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Abstract: Multi-agent reinforcement learning is difficult to apply in practice, partially because of the gap between
simulated and real-world scenarios. One reason for the gap is that simulated systems always assume that agents can
work normally all the time, while in practice, one or more agents may unexpectedly “crash” during the coordination
process due to inevitable hardware or software failures. Such crashes destroy the cooperation among agents and
lead to performance degradation. In this work, we present a formal conceptualization of a cooperative multi-agent
reinforcement learning system with unexpected crashes. To enhance the robustness of the system to crashes, we
propose a coach-assisted multi-agent reinforcement learning framework that introduces a virtual coach agent to
adjust the crash rate during training. We have designed three coaching strategies (fixed crash rate, curriculum
learning, and adaptive crash rate) and a re-sampling strategy for our coach agent. To our knowledge, this work is
the first to study unexpected crashes in a multi-agent system. Extensive experiments on grid-world and StarCraft
II micromanagement tasks demonstrate the efficacy of the adaptive strategy compared with the fixed crash rate
strategy and curriculum learning strategy. The ablation study further illustrates the effectiveness of our re-sampling
strategy.
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1 Introduction

Cooperative multi-agent systems widely exist in
various domains, where a group of agents need to
coordinate with each other to maximize the team’s
reward (Busoniu et al., 2008; Tuyls and Weiss, 2012).
Such a setting can be broadly applied in the con-
trol and operation of robots, unmanned vehicles,
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mobile sensor networks, and the smart grid (Zhang
et al., 2021). Recently, many researchers have de-
voted their efforts to leveraging reinforcement learn-
ing techniques in multi-agent systems (Rashid et al.,
2018; Sunehag et al., 2018; Wang JH et al., 2020;
Wang YP et al., 2020). Despite the remarkable ad-
vancement in academia, multi-agent reinforcement
learning (MARL) is still difficult to apply in prac-
tice. One non-trivial reason is that there always
exists a gap between simulated and real-world sce-
narios, which degrades the performance of the poli-
cies once the models are transferred into real-world
applications (Zhao et al., 2020).

To close this sim-to-real gap and accomplish
more efficient policy transfer, multiple research
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efforts are now being directed to identifying the
causes of the gap and proposing corresponding solu-
tions. One main cause is the difference between the
physics engine of the simulator and the real-world
scenario. To alleviate the difference, research efforts
have been directed to building up more realistic sim-
ulators using mathematical models (Todorov et al.,
2012; Furrer et al., 2016; Dosovitskiy et al., 2017;
Shah et al., 2018; McCord et al., 2019; Wang YP
et al., 2021). Another cause is the mismatch be-
tween the simulated environment’s data distribution
and the real environment, which has inspired related
research on domain adaptation (Higgins et al., 2017;
Traoré et al., 2019; Arndt et al., 2020) and domain
randomization (Tobin et al., 2017).

Generally, simulated systems always assume
that agents can work normally all the time. However,
this assumption is usually not in line with reality. Be-
cause of the inevitable hardware or software failures
in practice, one or more agents may unexpectedly
“crash” during the coordination process. If the agents
are trained in an environment without crashes, they
only master how to cooperate in a crash-free envi-
ronment. Once some agents “break down” and take
abnormal actions, the remaining agents can hardly
maintain effective cooperation, which will lead to
performance degradation. Take a two-agent system
as an example: two agents are required to finish two
tasks in coordination. In the crash-free scenario, the
optimal solution is for each agent to take responsi-
bility for one task. When applying such a policy to
the real-world application, the cooperation cannot be
accomplished if any agent encounters a crash. This
example indicates the necessity of considering unex-
pected crashes during training to obtain well-trained
agents with high robustness.

To our knowledge, this work is the first to study
crashes in multi-agent systems, which is more consis-
tent with real-world scenarios. In this study, we give
a formal conceptualization of a cooperative MARL
system with unexpected crashes, where any agent
has a certain probability of crashing during opera-
tion. We assume that, for each agent, the probability
of crashing independently follows a Bernoulli distri-
bution. To enhance the robustness of the system to
unexpected crashes, the agents should be trained in
an environment that includes crashes. The key chal-
lenge is how to adjust the crash rate during training.

In this work, we propose a coach-assisted MARL

framework that introduces a virtual coach agent
into the system. The coach agent is responsible
for adjusting the crash rate during training. One
straightforward coaching strategy for the coach is
to set a fixed crash rate during training. Consid-
ering that it may be too difficult for agents to co-
operate initially (Narvekar et al., 2020), increasing
the crash rate gradually is another feasible strat-
egy. In addition to these basic strategies, an ex-
perienced coach can automatically adjust the crash
rate corresponding to the overall performance during
training. Specifically, if the performance exceeds the
threshold, the crash rate is increased to increase the
learning difficulty; otherwise, the crash rate should
be decreased. In this way, agents can learn coor-
dination skills progressively while being exposed to
unexpected crashes.

To test the effectiveness of our method, we have
conducted experiments on grid-world and StarCraft
II micromanagement tasks. Compared to the fixed
crash rate and curriculum learning strategies, the re-
sults demonstrate that an adaptive method achieves
relatively stable performances with different crash
rates. Furthermore, the ablation study shows the
efficacy of our re-sampling strategy.

2 Related works

In this section, we briefly summarize the works
related to cooperative MARL. With the development
of this field, researchers are paying more and more
attention to the MARL problem, which is more con-
sistent with real-world settings.

Early efforts treat the agents in a team inde-
pendently and regard the team reward as the indi-
vidual reward (Tan, 1993; Mnih et al., 2015; Foerster
et al., 2017; Omidshafiei et al., 2017). Consequently,
the MARL task is transformed into multiple single-
agent reinforcement learning tasks. Although tri-
vially providing a possible solution, these approaches
pay insufficient attention to an essential characteris-
tic of MARL—coordination among agents. In other
words, it will bring non-stationarity that agents can-
not distinguish between the stochasticity of the en-
vironment and the exploitative behaviors of other
co-learners (Lowe et al., 2017).

Another line of research focuses on centralized
learning of joint actions, which can naturally con-
sider coordination problems (Sukhbaatar et al., 2016;
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Peng et al., 2017). Most of the centralized learn-
ing approaches require communication during ex-
ecution. For instance, in CommNet (Sukhbaatar
et al., 2016) a centralized network is designed for
agents to exchange information. BicNet (Peng et al.,
2017) leverages bi-directional recurrent neural net-
works (RNNs) for information sharing. Considering
the communication constraint in practice, SchedNet
(Kim et al., 2019) was proposed, in which agents
learn how to schedule themselves for message passing
and how to select actions based on received partial
observations. Another challenge of centralized learn-
ing is the scalability issue because the joint action
space grows exponentially as the number of agents
increases. Some researchers investigated scalable
strategies in centralized learning (Guestrin et al.,
2001; Kok and Vlassis, 2006). Sparse cooperative
Q-learning (Kok and Vlassis, 2006) allows only the
necessary coordination between agents by encoding
such dependencies. However, these methods require
prior knowledge of the dependencies among agents,
which is often inaccessible.

To study a more practical scenario with the
partial observability and communication constraint,
an emerging stream is the paradigm of central-
ized training with decentralized execution (CTDE)
(Oliehoek et al., 2008; Kraemer and Banerjee, 2016).
To our knowledge, value decomposition networks
(VDNs) (Sunehag et al., 2018) make the first attempt
to decompose a central state-action value function
into a sum of individual Q-values to allow for decen-
tralized execution. VDN simply assumes the equal
contributions of agents and does not use additional
state information during training. Based on VDN,
QATTEN (Yang et al., 2020) uses a multi-head at-
tention structure to distinguish the contributions
of agents, and linearly integrates the individual Q-
values into the central Q-value. Instead of using lin-
ear monotonic value functions, QMIX (Rashid et al.,
2018) and QTRAN (Son et al., 2019) employ a mix-
ing network that satisfies the individual-global-max
(IGM) principle (Son et al., 2019) to combine the
individual Q-values non-linearly by leveraging state
information. QPLEX (Wang JH et al., 2020) intro-
duces the duplex dueling structure and decomposes
the central Q-value into the sum of individual value
functions and a non-positive advantage function.

However, all of the existing works assume that
agents can continuously maintain normal operations,

which is inconsistent with real-world scenarios. As a
matter of fact, it is a quite common phenomenon that
some agents encounter unexpected crashes because
of hardware or software failures. To this end, we aim
to study a more practical problem by considering
unexpected crashed agents in the cooperative MARL
task.

3 Problem formulation

To better solve the problem of an unex-
pected crashed agent, we define a Crashed Dec-
POMDP model, which is defined by a tuple M =<

N,S,A,Ω, P,O,R, γ, α >, where S, A, Ω, P , O,
and R represent the state space, the action space,
the observation space, a state transition function, an
observation probability function, and a team reward,
respectively. Each agent gi ∈ N ≡ {g1, g2, · · · , gn}
has a probability of crashing and the crash rate is
denoted as α. For simplicity, we assume that the
crash occurs at the beginning of the episode and
that the status of being crashed or not will not
change throughout the episode. We define a bina-
rized vector to denote the crashed state of n agents
as [ci]

n
i=1, where ci ∼ Bernoulli(α). When the ith

agent crashes, ci is 1; otherwise, ci is 0. Note that
[ci]

n
i=1 stays the same during an episode but may

change throughout the task due to randomness.
At each time step, each agent gi receives par-

tial observation oi ∈ Ω according to the observa-
tion probability function O(oi|s). Each uncrashed
agent chooses an action ai ∈ A with the normal
strategy, while the crashed agents take no-move or
random actions, forming a joint action a = [ai]

n
i=1.

Given the current state s, the joint action a of the
agents transits the environment to the next state
s′ ∈ S according to the state transition function
P (s′|s,a). All of the agents share a team reward
R(s,a). The learning goal of MARL is to opti-
mize every agent’s individual policy πi(ai|τi), where
τi = (o0i , a

0
i , o

1
i , a

1
i , · · · , oTi , aTi ) is an agent’s action-

observation history, to maximize the team reward
accumulation

∑∞
t=0 γ

tR(st,at), where γ ∈ [0, 1) is a
discount factor.

4 Methods

In this section, we present our coach-assisted
MARL framework for the Crashed Dec-POMDP
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problem and explain the rationality of our design.

4.1 Overall framework

To simulate crash scenarios during training, we
introduce a virtual agent into the system to act as
a coach. The coach is responsible for deciding the
crash rate during training. At the beginning of each
episode t, the coach sets up a crash rate αt. We
assume that the probability of being crashed for each
agent follows a Bernoulli(αt) distribution. Given the
current crash rate αt, some of the agents crash and
cannot take rational actions. Then, the multi-agent
system with crashed agents is trained for T steps to
learn coordination. Then the coach can receive the
performance of the agents under the current crash
rate, denoted as et, and reset the crash rate αt+1 for
the next episode. To sum up, the overall framework
is illustrated in Fig. 1.

4.2 Coaching strategies

The main challenge for the coach is how to
choose an effective crash rate during training. Here,
we introduce three coaching strategies:

1. Fixed crash rate. The coach sets a fixed crash
rate that is used throughout the training process.
The agents, some of which are crashed, are required
to learn coordination skills from scratch.

2. Curriculum learning. The coach linearly in-
creases the crash rate during training. At the begin-
ning, the agents are trained in a crash-free environ-
ment. For the tth episode, the coach sets the crash
rate to be (t−1)Δα, where Δα is a hyperparameter.
This approach gradually increases the cooperation
difficulty.

3. Adaptive crash rate. For the first two strate-
gies, the coach does not take full advantage of the
performance of the cooperative agents. An advanced
strategy for the coach is to adaptively adjust the
crash rate to correspond to the performance of the
agents at the current crash rate. The basic idea
is that if the agents can cooperate well and achieve
acceptable performance under the current crash situ-
ation, the crash rate should be increased; otherwise,
the crash rate should be decreased. The adaptive
strategy can be formulated as follows:

αt+1 = F (αt, et, β), (1)

where F (·) is a mapping function, and β represents

the threshold of the performance of the specific eval-
uation metric. We can see that the fixed crash rate
and curriculum learning are two special cases of the
adaptive strategy. For the fixed crash rate strategy,

F (αt, et, β) = αt. (2)

For the curriculum learning strategy,

F (αt, et, β) = αt +Δα, (3)

where α1 = 0.
In this work, we use the following adaptive

function:

F (αt, et, β) = αt + ρ(I(et ≥ β)− αt), (4)

where ρ is the learning rate of the crash rate, and
function I(·) is defined as follows:

I(et) =

{
1, et ≥ β,

0, et < β.
(5)

In this adaptive function, if the performance of
the system et does not reach threshold value β, the
crash rate for the following training will be reduced,
and vice versa. Therefore, the crash rate during
training can fit the skills of the system, thus facili-
tating the learning process. Note that our method
is not limited to the use of the above function.
A more efficient adaptive function can be further
investigated.

4.3 Re-sampling strategy

Randomly sampling from a Bernoulli(α) dis-
tribution may cause the proportion of the crashed
agents to exceed or be smaller than the current crash
ratio α. Therefore, we employ a re-sampling strat-
egy to ensure that the number of crashed agents is
not longer than the upper bound of n× α. Here, we
explain the rationality behind the re-sampling stra-
tegy. For the samples with more crashed agents, it
may be too difficult for the current model to learn
the coordination skills, and thus these samples are
discarded and new samples will be generated. Sam-
ples with fewer crashed agents than expected can
help the agents remember how to deal with the eas-
ier scenarios, and are therefore used during training.

4.4 Overview of our algorithm

To give a clear description of our method, we
use a coaching strategy with an adaptive crash rate
as an example to give a complete description of our
algorithm, which is shown in Algorithm 1.
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Fig. 1 An overview of the adaptive framework

5 Experiments

In this section, we discuss the experiments
we conducted to demonstrate the effectiveness of
the methods that we propose. First, we con-
ducted experiments in a grid-world environment as
a toy example. Then we used the StarCraft Multi-
Agent Challenge (SMAC) environment (Samvelyan
et al., 2019) as the test-bed to evaluate our meth-
ods, which has become a commonly used bench-
mark for evaluating state-of-the-art MARL ap-
proaches. All experiments were conducted on
a Ubuntu 18.04 server with four Intel� Xeon�

Gold� 6252 CPUs @ 2.10 GHz and a GeForce
RTX 2080Ti GPU. Our codes are available at
https://github.com/youpengzhao/Crashed_Agent.

5.1 Grid-world example

5.1.1 Settings

We used the grid-world example to intuitively
show the consequences without considering unex-
pected crashes in real-world scenarios. We set a
10×10 grid where two agents needed to touch two
buttons within a limited number of steps. The game
terminated after 20 steps or when both buttons had
been touched. The default reward at each step was
–1 and if one button was touched, the agents were
assigned a reward of five at this step. In this way,

the agents were encouraged to touch the button as
quickly as possible. At each step, each agent had five
possible actions including up, down, left, right, and
staying still. If there was an unexpected crash dur-
ing the test, the crashed agent remained still in the
whole episode, so only one agent crashed during the
test. For simplicity, the initial locations of agents and
buttons were fixed, so the environment was deter-
ministic. In addition, the observation of each agent
was its own location, and the global state contained
the locations of the two buttons and agents, so the
agents did not know whether their partner crashed
based on its own observation during execution.

We used QMIX (Rashid et al., 2018), a state-
of-the-art value-based MARL algorithm, as the base
model in this toy example, and adopted the adaptive
approach for comparison. Our implementation was
based on the Pymarl Algorithm Library (Samvelyan
et al., 2019), and the training schedules, optimizer,
and training hyperparameters were kept the same as
the default ones used in Pymarl. Our method in-
cludes two additional hyperparameters: one is the
performance threshold β to decide whether to in-
crease or decrease the crash rate during training; the
other is the learning rate of the crash rate ρ to con-
trol the step size of adjustment of α. We set β as
0.75 and ρ as 0.01 in this experiment. These tasks
were separately trained for two million steps.
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Algorithm 1 Coach-assisted MARL framework
with the adaptive crash rate strategy
Input: performance threshold β, learning rate of the crash

rate ρ, test interval T , number of agents n, and maximum
number of steps tmax.

Output: individual Q-values for agents.
Initialize tlast_test = 0, tstep = 0, and α = 0;

1: while tstep <tmax do
2: For each episode, obtain the initial state s0, and set

t = 0;
3: Sample a binarized n-dimensional vector c according

to a distribution of Bernoulli(α), such that ||c||1 <

�nα�;
4: while not terminal do
5: for every agent i do
6: if ci == 1 then
7: Agent i is crashed and a random action is

taken;
8: else
9: Agent i executes ε-greedy normally;

10: end if
11: end for
12: Interact with the environment and obtain state

st+1;
13: t← t+ 1;
14: end while
15: tstep ← tstep + t;
16: Use the data for training;
17: if tstep − tlast_test ≥ T then
18: tlast_test = tstep;
19: Evaluate the model with crash rate α and obtain

the performance ω;
20: if ω > β then
21: α← α+ ρ(1 − α);
22: else
23: α← α+ ρ(0 − α);
24: end if
25: end if
26: end while

5.1.2 Performance evaluation and discussion

After training for the same number of steps,
agents trained using these two methods managed to
complete this task under normal scenarios. However,
when an unexpected crash occurred, things were dif-
ferent. The results are illustrated in Fig. 2. The
agent trained using QMIX learned to touch the but-
ton near it in the shortest path, but after that, it
wandered aimlessly. Due to partial observation, the
normal agent failed to know that its partner was out
of control and it did not try to touch another button.
We assumed that agents trained by QMIX learned
to efficiently cooperate to complete this task, and
therefore they just needed to touch the closest but-
ton. However, their excessive reliance on cooperation
made the system fragile and they failed to deal with

(a) 

(b) 

Fig. 2 The trajectory of agents during the test when
one of them is crashed: (a) agent 1 is crashed; (b)
agent 2 is crashed. The agents are represented with
circles; the crashed one is marked using a dotted line
and the normal one is marked using a solid line. The
colored grids symbolize the two buttons. The green
arrow line is the trajectory of agents trained using
the original QMIX and the orange one is achieved by
our method. References to color refer to the online
version of this figure

the unexpected crash, which is common in realistic
scenarios. In fact, the optimal strategy for the sys-
tem when encountering an unexpected crash is for
each agent to touch another button after touching
the button nearest itself. In this way, even if one
agent “breaks down,” the system can still complete
the task. As shown in Fig. 2, our method takes possi-
ble crashes into account during the training, so it can
still fulfill the task even when one of the two agents
encounters a crash. This toy example illustrates the
drawback of overreliance on cooperation and the ne-
cessity of considering possible crashes when training
the multi-agent system.
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5.2 StarCraft Multi-Agent Challenge

5.2.1 Settings

In addition to the grid-world experiment, we
conducted experiments on StarCraft II decentralized
micromanagement tasks to show the effectiveness of
our method. In this environment, we assumed that
the crashed agents would take random actions. In
this experiment, we also used QMIX (Rashid et al.,
2018) as the base model. Then we compared the
performance of QMIX and our coach-assisted frame-
work with fixed crash rate, curriculum learning, and
adaptive crash rate coaching strategies. Our imple-
mentation was also based on the Pymarl Algorithm
Library (Samvelyan et al., 2019) without changing
the default training schedules. For the variants of
QMIX with the fixed crash rate, we randomly sam-
pled the crashed agents with a Bernoulli distribu-
tion during each episode; thus, the actual number of
crashed agents ranged from 0 to n. In the curriculum
learning coaching strategy, the crash rate increased
from 0 linearly and the upper limit was set to 0.1 as
we test the models in scenarios whose crash rate was
at most 0.1. We set the two hyperparameters β in
{0.60, 0.65, 0.70, 0.75} and ρ in {0.001, 0.003, 0.005,
0.015}, and selected their optimal values based on a
grid search when adopting our adaptive method. We
repeated the experiments in each setting over five
runs with different seeds and reported the average
results. For all the compared methods, each task
was separately trained for two million steps. To ob-
tain a relatively robust evaluation result, each model
was tested 128 times.

We chose two standard maps and designed
two different maps in the experiment: 3s_vs_5z,
3s5z_vs_3s5z, 8m_vs_5z, and 8s_vs_3s5z. The
two standard maps were well-matched in strength,
so a crash could result in some imbalance. To com-
prehensively show the performance of our method,
we also designed two maps that guaranteed an ap-
propriate gap in strength between the two sides, so
that unexpected crashes would not lead to a signifi-
cant change in difficulty. For more details about the
maps, please refer to Samvelyan et al. (2019).

5.2.2 Observation

In this part, we discuss the observations from
the scenario with crashed agents on StarCraft II

micromanagement tasks and show what must be con-
sidered to deal with the crash scenario.

The agents in Figs. 3a and 3b play the role of
Marines (ours) that are good at long-range attacks,
while Zealots (opponents) can attack only in a short
range and they have the same moving speed. Be-
cause the health point of Marines is only half that
of Zealots, the optimal strategy is to alternate fire
to attract the enemies. In Fig. 3a, one agent (high-
lighted with a red rectangle) is out of control and
starts to take random actions, while one of the re-
maining agents (highlighted with a yellow rectangle)
is disrupted so that it cannot take a reasonable ac-
tion. This case illustrates that the random crashes of
some agents will undermine the coordination among
the rest of the agents in the team, which is likely
to cause a drop in the win rate. However, it can
be observed in Fig. 3b that agents trained with
our method can avoid such effects of an unexpected
crash because they may be familiar with abnormal
observations.

Figs. 3c and 3d describe another situation where
Stalkers (ours) play against Zealots and Stalkers (op-
ponents) in the map 8s_vs_3s5z. Stalkers are good
at long-range attacks, while Zealots are skilled in
short-range attacks, and Stalkers move faster than
Zealots. Stalkers can win the game by simply at-
tacking when the number of normal agents is suffi-
cient, and they will fail if they use the same strat-
egy in crashed scenarios. Fig. 3c illustrates that
the Stalkers trained by QMIX only learn to attack
continuously because this simple policy can achieve
good performance in normal scenarios. However, if
they can be split into two groups, i.e., some of them
attract Zealots and do kitting (i.e., attack and step
back) repeatedly while others focus fire to eliminate
Stalkers and then attack the remaining enemies to-
gether, they are likely to achieve better performance
(Fig. 3d). This case indicates that once a simple
winning strategy exists, the learning algorithm has
little incentive to explore other optimal strategies,
leading to poor capability in the event of crashed
agents. The observation implies that increasing the
challenge during training may drive the agents to
learn better policies.

5.2.3 Performance evaluation and discussion

We evaluated the performance of the compared
methods by testing the win rate with different crash
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(a) (b)

(c) (d)
Fig. 3 Illustration of the actions taken by agents who are trained using the original QMIX (on the left) and
our adaptive approach (on the right) when they are tested in scenarios with crashes. In (a) and (b), the agent
highlighted with a red rectangle represents the crashed one and the agent highlighted with a yellow rectangle
is the one that is affected. In (c) and (d), the system shows different behavior patterns after being trained
with different approaches. References to color refer to the online version of this figure

rates and the results are shown in Table 1. It can be
observed that in standard maps, even using a simple
fixed crash rate strategy can help improve perfor-
mance. In contrast, in our designed maps, this ap-
proach works badly when the crash rate is low. We
assume this occurs because the maps we designed
are relatively simple so that even the original MARL
algorithms can handle the scenarios with a low crash
rate. In this case, fixing a low crash rate may instead
introduce noise, which affects the learning process.
However, in scenarios with a high crash rate, this
method still has a positive effect. The curriculum
learning strategy tends to perform well in scenarios
with a low crash rate. In summary, these two straight
methods can help the system be more robust in the
face of an unexpected crash to some degree, but they
all have some limits. In contrast, our adaptive ap-
proach can help improve the performance in different
maps and crash rates, which demonstrates the effec-
tiveness and generalization of our approach.

When compared with the baseline algorithm,
our adaptive method tends to gain a greater margin
when the crash rate increases, indicating the supe-
riority of our adaptive strategy in dealing with un-
expected crashes. This finding further implies the

rationality of our adaptive strategy, which allows
agents to learn how to handle the crash scenarios
step by step. In addition, the performance achieved
by our method with re-sampling is consistently su-
perior, compared to the performance achieved with-
out adopting this strategy. We think this can be
attributed to the fact that without a re-sampling
strategy, there may be samples that contain more
crashed agents, thus creating more difficulty during
training. This finding also proves the importance of
adopting a re-sampling strategy in our coach-assisted
framework.

5.2.4 Hyperparameter analysis

In our adaptive framework, the performance
threshold β and the learning rate of crash rate ρ,
which jointly decide the updating of the adaptive
crash rate, are of vital importance to the perfor-
mance of our method. In this subsection, we further
analyze the influence of these two hyperparameters
on the overall performance, with other parameters
unchanged.

Here, we take the map 3s_vs_5z as an exam-
ple. Table 2 reports the results of our method under
different values of β and ρ. Given the same ρ, a large
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Table 1 The performance of the compared methods in terms of the win rate (including mean and standard
deviation) under different crash rates

Method
Win rate (%)

3s_vs_5z 3s5z_vs_3s5z

Crash rate=0.01 0.05 0.10 Crash rate=0.01 0.05 0.10

Baseline 67.0± 15.5 61.9± 15.7 56.9± 15.3 85.3± 11.0 64.8 ± 8.3 43.6± 11.3
Fix-0.01 84.8± 11.8 74.7± 14.5 72.0± 13.8 86.9± 2.1 63.9 ± 1.7 45.8± 2.0
Fix-0.05 84.8± 7.5 78.0± 12.6 72.7± 9.6 86.3± 3.1 65.8 ± 2.9 46.9± 6.2
Fix-0.10 86.9± 8.0 81.1± 5.4 74.8± 8.2 83.6± 3.0 64.8 ± 7.0 48.1± 4.2
Curriculum 84.4± 6.0 81.1± 8.1 74.7± 5.8 87.8± 2.5 66.1 ± 2.9 48.0± 1.6
Adaptive- 82.5± 8.5 77.8± 8.4 71.6± 10.3 85.9± 4.5 65.2 ± 3.0 46.1± 1.9

Adaptive 88.6± 3.6 83.3± 6.5 79.2± 6.7 88.0± 3.2 67.0± 2.4 51.7± 2.2

Method
Win rate (%)

8m_vs_5z 8s_vs_3s5z

Crash rate=0.01 0.05 0.10 Crash rate=0.01 0.05 0.10

Baseline 94.1± 2.3 82.3± 4.5 71.6± 2.9 88.6± 5.7 75.8 ± 7.0 68.6± 4.9
Fix-0.01 86.9± 5.4 79.8± 5.0 65.6± 4.4 87.5± 5.8 77.3 ± 6.6 62.0± 7.3
Fix-0.05 89.1± 2.4 84.2± 4.4 68.4± 6.4 91.1± 6.4 80.0 ± 7.2 66.7± 7.2
Fix-0.10 90.0± 5.0 83.9± 7.1 78.0± 4.8 88.9± 9.4 79.7± 11.3 70.0± 9.6
Curriculum 94.1± 1.8 82.5± 2.8 72.3± 2.9 92.0± 2.9 79.8 ± 5.4 66.6± 5.8
Adaptive- 91.3± 4.1 84.8± 2.1 78.6± 3.1 91.7± 3.1 80.0 ± 4.6 69.1± 6.0

Adaptive 94.2± 2.2 89.4± 2.4 81.1± 3.1 93.9± 4.5 84.5± 10.0 71.3± 12.2

Fix-i represents the variants of QMIX, indicating that the crashed rate is fixed to i during training. Adaptive- represents the results gained by
adopting our adaptive method, but without the re-sampling strategy

β means that agents must learn quite well under the
current crash rate before exploring a more difficult
scenario. We can see that given ρ = 0.003, the over-
all win rate first increases and then decreases as β

increases from 0.60 to 0.75, and the best performance
is achieved when β = 0.65. Given the same β, we
can see that the performance first increases and then
degrades as ρ increases. The reason may be that,
if ρ is too small, the crash rate α will be adjusted
too slowly, so the agents cannot learn well within a
limited number of steps. If ρ is too large, sharply in-
creasing the crash rate may be too difficult for agents
to learn coordination and the adjustment of the dif-
ficulty will be rough. In summary, the hyperparam-
eters indeed have some effect on our framework, but
our method can achieve a relatively stable perfor-
mance if the hyperparameters are varied in a small
range, which proves the robustness of our method.

6 Conclusions

Considering a common phenomenon that some
agents may unexpectedly crash in real-world scenar-
ios, this work is dedicated to a coach-assisted MARL
framework that can close this sim-to-real gap. Our
method simulates different random crash rates dur-

ing the training process with the help of a coach, so
that agents can master the skills necessary to deal
with crashes. We conducted experiments on grid-
world and StarCraft II micromanagement tasks to
show the necessity of considering crashes during op-
eration and tested the effectiveness of our framework
using three coaching strategies in scenarios with un-
expected crashes. The results demonstrated the effi-
cacy and generalization of our method under differ-
ent crash rates. In the future, we will further investi-
gate the case in which crashed agents may take other
abnormal actions in addition to random actions and
other more efficient coaching strategies.

Contributors
Jian ZHAO designed the research and Weixun WANG

gave advice. Youpeng ZHAO and Mingyu YANG conducted

the experiments. Jian ZHAO and Youpeng ZHAO drafted

the paper. Xunhan HU helped prepare figures. Wengang

ZHOU, Jianye HAO, and Houqiang LI revised and finalized

the paper.

Compliance with ethics guidelines
Jian ZHAO, Youpeng ZHAO, Weixun WANG, Mingyu

YANG, Xunhan HU, Wengang ZHOU, Jianye HAO, and

Houqiang LI declare that they have no conflict of interest.



Zhao et al. / Front Inform Technol Electron Eng 2022 23(7):1032-1042 1041

Table 2 The impact of performance threshold β and learning rate ρ

β
Win rate at ρ = 0.003 (%)

ρ
Win rate at β = 0.65 (%)

Crash rate=0.01 0.05 0.10 Crash rate=0.01 0.05 0.10

0.60 84.7± 9.0 80.5± 9.6 74.1± 8.3 0.001 80.9± 9.4 75.6± 6.9 65.0± 13.0
0.65 88.6± 3.6 83.3± 6.5 79.2± 6.7 0.003 88.6± 3.6 83.3± 6.5 79.2 ± 6.7
0.70 81.4± 7.8 77.7± 6.2 72.3± 7.1 0.005 88.4± 4.5 83.6± 4.7 75.5 ± 8.6
0.75 79.5± 10.2 77.8± 8.5 67.0± 8.2 0.015 78.4± 7.8 73.4± 8.5 68.9 ± 6.0

The results show the win rate (including mean and standard deviation) under different settings across five different random seeds. The experiment
takes QMIX as the base model on the 3s_vs_5z task after two million training steps
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