation.
Because the unknown disturbance g(d(t)) may

exist at the boundary, which should be approxi-
mated, an adaptive neural network based boundary
controller uN realized by RBFNN is designed as

uN(t) = WT(t)ϕ(d(t)) + εW . (14)

The ideal control law can be given as

u(t) = u0(t) + uN(t). (15)

This controller is proposed to track the unknown
function g(d(t)) and can ensure stability when out-
put constraints and unknown disturbances exist.
However, due to the existence of εW , the exact value
of uN(t) is difficult to obtain. Therefore, the follow-
ing neural network based controller is designed:

ûN(t) = ŴT(t)ϕ(d(t)). (16)

Now, the total control input can be represented
as

u(t) =u0(t) + ûN(t)

=− k1φ(t) − k3yxt(L, t)− EIyxxx(L, t)

+ Tyx(L, t)−
(
k2φ(t) − EIyxxx(L, t)

+ Tyx(L, t) +Mφ(t)
yx(L, t)yxt(L, t)

l20 − y2x(L, t)

)

·
(
ln

2l20
l20 − y2x(L, t)

)−1

+ ŴT(t)ϕ(d(t)).

(17)
The update law of Ŵ (t) is designed as

˙̂
W (t) = −βln

2l20
l20 − y2x(L, t)

φ(t)ϕ(d(t)) − k4Ŵ (t),

(18)
where β and k4 are gains that need to be designed.

Diagram of the proposed control strategy is pre-
sented in Fig. 2 to illustrate the overall design of the
flexible marine riser system.

3.1 Well-posedness of the controlled system

In this subsection, the well-posedness analysis is
given. To facilitate the analysis, combining control
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Marine riser

Sensor

Nominal boundary 
controller (12) 

Neural network
based controller (16)

Update law

yx(L, t), yxt(L, t),
yt(L, t), yxxx(L, t)

yx(L, t), yt(L, t)

u0(t)

u(t)

ûN(t)

 Ŵ(t)

Fig. 2 Diagram of the proposed control strategy

input (17), the closed-loop system can be expressed
as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρytt(x, t) +EIyxxxx(x, t)− Tyxx(x, t)− f(x, t) = 0,

Mytt(L, t) = −k1φ(t)− k3yxt(L, t)−
(

k2φ(t)

−EIyxxx(L, t)+Tyx(L, t)+Mφ(t)
yx(L, t)yxt(L, t)

l20 − y2
x(L, t)

)

·
(

ln
2l20

l20 − y2
x(L, t)

)−1

+ ŴT(t)ϕ(d(t))− g(d(t)),

φ̇(t) = ytt(L, t) + αLyxt(L, t),

˙̃W (t)=−βln
2l20

l20 − y2
x(L, t)

φ(t)ϕ(d(t))− k4Ŵ (t),

y(0, t) = yx(0, t) = yxx(L, t) = 0.

(19)

Define a Hilbert spaceH = H2(0, L)×L2(0, L)×
R× R

q. The inner product is defined by

〈Z1,Z2〉H

=T

∫ L

0

f ′
1(x)f

′
2(x)dx + EI

∫ L

0

f ′′
1 (x)f

′′
2 (x)dx

+ ρ

∫ L

0

e1(x)e2(x)dx + αρ

∫ L

0

(
xf ′

1(x)e2(x)

+ xf ′
2(x)e1(x)

)
dx+Mh1h2 +

1

β
l1l2,

(20)
where Zi = (fi(x), ei(x), hi, li)

T ∈ H, i = 1, 2. It
is easy to prove that the inner product (Eq. (20)) is
equivalent to the natural inner product on H.

Define an operator A as

A

⎛
⎜⎜⎝
f(x)

e(x)

h

l

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
A1

A2

A3

A4

⎞
⎟⎟⎠ . (21)

Here, A1 = e(x), A2 = 1
ρ

[
Tf ′′(x)−EIf

′′′′
(x)
]
, A3 =

1
M

[(−k1s−(k3−αL)e′(L)
)√

m−
(
k2s−EIf

′′′(L)+

Tf ′(L)
)

1√
m
+
√
m lTϕ(x̄)

]
, and A4 = −βmsϕ(x̄)−

k4l.

The domain of the operator A is defined by

D(A)

=
{
(f(x), e(x), h, l)T∈H4(0, L)×H2(0, L)×R×R

q,

f(0) = e(0) = f
′′
(L) = 0, s = e(L) + αLf ′(L)

}
,

with m = ln
2l20

l20 − (f ′(L))2
, h =

√
ms, x̄ =

(e(L), f ′(L))T.

Then, the closed-loop system (19) can be rewrit-
ten as an evolution equation:

Ẏ (t) = AY (t) + F (t), (22)

where Y (t) =
(
y(·, t), yt(·, t), ln 2l20

l20 − y2x(L, t)
φ(t),

W̃ (t)
)T

, F (t) =

(
0, f(·, t),−

√
ln

2l20
l20−y2x(L, t)

εW ,

−k4W
∗
)T

.

By showing that operator A generates a C0-
semigroup on H in light of the Lümer–Phillips theo-
rem in Luo et al. (1999), the following result shows
the well-posedness of the closed-loop system (19):
Theorem 1 Suppose that the parameters sat-

isfy k1 > 0,
αρL

2(1− αLδ2)
< k2 <

δ2T

2(1− αLδ2)
, k3 =

αL, k4 > 0, and σ > αL. Then, operator A can
generate a C0-semigroup on H. Furthermore, for
any initial value Y (0) ∈ H, there exists a unique
solution Y (t) ∈ C([0,∞);H).

3.2 Stability analysis

In this subsection, the stability of the system is
discussed using the Lyapunov theory.

Consider the following Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (23)

where V1(t), V2(t), V3(t), and V4(t) are the energy
term, barrier term, crossing term, and auxiliary
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term, respectively. They are defined as

V1(t) =
EI

2

∫ L

0

y2xx(x, t)dx +
ρ

2

∫ L

0

y2t (x, t)dx

+
T

2

∫ L

0

y2x(x, t)dx, (24a)

V2(t) =
M

2
φ2(t)ln

2l20
l20 − y2x(L, t)

, (24b)

V3(t) =αρ

∫ L

0

xyx(x, t)yt(x, t)dx, (24c)

V4(t) =
1

2β
W̃T(t)W̃ (t), (24d)

where α = k3

ML is a positive constant.
Remark 5 From the barrier Lyapunov function
V2(t), when the state with output constraint yx(L, t)
tends to l0, ln

2l20
l20−y2

x(L,t)
tends to infinity.

Lemma 3 If parameter α in V3(t) satisfies
0 < α < max

{√
T

ρL2 ,
√

2EI

ρL4

}
, then there exists a

constant υ (0 < υ < 1) such that |V3(t)| < υV1(t) for
all t ≥ 0, which leads to

(1− υ)V1(t) ≤ V1(t) + V3(t) ≤ (1 + υ)V1(t). (25)

Proof The proof of Lemma 3 is provided in the
supplementary materials.

It follows from Lemma 3 that V (t) is positive
definite, that is,

0 < (1− υ)(V1(t) + V2(t) + V4(t)) ≤ V (t)

≤ (1 + υ)(V1(t) + V2(t) + V4(t)).
(26)

Theorem 2 Consider the flexible marine riser
system (1)–(3) with external disturbances. Under
the boundary controller (17) consisting of the nom-
inal boundary controller (12) and neural network
based controller (16), if the parameters satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < δ1 < αρ,

0 < δ3 < T
L ,

0 < δ4 < 2,

k1 > 0,

k2(α
2L2 − αL

δ2
) > −αTL

2 ,

k2(1− αLδ2) >
αρL
2 ,

k3 = αL,

k4 > 0,

(27)

where δ1, δ2, δ3, δ4, and β are positive constants,
then the following can be concluded:

(1) The state y(x, t) is uniformly bounded;
(2) Given that the initial condition satisfies

−l0 < yx(L, 0) < l0, it can be ensured that −l0 <

yx(L, t) < l0 for all t ≥ 0.
Proof The proof of Theorem 2 is provided in the
supplementary materials.
Remark 6 The energy term V1(t) is constructed
based on the modeling principle of the system. To
ensure that the derivative of the Lyapunov function
is negative definite, a crossing term V3(t) is added. In
addition, to ensure that the system satisfies the con-
straint, a barrier Lyapunov function V2(t) is added.
V4(t) ensures that the neural network can effectively
resolve the influence of unknown disturbances.

We provide Algorithm 1 to show how the pa-
rameters are selected.

Algorithm 1 Strategies of parameter selection
Input: riser stiffness EI , length of the riser L, tension T ,

uniform mass per unit length ρ, and mass of the tip
payload M

Output: coefficients δ1, δ2, δ3, δ4, and β, and the control
gains k1, k2, k3, and k4

1: Choose parameters α and β such that 0 < α <

max
{√

T
ρL2 ,

√
2EI
ρL4

}
and β > 0

2: Choose the parameters δ1, δ2, δ3, and δ4 satisfying 0 <

δ1 < αρ, 0 < δ2 < 1
αρ

, 0 < δ3 < T
L

, and 0 < δ4 < 2

3: Choose parameters k1 and k4 such that k1 > 0 and
k4 > 0

4: Choose parameter k2 based on α and δ2 according to
αρL

2(1−αLδ2)
< k2 < δ2T

2(1−αLδ2)
5: Choose parameter k3 as k3 = αML

6: return δ1, δ2, δ3, δ4, β, k1, k2, k3, and k4

4 Numerical simulations

In this section, numerical simulations are pro-
vided to demonstrate the effectiveness of the pro-
posed control method for a flexible marine riser sys-
tem. The steps of space and time are chosen as
Δx = 40 m and Δt = 0.04 s. The marine riser
parameters are given in Table 1.

Table 1 Parameters of the marine riser

Parameter Description Value

EI (N ·m2) Riser stiffness 1.5× 107

L (m) Length of the riser 1000

T (N) Tension 8.11× 107

ρ (kg/m) Uniform mass per unit length 500

M (kg) Mass of the tip payload 9.6× 106

l0 Boundary output constraint 0.01
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Following Algorithm 1, we take the parameters
as follows:⎧⎪⎪⎨
⎪⎪⎩
k1 = 107, k2 = 2× 107, k3 = 9.6× 108,

k4 = 50, α = 0.06, β = 1000,

δ1 = δ3 = δ4 = 1, δ2 = 0.0098.

(28)
Suppose that the time-varying distributed dis-

turbance f(x, t) is taken as

f(x, t) = 106.2
[
1 + 0.2 cos(10.5πt)

]
p2(x, t), (29)

where p2(x, t) could be expressed as

p2(x, t) =
x

L

[
2 + 0.2

4∑
i=1

sin(θit)

]

with [θ1, θ2, θ3, θ4] = [0.867, 1.827, 2.946, 4.282].
Fig. 3 shows the ocean distributed disturbance
f(x, t).

The environmental disturbance g(d(t)) is taken
as

g(d(t)) =4× 107 × y2t (L, t)− 4× 107 × yx(L, t)

+
[
3 + 0.8 sin(0.7t) + 0.2 sin(0.5t)

+ 0.2 sin(0.9t)
]× 105.

(30)
This riser is initially at rest and rises due to

disturbances. Fig. 4 shows the evolution of the riser
without control. Obviously, vibrations exist due to
disturbances and the riser cannot be stabilized by
itself without the controller.

The environmental disturbance is shown in
Fig. 5. To show the effectiveness of the proposed
controller, the control input is added when the vibra-
tions of the riser reach the maximum. Therefore, we
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Fig. 3 Ocean distributed disturbance

apply the adaptive neural network based control in-
put (17) to the riser at around 26.76 s. Fig. 6 clearly
shows that the system quickly reaches a stable state,
and that vibrations are also suppressed immediately.
Fig. 7 shows the evolution of y(L, t). It is shown that
y(L, t) tends to be stable after 100 s. Fig. 8 shows the
evolution of yx(L, t), from which it is observed that
|yx(L, t)| < 0.01 is satisfied under the constraint l0.
In other words, the riser is guaranteed not to exceed
a certain limit during the stabilization process under
controller (17).
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troller (17)
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To show the advantages of the proposed adap-
tive neural network based controller (17), we com-
pare it with the proportional differential (PD) con-
troller uPD(t) and the controller uHE(t) in He W
et al. (2011). To reduce the influence of specific con-
troller parameters, which may affect the quality of
the control effect, we perform several experiments.
The best test is given here as a reference. The PD
controller is

uPD(t) = −kpy(L, t)− kdyt(L, t), (31)

where gains kp and kd are chosen as kp = 106 and
kd = 106.

The controller in He W et al. (2011) is given as

uHE(t) =− EIyxxx(L, t) + Tyx(L, t)− d̄sgn(ua(t))

+ dsyt(L, t)− kh1Myxt(L, t)

− kh2Myxxxt(L, t)− khua(t),

(32)
where kh1 , kh2 , kh, d̄, and ds are positive constants
and ua(t) is expressed as

ua(t) = yt(L, t) + kh1yx(L, t)− kh2yxxx(L, t),

with parameters chosen as{
kh1 = 300, kh2 = 100, kh = 8× 105,

d̄ = 2.1× 105, ds = 1000.
(33)

The simulation results are shown in Fig. 9.
Compared with our controller (17), convergence
performance of the PD controller (31) and con-
troller (32) causes the riser position to drift from
the origin. In addition, when using controller (31)
or controller (32), it is difficult to eliminate the in-
fluence of unknown environmental disturbances. It
can be seen from Fig. 9 that there are greater vi-
brations at a relatively stable state. However, the
adaptive neural network based controller addresses
the problem of unknown nonlinear marine riser sys-
tem disturbances and adapts to the uncertainty of
the system model.
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Fig. 9 Comparison of the effectiveness of three con-
trollers (control input is added at 26.76 s)

5 Conclusions

In this study, we have proposed an adaptive neu-
ral network based boundary control method to sta-
bilize a marine riser system with output constraints.
An RBFNN has been used to approximate unknown
nonlinear disturbances, to represent disturbance of
the nonlinear function and model uncertainty on the
stability of the riser. Based on the Lyapunov func-
tion, the uniform boundness of the flexible marine
riser has been proved. Finally, numerical simula-
tions have been provided to verify the effectiveness
of this proposed method. Applying the theoretical
results developed in this paper to flexible systems
with input saturation is one of our future topics.
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