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Abstract: Visual recognition of cardiac images is important for cardiac pathology diagnosis and treatment. Due
to the limited availability of annotated datasets, traditional methods usually extract features directly from two-
dimensional slices of three-dimensional (3D) heart images, followed by pathological classification. This process may
not ensure the overall anatomical consistency in 3D heart. A new method for classification of cardiac pathology is
therefore proposed based on 3D parametric model reconstruction. First, 3D heart models are reconstructed based
on multiple 3D volumes of cardiac imaging data at the end-systole (ES) and end-diastole (ED) phases. Next, based
on these reconstructed 3D hearts, 3D parametric models are constructed through the statistical shape model (SSM),
and then the heart data are augmented via the variation in shape parameters of one 3D parametric model with
visual knowledge constraints. Finally, shape and motion features of 3D heart models across two phases are extracted
to classify cardiac pathology. Comprehensive experiments on the automated cardiac diagnosis challenge (ACDC)
dataset of the Statistical Atlases and Computational Modelling of the Heart (STACOM) workshop confirm the
superior performance and efficiency of this proposed approach.
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1 Introduction

Cardiac magnetic resonance imaging (MRI) has
become an important tool for diagnosis of cardiac
diseases, and computer-aided pathology diagnosis is
a critical step in achieving this goal. As the first step
of cardiac pathological examination, cardiac segmen-
tation and reconstruction of the imaging data are
the keys to obtaining clinical indices, such as ejec-
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tion fraction (EF), ventricular volume, myocardial
mass, and location, size, and volume of stroke. How-
ever, annotated datasets are extremely limited in
this field. Thus, training automated or machine
learning methods for cardiac pathology is a diffi-
cult task. Meanwhile, most current machine learn-
ing based studies typically focus on segmentation of
the left ventricle (LV), right ventricle (RV), and my-
ocardium (MYO) using two-dimensional (2D) slices
of three-dimensional (3D) cardiac imaging data to
obtain various features (e.g., grayscale statistical
features, texture features, and shape features) for
pathological classification with the help of differ-
ent classifiers. There are different criteria for car-
diac pathology classification. Statistical Atlases and
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Computational Modelling of the Heart (STACOM)
2017 presented a cardiac public dataset, and divided
cardiac diseases into five categories: normal (NOR),
previous myocardial infarction (MINF), dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy
(HCM), and abnormal right ventricle (ARV). Some
related works have been done in this field. Isensee
et al. (2018) proposed to extract a series of time
instances and dynamic features from 2D slices of
the cardiac cycle, based on a heavily regularized
multilayer perceptron (MLP) and a random forest
(RF) classifier that were used for automatic classifi-
cation of cardiac pathologies. Khened et al. (2018)
extracted the features of EF in LV and RV, left
and right ventricular volumes at end-systole (ES)
and end-diastole (ED) phases, ED myocardial mass,
and ES myocardial volume from the segmented 2D
slices. Combined with other biological characteris-
tics (height and weight), the extracted features were
used as the input to the RF classifier for pathologi-
cal classification. Wolterink et al. (2018) extracted
14 features from the segmented 2D slices to train a
pathology category RF classifier consisting of 1000
decision trees. Cetin et al. (2017) used a semiau-
tomatic segmentation method to manually extract
structural contours of the heart, a support vector
machine (SVM) as a multifeature classifier, and a few
selected image histological features (including shape
features, grayscale statistical features, and texture
features) as additional inputs. Ammar et al. (2021)
proposed an automated pipeline for cardiac segmen-
tation and diagnosis. Traditional 2D image features
were extracted via the 2D segmentation of RV, LV,
and MYO. Subsequently, the pipeline provided diag-
nosis of possible heart diseases along with patients’
clinical data using an integrated classifier that inte-
grated MLP, RF, and SVM. Some other end-to-end
deep learning methods have also been used in car-
diac disease classification. A method proposed by
Chang and Jung (2020) first reconstructed a 3D sur-
face based on a segmentation result, and obtained
uniform 3D pointclouds by randomly sampling the
3D surfaces. Chang and Jung (2020) extracted latent
shape features from the cardiac pointclouds based on
the PointNet (Charles et al., 2017) and incorporated
features such as ventricular volumes and EF for clas-
sification of heart disease. Thermos et al. (2021)
proposed a framework called “disentangled anatomy
arithmetic,” in which a generative model learns to

combine anatomical factors from different input im-
ages to generate new cardiac images, pathology la-
bels, and segmentation masks for augmenting the
dataset, thus improving the performance of post-hoc
classification and segmentation tasks.

Almost all of these methods used 2D slices of
the heart to obtain various features as needed. How-
ever, important geometric information characteriz-
ing adjacency in the 3D neighborhood was largely
lost, putting the overall anatomical consistency of
the heart at risk.

In fact, cardiac 3D analysis is essential for the
assessment of global and local structural function of
the heart (Attar et al., 2019). Shape reconstruction
is a bridge between computer vision and computer
graphics (Pan, 2021a). Improving the 3D morpho-
logical modeling of the heart not only can make the
acquired symbolic characteristics more intuitive and
reasonable, but also may be helpful for the imagery
express of heart knowledge. Pan (2019) proposed the
concept of visual knowledge consisting of the proto-
type and category, which can be used to augment
cardiac data and improve the performance of car-
diac pathology classification. Inspired by this, 3D
cardiac models for different patients with different
pathologies at different ages during different phases
can be constructed via 3D parametric shape models.
Therefore, a large number of models and images can
be generated by varying the corresponding param-
eters to address the problem of limited availability
of annotated datasets of cardiac images, and then a
cardiac visual knowledge platform covering multiple
cardiac pathologies can be constructed.

To address the aforementioned issues, in this
study we propose a visual recognition method for
cardiac images based on 3D parametric model recon-
struction. First, 3D heart models are reconstructed
from a number of annotated images, and then based
on these reconstructed models, 3D cardiac paramet-
ric models of different heart pathologies are con-
structed through a statistical shape model (SSM),
and serve as prototypes of visual knowledge of heart
pathology. Second, based on the principal compo-
nent constraints of SSM, the 3D parametric models
are adapted by controlling the shape parameters to
match the real pathological features that character-
ize the same cardiac pathology category. Finally, car-
diac disease classification is performed by extracting
3D visual knowledge features of the heart models.
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The contributions of this paper are as follows:
1. A 3D cardiac parametric model of different

pathological hearts is constructed, and the prototype
and category of different cardiac visual knowledge
associated with this 3D cardiac parametric model
are determined, making it a cardiac visual knowledge
model.

2. Based on this visual knowledge model, 3D vi-
sual knowledge features (interpretable cardiac shape
and motion features) related to cardiac diseases are
extracted.

3. Based on the shape parameter constraint of
SSM, 3D cardiac data are augmented by sampling in
the category with a 3D parametric model.

4. With the augmented data and the 3D shape
and motion features of heart models, a reliable clas-
sification of cardiac pathology is achieved.

2 Related works

Three-dimensional shape modeling is a powerful
tool for quantifying and analyzing cardiac structure
and function (Suinesiaputra et al., 2018). In clinical
practice, morphological and functional alterations
of cardiac ventricles are typical after myocardial
lesions due to physiological changes. This self-
adaptive or maladaptive process by the body is
designed to maintain normal cardiac output (Gjes-
dal et al., 2011). The International Conference on
Medical Image Computing and Computer-Assisted
Intervention (MICCAI) has run the STACOM work-
shop (http://www.cardiacatlas.org/challenges/lv-
statistical-shape-modelling-challenge/) for 13
consecutive years since 2010 to discuss issues related
to smart cardiac imaging.

Liu and Shi (2009) proposed a computational
strategy based on the principle of maximum a pos-
teriori estimation. The method treated the myocar-
dial material model as a random field parameter and
used expectation-maximization (EM) to simultane-
ously estimate motion, deformation, and material
parameters, which could produce a sequence of mo-
tion states and material parameter estimates for the
entire MYO. Gao et al. (2018) first proposed a robust
estimation framework with adaptive biomechanical
model constraints for the dual H∞ criterion, which
consisted of two iterative H∞ filters, one for kine-
matic estimation and the other for elasticity esti-
mation, followed by federated estimation of cardiac

motion parameters from medical image sequences.
Biffi et al. (2019) proposed a conditional variational
autoencoder architecture that could effectively re-
construct a 3D high-resolution model of LV by learn-
ing a 2D segmentation of the long and short axes of
the LV. Chen et al. (2021) proposed a deep learning
architecture, called the coined mesh reconstruction
network (MR-Net), which enabled accurate 3D mesh
reconstruction in real time despite partially missing
data and only sparse annotations from 2D contours.
These methods focused mainly on how to more ac-
curately reconstruct the 3D mesh structure or para-
metric model of the heart from the MR image, facili-
tating the subsequent analysis. In the current study,
our approach focuses on constructing the prototype
and category of a cardiac pathology, extraction and
analysis of 3D visual knowledge features, data aug-
mentation, and pathology classification, based on 3D
parametric models.

Geometric registration of a target heart with a
template is the key to constructing a 3D SSM of the
heart. The point distribution model (PDM) (Cootes
et al., 1995) is usually used to describe the shape
distribution of the cardiac surface. This description
requires that each sample contain the same num-
ber of correspondingly sorted vertices and each ver-
tex in the PDM be placed in the same orientation.
Since Besl and McKay (1992) proposed the iterative
closest point (ICP) registration algorithm, ICP has
been widely used for 3D model geometric registra-
tion with known initial values of relative position,
which iteratively refines the transformation by re-
peatedly generating corresponding point pairs and
minimizing error metrics on the model. The input
to the ICP is two pointclouds and an initial trans-
formation that roughly aligns the source pointcloud
with the target pointcloud. The output is a trans-
formation matrix of two tightly aligned pointclouds
and a transformed copy of the source pointcloud now
in the target space. The algorithm has strict require-
ments for the initial position. If the initial position
is not provided correctly, the objective function may
easily fall into a local optimal point due to its use of
a greedy optimization strategy, which would make it
impossible for geometric registration of the 3D heart
models.

Bai et al. (2016) conducted a rigid registra-
tion by aligning the 3D surface meshes of the im-
ages acquired at the ED and ES phases, and then
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performed principal component analysis (PCA) (Jol-
liffe, 2002) on the aligned meshes using the PCA
coefficients as a shape feature. The method de-
fined kinematic features based on wall thickness and
vertex displacement, and then classified pathology
using a support vector regression (SVR) classifier.
Parajuli et al. (2016) proposed a cardiology classifier
combining an active shape model (ASM) with an
SVM. The LV shapes during the ED and ES phases
were first aligned with a template LV of the cor-
responding phases, and the relative difference was
maintained. Then, the PCA coefficients of the set
of aligned surface points were employed as the fea-
ture, and the SVM was employed for pathological
classification. Rodero et al. (2021) extracted 3D
meshes from 20 normal cardiac computed tomog-
raphy images, selected 19 3D meshes to create an
SSM, and analyzed how specific and local anatomi-
cal changes affected different cardiac functional out-
puts. Bernardino et al. (2020) generated cardiac 3D
meshes from the segmentation results of cardiac MRI
data and aligned them using a Procrustes analysis
(Dryden and Mardia, 1998). Then, the shape vari-
ability associated with confounding factors, such as
quantitative statistics, was removed, and the most
discriminative shape pattern from the coefficients of
the classification model was calculated via PCA di-
mensionality reduction.

These cardiology classification methods focused
mostly on studying a single structure or a spe-
cific pathology of the heart, but rarely constructed
parametric models with multiple sub-structures and
pathologies of the heart. Moreover, these methods
required precise alignment of the grid data to exclude
possible mismatch errors caused by translation and
rotation of the shapes. However, due to the irregular
structure and shape of the heart, both the Procrustes
analysis and the ICP required precise position to ini-
tialize the process, and the strict alignment require-
ment was typically unable to be met. Furthermore,
classifier training required a certain amount of evenly
labeled data. Unfortunately, the availability of la-
beled data was usually extremely limited for rare
diseases or anatomical samples, even in large-scale
medical training datasets. Consequently, the gen-
eralizability of the pathological classification model
was often weak in such scenarios.

In the last decades, Pan (1996, 2019, 2020,
2021a) proposed new theories concerning visual

knowledge representation and cross-knowledge rep-
resentation, which effectively connected computer vi-
sion with computer graphics and provided strong
theoretical support for image recognition, particu-
larly in clinical applications for disease diagnosis.
Prototype and category are the basic components of
visual knowledge. Prototype is the core/mean shape
of similar objects. Category is a margin of variation
among the core shapes of similar objects, and shapes
with the margin belong to the same category. There-
fore, in visual knowledge representation of the heart,
the average model of different pathological hearts is
the prototype, and its category can be determined
by principal components with different weight coef-
ficients of 3D SSMs.

3 Proposed methodology

First, a 3D model is reconstructed from each set
of labeled 2D images representing different patholo-
gies. Next, based on these reconstructed 3D models,
SSM is employed to construct the 3D parametric
heart models. The prototype of 3D parametric mod-
els is the mean of SSM. The bases of the category are
obtained by PCA. Thus, a category is determined via
parameter variation of principal components with vi-
sual knowledge constraints. Then, the augmentation
of heart data can be achieved by random sampling in
the category. Finally, shape and motion features of
3D heart models across the two phases are extracted
to classify cardiac pathology. The overall flow of the
proposed algorithm is shown in Fig. 1.

3.1 3D cardiac parametric model construc-
tion

Three-dimensional heart models are recon-
structed based on a set of 2D annotation images,
which are also referred to as the ground truth of the
shape (Fig. 2). In practice, we take advantages of the
fast global alignment algorithm (Zhou et al., 2016)
and the ICP algorithm (Besl and McKay, 1992) to
construct the 3D cardiac parametric model from the
reconstructed 3D model data through the SSM. The
fast global registration algorithm is first employed
to conduct a global and linear registration for two
3D models to be roughly aligned. Then, the ICP
algorithm is employed for a fine local registration to
obtain the final registration result.

Although the translational and rotational shape
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Fig. 1 Overall flow of our proposed algorithm
GNB: Gauss naive Bayes; MLP: multilayer perceptron; RF: random forest; HCM: hypertrophic cardiomyopathy; DCM:
dilated cardiomyopathy; NOR: normal; ARV: abnormal right ventricle; MINF: previous myocardial infarction

MYOLV RV

Fig. 2 Schematic of the cardiac tissue and structures
as shown in the MRI data
Top row shows the image slices with regions of interest high-
lighted, and the bottom row shows the reconstructed three-
dimensional models of the highlighted structures in the corre-
sponding MRI slices in the top row. LV: left ventricle; MYO:
myocardium; RV: right ventricle; MRI: magnetic resonance
imaging

variations in the training set can be removed using
the fast global alignment and ICP algorithms, the
scale variations could not be eliminated. However,
the scale between different hearts is an important
feature for determining their pathology. As a result,
the point (x, y, z) with the minimum Euclidean dis-
tance between two models should be found on top of
the aligned model as the corresponding point, to en-
sure the validity of finding the corresponding point.
The z-coordinate of each point of all 3D models in
the training set needs to be normalized first as

⎧
⎨

⎩

Haver =
1

n

∑n
i=1 Hi,

z′j =
zj
Hi

Haver,
(1)

where Hi is the height of the ith 3D model, which is

the distance of the maximum z-coordinate minus the
minimum z-coordinate of all points in the model, n
is the number of all 3D models, Haver is the average
height of all 3D models, zj is the height of each point
in a 3D model before normalization, and z′j is the
height of each point after normalization. After the
height is normalized, align the bottom of all 3D mod-
els. zbase is the height of the points on the bottom
plane with zero z-coordinate, and z′′j = z′j − zbase is
the height of the points of 3D models after height
normalization and alignment of the bottom surface.

The correspondence between the template
model and all the other models can be established
via Eq. (1), and the number of points in each model
becomes the same after the above process. Moreover,
the points are all placed in the same meaningful posi-
tion. After that, the height of each model is restored
to its original height to ensure the true height infor-
mation of the model.

After the corresponding points are deter-
mined, each 3D model is described by a vec-
tor s, which contains m coordinates: si =

[x1i, y1i, z1i, x2i, y2i, z2i, . . . , xmi, ymi, zmi]
T, where i

refers to the ith model and m is the number of all
points in each model. These vectors form a distri-
bution in the 3D space, and all vectors of model
training data are connected to each other. The data
matrix S of the whole training set can be expressed
as S = [s1, s2, . . . , sn]. The mean shape s̄ and the
covariance of S are calculated as follows:

⎧
⎪⎨

⎪⎩

s̄ =
1

n

∑n
i=1 si,

C =
1

n− 1

∑n
i=1 (si − s̄) (si − s̄)

T
.

(2)
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After performing PCA on C, we obtain t eigen-
vectors Φ = (φ1 |φ2| · · · | φt) and the correspond-
ing eigenvalues λi of S in descending order, i.e.,
λi ≥ λi+1. Assuming that all the point vectors of
the model follow a multi-dimensional Gaussian prob-
ability distribution, we know that any shape inferred
by the training set can be approximated from the
following linear generative model:

s ≈ s̄+Φb, (3)

where b is shape parameter that can be expressed as
b = ΦT(s − s̄) (Frangi et al., 2002). The ith value
bi of parameter b is usually restricted to |bi| ≤ 3

√
λi

to capture 99.7% of shape variability (Attar et al.,
2019).

Each eigenvalue λi gives the variance of the
training data in the direction of the corresponding
eigenvector. As a result, the total variance of the
training data is V =

∑
λi, and the dimension t of b

can be determined by

t∑

i=1

λi ≥ fV, (4)

where f denotes the proportion of the retained
variability.

The shape space formed by these vectors con-
tains all possible shape variations for the 3D para-
metric model simulation, and by optimizing these
parameters, different instances of the analyzed shape
class can be generated using Eq. (3).

We construct 3D parametric models according
to different heart diseases, retaining the pathologi-
cal characteristics after heart remodeling in differ-
ent pathologies. At the same time, different sub-
structures of the same pathological heart (LV, RV,
and MYO) are constructed separately, and then
are combined to obtain the 3D parametric model
of the entire heart. Establishing the correspond-
ing 3D parametric model according to different sub-
structures can reduce the complexity of the overall
structure while improving the registration accuracy
of a single structure.

3.2 Cardiac 3D feature extraction

The American Heart Association (AHA) de-
scribes myocardial variations by dividing MYO into
17 segments (Cerqueira et al., 2002). In practice,
MYO is usually divided into six segments on all slices

along the horizontal short axis (SA) around the base
and the middle cavity of the heart for evaluation of
cardiac functions.

Some conventional image based clinical indica-
tors, such as ventricular volume and EF, are directly
extracted from the 3D model of the heart. Because
the 3D model contains the geometric adjacency infor-
mation of different sub-structures and 3D morpho-
logical structure of the heart, the clinical indicators
obtained via the model are a better approximation
of the real heart volumetric information than those
of using 2D slices.

The 3D visual knowledge of the heart, i.e., the
left ventricular endocardium and the left ventricular
epicardium, can be obtained according to the move-
ment of the heart, as follows:

(1) Variety feature of the MYO: The variety of
the MYO is described by the variety of the left ven-
tricular endocardium and the corresponding points
on the outer model, which can be used to identify
the MINF pathology.

(2) Motion feature of the left ventricular en-
docardium and epicardium: Varieties in the endo-
cardium and epicardium are described by the vari-
ance of the distance in the corresponding points on
the endocardium and epicardium of the LV during
the ES and ED phases.

The 3D cardiac visual knowledge can be used to
describe the shape and motion of the heart, which
is reliable and explainable in featuring pathological
heart movement. These features are both intuitive
and valuable for performing classification tasks.

To calculate 3D visual knowledge features of the
left ventricular endocardium and epicardium, we di-
vide the left ventricular endocardium and the ad-
ventitia of the 3D heart into 16 layers, and each
layer of the MYO is further divided into six segments
(Fig. 3). The coordinates of the centroid point cor-
responding to each layer of the left ventricular en-
docardium are first obtained via Eq. (5). All points
of each layer are at the same height, ensuring that
only the x and y of the points in the same layers are
calculated: ⎧

⎪⎨

⎪⎩

x̄ =
1

n

∑n
i=1 xi,

ȳ =
1

n

∑n
i=1 yi.

(5)

We pick a point Ai1(xi1, yi1) on the endo-
cardium in this layer. Take Gi(x̄, ȳ) as the center
of the circle, and then rotate it clockwise to obtain
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the auxiliary point A′
ij(x

′
ij , y

′
ij) (j = 2, 3, 4, 5, 6) as

follows:

T =

⎛

⎝
cos

(
(j−1)π

3

)
sin

(
(j−1)π

3

)

− sin
(

(j−1)π
3

)
cos

(
(j−1)π

3

)

⎞

⎠ , (6)

{
GiAi1 = (xi1 − x̄, yi1 − ȳ) ,

A′
ij

(
x′
ij , y

′
ij

)
= Ai1 (xi1, yi1) +GiAi1T .

(7)

Aij

Bij

Aij

Bij

Aij
tk

Gi(x, y)Gi(x, y)Gi(x, y)

Fig. 3 Corresponding point determination and thick-
ness change of LV

Gi(x̄, ȳ) is the centroid of the endocardium in the ith layer.
Aij is one of the six auxiliary marker sites on the myocar-
dial segments, and Bij is the corresponding point on the
epicardium, found using the nearest neighbor method. The
gray part and blue outline represent the MYO and the left
ventricular endocardium, respectively. The black outline rep-
resents the left ventricular epicardium. The red line represents
the Euclidean distance tk between the corresponding points,
which measures the thickness of the MYO in this segment.
References to color refer to the online version of this figure

Find the nearest neighbor point A′
ij(x

′
ij , y

′
ij) as

the representative point of the myocardial segment
by the K-nearest neighbor (KNN) algorithm. The
nearest neighbor point Bij(mij , nij) of Aij is found
in the point set of the LV. A set of points (Aij ,Bij)

represents this segment of MYO, and the Euclidean
distance between the corresponding points is calcu-
lated as follows:

tk =

√

(mij − xij)
2
+ (nij − yij)

2
. (8)

Thus, we obtain the thicknesses of 96 differ-
ent myocardial segments in different layers. Sub-
sequently, the variance s2 of these distances is cal-
culated to describe the variation in myocardial wall
thickness as follows:

s2 =
1

n− 1

n∑

k=1

(tk − t̄)
2
. (9)

Similarly, the variance of the endocardium and
adventitia during the ES and ED phases of LV can
be obtained to describe the movement of the endo-
cardium and epicardium.

3.3 Data augmentation based on visual
knowledge

To facilitate training using a larger amount of
data, we augment the cardiac 3D model data based
on the visual knowledge and the 3D parametric mod-
els as described earlier. The 3D parametric models
have been constructed based on different pathologi-
cal categories, and each of the pathological categories
corresponds to a margin of variation among the pro-
totypes. That is, all 3D parametric models from a
category belong to the same pathology. As a result,
the pathological data can be augmented by random
sampling in the margin. In practice, based on the
3D heart prototype, new 3D cardiac data can be ob-
tained by changing the shape parameter elements in
vector b within its category according to Eq. (2).
However, the resulting cardiac model may not guar-
antee compliance with the constraints of the cardiac
proposition; that is, all sub-structures should main-
tain anatomical and kinematic consistency. There-
fore, it is necessary to impose either the heart propo-
sition constraint in the generating process, or the
anatomical knowledge constraint to generate a new
heart model.

The visual proposition of the heart has two hier-
archies: structural hierarchy and temporal hierarchy.
The structural hierarchy is reflected in the structure
of the heart which is divided into three parts: LV,
RV, and MYO. When the 3D parametric model is
deformed to generate data, these three parts should
be regarded as a whole, maintaining the uniformity
of deformation and moving along the same direction
with the same distance. The new data thus gen-
erated will still belong to the same heart category,
and the new data conform to the structural hierar-
chy of the heart. The temporal hierarchy is reflected
by the fact that the hearts of both the ES and ED
phases maintain the correspondence, so that the ES
and ED phases of the newly generated cardiac model
also correspond to each other.

The cardiac data generated under the con-
straints of the cardiac visual proposition belong to
the same category of the heart and can be regarded
as completely new cardiac data. Fig. 1 depicts this
specific process of data augmentation.
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4 Experiments and analysis

4.1 Automated cardiac diagnostic challenge
(ACDC) dataset

The experimental data came from the
2017 MICCAI ACDC (https://www.creatis.insa-
lyon.fr/Challenge/acdc/databases.html). It is a
dataset specifically designed for the classification of
heart diseases. The ACDC dataset consisted of car-
diac MR images from 150 subjects, with 100 series
of images in the training set and 50 series in the
testing set. The 100 series of the training set pro-
vided pathology annotations in five categories: NOR,
MINF, DCM, HCM, and ARV.

Each category contained a roughly equivalent
number of data series in the training and testing
sets. The cine MR images were acquired in breath
hold with a retrospective or prospective gating us-
ing a steady-state free precession (SSFP) sequence
along the SA orientation on a 3-Tesla Siemens MRI
scanner. A series of SA slices covered LV from
the base to the apex, with a slice thickness of
5–8 mm and an interslice gap of 5 or 10 mm. The
spatial resolution ranged from 1.37–1.68 mm2/pixel,
and 28–40 images partially or completely covered
one cardiac cycle. In addition, each patient’s weight,
height, and diastolic and systolic phase instants were
also collected. Table 1 lists the diagnostic criteria for
different pathologies.

In addition, according to the classification rules
of cardiology (https://www.creatis.insa-lyon.fr/
Challenge/acdc/databasesClassification.html), am-
biguous cases should be handled according to the
following rules:

1. Patients with HCM should have a left ven-
tricular EF > 55%. Otherwise, patients with a left
ventricular EF < 40% and a local increase in my-
ocardial thickness (as an adaptation of MYO to the
disease) must be classified as patients with MINF.

2. Patients with an abnormally high left ven-
tricular diastolic volume, low left ventricular EF,
and only several myocardial segments with abnor-
mal contraction must be classified as patients with
MINF. Indeed, the increase in the volume of LV is an
adaptation of the LV due to a myocardial infarction.

3. Patients with dilated LV and RV (with or
without abnormal function of the RV) must be clas-
sified as patients with DCM. Indeed, DCM of LV
could have an impact on RV.

4. Patients with borderline values should not
be included in one particular class. For example, a
patient with EF of RV > 45% is considered normal,
but a patient with EF of RV between 40% and 45%
cannot be classified as a patient with an ARV.

As discussed later in this paper, these ambigu-
ities do have an impact on the classification results
and are the biggest challenge in the classification
task.

4.2 Prototype of different pathological hearts
and their category construction

To construct the prototype, as well as the cate-
gory of the heart, a 3D model is first reconstructed
using the label maps of the ED and ES instances
in the training set of the ACDC dataset. Three-
dimensional models of LV, RV, and MYO of each
patient’s heart snapshotted during the ED and ES
phases are separately reconstructed, as described in
Section 3.1. Then, the 3D model of one patient in
each pathology type is randomly selected as the tem-
plate model, and the fast global registration algo-
rithm (Zhou et al., 2016) and the ICP algorithm
(Besl and McKay, 1992) are used to register the 3D
model data of the corresponding heart structure with
the same pathology in the training set to the tem-
plate model to eliminate the shape differences due to
translation and rotation in the training set. Then,
all the 3D models in the same template space are in

Table 1 Diagnostic criteria for different pathologies

Pathological type Diagnostic criteria

ARV The right ventricular volume is > 110 mL/m2 or the right ventricular EF is < 40%

MINF The left ventricular EF is < 40% and the contraction of multiple myocardial segments is abnormal
DCM During ED, the left ventricular volume is > 100 mL/m2, and the left ventricular EF is < 40%

HCM The left ventricular mass is > 110 g/m2, the thickness of several myocardial segments is > 15 mm

during ED, and the EF is normal

ARV: abnormal right ventricle; MINF: previous myocardial infarction; DCM: dilated cardiomyopathy; HCM: hypertrophic
cardiomyopathy; EF: ejection fraction; ED: end-diastole
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place to obtain the corresponding points.
Fig. 4 shows the prototypes of hearts with dif-

ferent pathologies. It is clear that the prototypes
of different pathologies differ greatly in the shape of
their corresponding lesion structures; for example,
the sizes of the LV of DCM and NOR are different in
the ED phase, the sizes of the RV of ARV and NOR
are different in the ED phase, and the sizes of the LV
of HCM and NOR are different in the ES phase. In
addition, if the prototype is thus constructed follow-
ing the procedure of calculating the 3D parametric
model, the obtained shape model would hide the true
characteristics that may identify MINF pathology.

NOR HCMARVDCM MINF

ED 

ES

Fig. 4 Prototype demonstration of normal hearts and
different pathologies
Top row shows the hearts in the end-diastole (ED) phase,
and the bottom row shows the hearts in the end-systole (ES)
phase. NOR: normal; DCM: dilated cardiomyopathy; ARV:
abnormal right ventricle; HCM: hypertrophic cardiomyopa-
thy; MINF: previous myocardial infarction

To determine the pathology category, we char-
acterize the sub-structure of each heart using PCA,
with the principal components sorted in descending
order of the eigenvalues. Seventeen principal compo-
nents are calculated to cover> 99.7% of the changing
patterns via inequality (4).

To visually show the effects of different princi-
pal components on the heart structure, we use the
first three principal components PC1, PC2, and PC3

to create a visual model of the whole heart struc-
ture. PCi denotes the ith principal component, and
the corresponding eigenvalues vary between −3

√
λi

and +3
√
λi. Figs. 5 and 6 show the prototype

and the category changes of NOR and DCM hearts,
respectively.

Figs. 5 and 6 show the shape changes of the 3D
heart model associated with PC1, PC2, and PC3. It
can be seen that different components control dif-
ferent changes in the heart. PC1 is related to the
height and width of the overall heart structure. PC2

is related to sizing the lower part of the overall heart
structure. PC3 is related to the enlargement and
shrinkage of the overall heart structure in the hor-

PC1

PC2

PC3

Mean−3 −2 +2 +3

Fig. 5 Prototype of the normal (NOR) pathology and
instances of the NOR category
The prototype of the NOR is generated using 18 aligned 3D
NOR models. The instance is generated by changing a sin-
gle shape parameter component (bij) and fixing all the other
parameters at a zero standard deviation from the prototype.
This model consists of 2843 left ventricular nodes, 4799 my-
ocardial nodes, and 4857 right ventricular nodes

PC1

PC2

PC3

Mean−3 −2 +2 +3

Fig. 6 Prototype of the DCM pathology and instances
of the DCM category
The prototype of the dilated cardiomyopathy (DCM) is gen-
erated using 18 aligned 3D DCM models. The instance is
generated by changing a single shape parameter component
(bij) and fixing all the other parameters at a zero standard
deviation from the prototype. The model consists of 4402
left ventricular nodes, 6968 myocardial nodes, and 2787 right
ventricular nodes

izontal direction. The changes decrease gradually
with decreasing eigenvalues.

4.3 Comparison of the classification of 3D vi-
sual knowledge features and conventional im-
age based features

For the next pathological diagnosis, we extract
16 features from the 3D model data. Twelve fea-
tures with seven types are conventional image based
features, and four are 3D visual knowledge features
including the myocardial wall thickness and the my-
ocardial motion features snapshotted during the ES
and ED phases, as shown in Tables 2 and 3.

Results of disease classification based on con-
ventional image based features alone versus conven-
tional image based features with 3D visual knowledge
features using different machine learning classifiers
are compared in Table 4. Our 3D visual knowledge



Xiao et al. / Front Inform Technol Electron Eng 2022 23(9):1324-1337 1333

features can enhance the effect of disease diagno-
sis to a certain extent. Compared to Gauss naive
Bayes (GNB), RF, and MLP, the ensemble classi-
fier, a strategic combination of GNB, RF, and MLP,
performs the best. We therefore choose it for the sub-
sequent classification experiments. Fig. 7 shows the
confusion matrices of conventional image based fea-
tures and conventional image based features with 3D
visual knowledge features when the ensemble clas-
sifier is used. It can be seen that our 3D visual

Table 2 Seven types of conventional image based
features

Feature LV RV MYO

Volume at ED
√ √ √

Volume at ES
√ √ √

EF
√ √

ES[vol(LV)/vol(RV)]
√ √

ED[vol(LV)/vol(RV)]
√ √

ED[vol(MYO)/vol(LV)]
√ √

ES[vol(MYO)/vol(LV)]
√ √

ED: end-diastole; ES: end-systole; EF: ejection fraction; LV:
left ventricle; RV: right ventricle; MYO: myocardium

Table 3 Four types of 3D visual knowledge features

Feature LV RV MYO

Variance of myocardial wall at ED
√

Variance of myocardial wall at ES
√

Variance of LV at ED and ES
√

Variance of myocardial at ED and ES
√

ED: end-diastole; ES: end-systole; LV: left ventricle; RV: right
ventricle; MYO: myocardium

knowledge features not only classify the NOR, HCM,
and ARV correctly in the testing set on the ACDC
dataset, but also enhance the accuracy of identifying
the DCM and MINF pathologies, which are often
difficult to distinguish. In brief, incorporating 3D
visual knowledge can improve the MINF and DCM
classification accuracy.

4.4 Pathological data augmentation

The classification results in Fig. 7b in
Section 4.3 demonstrate that the two misclassified
categories are the MINF and DCM, due to the strong
similarity between the MINF and DCM categories.
Hearts classified as DCM lack global myocardial

Table 4 Disease classification results using different
machine learning classifiers on the ACDC testing set
(50 cases)

Method
Accuracy (%)

Alone Combination

GNB 84 92
MLP 88 86
RF 86 88

Ensemble 84 94
Alone means conventional image based features alone, and com-
bination means the combination of conventional image based
features with 3D visual knowledge features. ACDC: automated
cardiac diagnostic challenge; GNB: Gauss naive Bayes; MLP:
multilayer perceptron; RF: random forest. Best results are in
bold

Fig. 7 Confusion matrices of classification results on the ACDC testing set (50 cases) using the ensemble
classifier: (a) results based on conventional image based features; (b) results based on the combination of
conventional image based features and 3D visual knowledge features
Rows correspond to the predicted category and columns correspond to the target category. ACDC: automated cardiac
diagnostic challenge; NOR: normal; MINF: previous myocardial infarction; DCM: dilated cardiomyopathy; HCM: hypertrophic
cardiomyopathy; ARV: abnormal right ventricle
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contraction, whereas those classified as MINF are
limited to a few myocardial segments. The feature
of abnormal shrinkage mentioned in the MINF cate-
gory is actually rather vague. In addition, left ven-
tricular EF is lower in both the MINF and DCM pa-
tients. In certain cases, myocardial infarction may
cause LV dilation, which makes cardiac classifica-
tion a challenging task. We should take measures of
data augmentation to help improve the efficiency of
the classifiers when dealing with these two types of
pathologies.

Data augmentation is implemented using our
method as presented in Section 3.3. There are many
aspects in a heart model that can be regarded as
stochastic. Any of these can be randomized with-
out affecting our perception of the model, as long as
they follow a reasonable distribution (Karras et al.,
2019). New cardiac data can be obtained from the
training set by changing the features of the heart
SSM (Van Dijck et al., 2018). The first seven fea-
tures of the cardiac shape extracted by PCA in Sec-
tion 4.2 are used mainly in the generating process,
because the first seven features already cover 85% of
the shape features of the cardiac model, and the re-
maining features are considered to be nuance caused
by local details.

We use the 3D cardiac parametric model to fit
real-world heart model data to explore the range of
parameter b. The results show that the first three el-
ements (i = 1, 2, 3) of parameter b for the real-world
heart are within

[−2
√
λi,+2

√
λi

]
and the last four

values (i = 4, 5, 6, 7) are within
[−√

λi,+
√
λi

]
. We

therefore believe that the first three features have
a greater impact on the shape of the heart model,
because these three features concern important ge-
ometry factors of the heart, for example, the height
and the cross-sectional dimensions, whereas the re-
maining four features concern some local features of
the heart.

Most generating work has employed a
multivariate standard normal distribution N (0, I)

or uniform distribution U(−1, 1) as the prior for
z (Brock et al., 2019). In this study, a seven-
dimensional noise z is sampled from N (0, I). For
the sampled noise, only the first three dimensional
values in [−2, 2] and the last four dimensional values
in [−1, 1] are retained, to meet the requirements of
the generated features mentioned earlier. To ensure
that the generated models are consistent with the

original cardiac models in terms of cardiac anatomy
and motion, we use the same z to generate three sub-
structures (LV, RV, and MYO) of the same heart at
different phases (ED/ES). For any sub-structure k,
its corresponding parameter bk is calculated using z

and the eigenvalues λk,j :

bk = [λk,1, λk,2, · · ·λk,7]
T
z, (10)

and the new model sk can be calculated according
to Eq. (3).

The prototype of the MINF pathology could be
confused with those of the other types of pathology.
Thus, it cannot be used to generate new MINF data
by changing the shape parameter elements in vector
b within its category according to Eq. (3). Hence,
we choose to generate new DCM data to augment
the dataset and improve the generalizability of the
pathology classification model. In this study, a total
of 20 new DCM datasets are generated and added to
the training set for testing diagnosis on the testing
set using an ensemble classifier. Table 5 lists the
noise z and parameter b for a generated DCM model,
where the first three bk (k = 1, 2, 3) and the last
three bk (k = 4, 5, 6) are the parameters of the LV,
RV, and MYO structures in the ED and ES phases,
respectively. Parts of the augmentation data are
shown in Fig. 8.

Only one case of MINF and one case of DCM
are not classified correctly in the final result (Fig. 9),
and the two cases have a high degree of similarity.
For the MINF case, its left ventricular volume may
usually have an expansion, which indirectly leads to
the occurrence of DCM. Therefore, the reason why
these two cases are not correctly classified may be the
similarity of the characteristics of MINF and DCM.

When a number of conventional feature based
machine learning methods (Cetin et al., 2017; Isensee
et al., 2018; Khened et al., 2018; Wolterink et al.,
2018; Zheng et al., 2019; Ammar et al., 2021) and

Fig. 8 New dilated cardiomyopathy (DCM) data dis-
play with different parameters b
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Table 5 Noise z and the corresponding parameter b of a generated dilated cardiomyopathy (DCM)

Dimension Noise z b1 b2 b3 b4 b5 b6

1 1.785 553 21 393.3479 509.718 423.1248 362.1643 490.8532 378.251
2 1.583 254 10 198.2308 226.3166 205.2633 209.0502 187.0769 202.1402
3 0.760 217 93 82.101 73 90.598 82 75.765 59 66.888 94 76.771 07 71.243 02
4 0.593 141 97 48.418 12 49.673 49.100 32 51.434 54 54.879 08 45.1232
5 −0.485 891 56 −29.3559 −32.8991 −35.0705 −29.3251 −32.5167 −27.7675

6 −0.022 931 55 −1.321 09 −1.402 52 −1.507 11 −1.167 21 −1.415 05 −1.252 35

7 0.058 637 42 3.155 731 3.408 775 3.622 214 2.670 804 3.323 664 2.699 738

NOR

MINF

DCM

HCM

ARV
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ue

 la
be

l

HCMDCM ARVNOR MINF
Predicted label

100000

010000

00910

00190
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Fig. 9 Confusion matrix of the classification results of
the ACDC testing set (50 cases) using the ensemble
classifier after adding 20 cases of the DCM data to
the training set
Rows correspond to the predicted class and columns corre-
spond to the target class. ACDC: automated cardiac diagnos-
tic challenge; NOR: normal; MINF: previous myocardial in-
farction; DCM: dilated cardiomyopathy; HCM: hypertrophic
cardiomyopathy; ARV: abnormal right ventricle

some end-to-end deep learning methods (Chang and
Jung, 2020; Thermos et al., 2021) were tested on the
ACDC testing set (Table 6), the classification accu-
racy of our method was 96%, which is comparable to
that of the two-stage classification method proposed
by Khened et al. (2018). It is worth noting that our
method has performed the classification task only
once. Although our method uses fewer features and
a single-stage classification process, it achieves better
classification results, which proves the effectiveness
of using 3D visual knowledge features and the data
augmentation method as proposed in this study.

Deep learning based methods are often less sat-
isfactory because of the limitations of the ACDC
dataset size. Chang and Jung (2020) used point-
cloud features and conventional image based fea-

Table 6 Classification accuracy of different models on
the automated cardiac diagnostic challenge (ACDC)
testing set (50 cases)

Method Accuracy (%)

Isensee et al. (2018)’s 92
Wolterink et al. (2018)’s 86
Cetin et al. (2017)’s 88
Zheng et al. (2019)’s 94
Khened et al. (2018)’s 96
Ammar et al. (2021)’s 92
Chang and Jung (2020)’s 94
Thermos et al. (2021)’s 91
Ours 96

tures to achieve a classification accuracy of 94%,
and the accuracy of using pointcloud features alone
was 88%. Thermos et al. (2021) achieved a classifi-
cation accuracy of 91% by synthesizing new data.
This showed the effectiveness of conventional im-
age based features and the relative inapplicability of
deep learning methods in small datasets like ACDC.
Moreover, the results of deep learning based meth-
ods are usually impossible to explain. Therefore,
the “diagnostic black box” could not be integrated
as is in a clinical practice (Bernard et al., 2018). In
addition to the pathological prediction, a medical re-
port must always record the pathology reasons why
a patient is diagnosed, for example, EF, volume, and
mass, and/or other cardiac parameters. In contrast,
the features extracted and the classification made in
this study are all based on cardiac vision knowledge.
Our efforts and results demonstrate that the visual
knowledge features extracted in this study are clini-
cally relevant and are therefore valuable for clinical
cardiac applications.

5 Conclusions

We propose a method for visual recognition of
cardiac pathology based on 3D parametric model re-
construction. Three-dimensional heart model data
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are first reconstructed from annotated cardiac im-
age data, and then based on these reconstructed
3D models, SSM is employed to construct 3D para-
metric models of hearts with different pathologies.
Combining the visual knowledge of cardiac patholo-
gies, each of the pathological categories is determined
through the parameter variation of principal compo-
nents with visual knowledge constraints. Then, the
cardiac data are augmented by random sampling in
the category. Conventional image based features and
3D visual knowledge features of the 3D model of the
heart are subsequently extracted to classify cardiac
pathology. Comprehensive experiments are done on
the ACDC dataset, and the results illustrate good
performance of the proposed approach. Data aug-
mentation based on 3D visual knowledge constraints
has achieved especially positive results in the diagno-
sis of some specific pathologies. This can effectively
solve the problem of insufficient samples, and has a
good universal applicability in medical image pro-
cessing. In the future work, we shall focus on the
study of a 3D parametric model of the cardiac sys-
tem, the construction of 3D visual knowledge of the
cardiac system, and the expression of multiple pieces
of knowledge of the cardiac system. We shall also try
combining visual semantic primitives and semantic
graph networks to investigate the interpretability of
disease diagnosis.
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