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Abstract: Network protocol software is usually characterized by complicated functions and a vast state space. In
this type of program, a massive number of stateful variables that are used to represent the evolution of the states and
store some information about the sessions are prone to potential flaws caused by violations of protocol specification
requirements and program logic. Discovering such variables is significant in discovering and exploiting vulnerabilities
in protocol software, and still needs massive manual verifications. In this paper, we propose a novel method that
could automatically discover the use of stateful variables in network protocol software. The core idea is that a
stateful variable features information of the communication entities and the software states, so it will exist in the
form of a global or static variable during program execution. Based on recording and replaying a protocol program’s
execution, varieties of variables in the life cycle can be tracked with the technique of dynamic instrument. We draw
up some rules from multiple dimensions by taking full advantage of the existing vulnerability knowledge to determine
whether the data stored in critical memory areas have stateful characteristics. We also implement a prototype system
that can discover stateful variables automatically and then perform it on nine programs in ProFuzzBench and two
complex real-world software programs. With the help of available open-source code, the evaluation results show that
the average true positive rate (TPR) can reach 82% and the average precision can be approximately up to 96%.
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1 Introduction

Nowadays, various network protocols exist on
the Internet. A protocol can be viewed as a collec-
tion of communication rules, and it usually gets obvi-
ous stateful states by running network functions and
providing online services. The state of a protocol can
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be typically measured by a state machine (Lee et al.,
2018; Pham et al., 2020; Natella, 2022). Due to a
lot of protocol implementations, i.e., network proto-
col software, a program may generate a vast number
of states that are quite different from the states of
the protocol in its running process. Because of this,
variables and data structures used to hold the in-
formation related to the state in the program also
have a degree of stateful characteristics. Thus, we
call this kind of variable a “stateful variable.” For
example, OpenSSL, an open-source implementation
of the secure sockets layer (SSL) protocol, is one of
the most versatile SSL tools in the real world. It
uses struct ssl ctx st to describe and store some ses-
sion contexts and struct cert st to hold the server
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certificate used; these are single variables that would
be stateful. Moreover, struct session id context is
used to ensure that sessions are reused only in the
appropriate context, and then an unsigned integer
variable sid ctx length is used to specify the length
of the struct session id context. There is an obvi-
ous correlation of the length constraint between the
two variables that belong to the correlated stateful
variables. We can find many similar cases in this
software.

Compared with ordinary variables, stateful vari-
ables often present some special features during the
execution of the program. They are closely related to
the normal operation of protocol services, the correct
processing of protocol data, and the safe execution of
the protocol software. However, the ambiguities of
specifications, the software deviations in implemen-
tations, and the coding errors or improper uses of
stateful variables by program developers will lead to
an abnormal state, which will leave vulnerable points
in protocol software. Logical errors that result from
variables being inappropriately used in protocol soft-
ware might be triggered in a particular scenario in-
volving interoperation between clients and the sever,
causing unexpected consequences.

In view of this question, previous work in re-
lated areas is largely insufficient at present. Most
methods for describing and discovering logical er-
rors are concerned with variables in common binary,
mainly based on static analysis (Ye et al., 2014; Gar-
many et al., 2019). Due to a lack of effective analy-
sis methods for detecting the transitions of protocol
states and the conversions of multiple sessions, such
techniques could be relatively limited when they are
applied to the network protocol software for debug-
ging and testing. Meanwhile, traditional vulnera-
bility mining technology, such as fuzzing, focuses
mainly on analysis by coverage-guided tracing and
exploring. The obvious drawback of this approach
is that it may take too much time to generate such
inputs to explore a specific state for testing proto-
col software, since its ability is so constrained by
the session states that would be difficult to locate
and identify quickly. Further more, as a consequence
of some management and control functions provided
by network protocol software, vulnerabilities possi-
bly appear in many ways or forms, not only a crash,
but also privacy disclosure, authentication bypass,
RCE, etc. (Song et al., 2019; Yu et al., 2019). Un-

der such circumstances, common methods for error
detection and assessment used in testing binary files
may not be as effective as before. The technological
challenges can be summarized in two points. First,
there is low automaticity. Stateful variables need
to be differentiated by analyzing a series of network
protocol software behaviors. This requires extensive
manual work in testing and verifying a vulnerabil-
ity caused by misused stateful variables and lack of
automatic approaches. Second, they are hard to dis-
cover. Stateful variables are closely related to the
protocol software states and network inputs. To ob-
serve the characteristics of stateful variables, it is
necessary to use a specific sequence of data packages
to reach the state that can cause errors. This con-
duct makes it difficult to cover deeper states, so the
variables mistaken in deeper paths cannot be found
eventually.

In this paper, we address this challenge and pro-
pose an automatic approach that infers and discovers
stateful variables with a rich amount of information
about the evolution of the protocol software states
and the life cycle of various variables. The key idea is
to establish certain principles for inspection accord-
ing to the characteristics of the stateful variables in
timing, spacing, and operating sequences, using a
dynamic analysis technique based on recording and
replaying the running traces of protocol software as
the input to achieve our purpose.

In summary, our main contributions are as
follows:

1. An automatic technique that is novel and
can work on binaries of different protocol software
programs is proposed to discover stateful variables.

2. A stateful variable discovery algorithm is pro-
posed from three dimensions, about timing, spacing,
and operating sequence. It is suitable for a deeper
analysis of complicated states in protocol software
by recording and replaying the executed trace.

3. The prototype system implemented by our
approach to validate our idea is applied to 11 proto-
col software programs, with an average true positive
rate (TPR) of 82% and an average precision up to
96%.
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2 Overview

2.1 Stateful network protocols

During the course of running functions and pro-
viding services, network protocols continuously re-
ceive and send data packets that contain a certain
degree of logically progressive or causal relationship
through several rounds. Concurrently, the statuses
of multiple client interactions of clients need to be
maintained and stored by a server. Such protocols
are known as stateful network protocols.

A state of a network protocol represents the cur-
rent stage consisting of the numbers of operations,
descriptions, and information in the protocol’s state
machine. The state of the network protocol software
reflects this program’s running state, which is not
only affected by input from the network, but also
related to client sessions and configurations from ad-
ministrators in the network.

2.2 Recording and replaying technology

A virtualized platform is usually used in dy-
namic program analysis to record and replay its exe-
cution process, so the execution environment can be
saved and efficiency analysis can be improved. Some
crucial data, such as the value of registers, memory
block, and CPU flags, are captured in a fixed man-
ner without affecting the execution flow. PANDA,
built upon QEMU, is an open-source platform for
architecture-neutral dynamic analysis (Dolan-Gavitt
et al., 2015). It adds a feature to record and replay
executions, enabling iterative, deep, whole system
analyses. Further, the replay log files are compact
and shareable, allowing for repeatable experiments.
Our system leverages the primary abilities offered by
PANDA to make a record of protocol software execu-
tion, and we then conduct our analyses by replaying
the execution trace.

2.3 Real-world examples

Now we will briefly introduce a motivating ex-
ample, CVE-2015-0291, a NULL pointer dereference
vulnerability of OpenSSL (www.openssl.org), which
typically deduces the root cause. Through this ex-
ample, we will show the limitations of existing tools.

The SSL protocol, which was designed to estab-
lish a secure network connection between a client and
a server, ensures that all the data passed between

the client and the server are private. Before a ses-
sion is established, some controlling parameters and
security policies need to be negotiated by a series
of handshake packets. A standard SSL handshake
process is generally as follows: (1) ClientHello, (2)
ServerHello, (3) authentication and pre-master se-
cret, (4) decryption and master secret, (5) generat-
ing session keys, and (6) encryption with the session
key.

As we know, a NULL pointer dereference flaw
with high severity has been found when OpenSSL
handles a renegotiation request that contains incor-
rect or maliciously crafted data; it affects OpenSSL
version 1.0.2, and has been fixed in version 1.0.2a.
Remote attackers could use this flaw to crash
an OpenSSL server by sending malicious Clien-
tHello packages. By analyzing the source code
of OpenSSL 1.0.2, we found that vulnerability ex-
ists in two functions, tls1 set server sigalgs() and
tls1 set shared sigalgs(), within the ssl\t1 lib.c file.
When a client connects to an OpenSSL 1.0.2 server in
a conventional way, ClientHello is resolved followed
by protocol specification. A data struct (SSL *s-
>cert) that stores the signature algorithm to be ne-
gotiated is passed to tls1 set server sigalgs(), where
the variable shared sigalgs will be assigned NULL
first, and then passed to tls1 set shared sigalgs(),
where the variable shared sigalgs will then be as-
signed to point to the struct that contains the iden-
tification of the signature algorithm in ClientHello.
A co-related variable named shared sigalgs len that
specifies the length of the struct that shared sigalgs
points to will be set to a specified value. In this
condition, if the client resends a ClientHello and
renegotiates with an invalid signature algorithm
extension, shared sigalgs() will be clear again in
tls1 set server sigalgs. However, shared sigalgs len
would not be set to 0 accordingly. So, a NULL
pointer dereference will occur when the execution
path goes into a loop with shared sigalgs len as the
judgment condition in tls1 set shared sigalgs(). This
can be exploited in a denial-of-service (DoS) attack
against the server.

In this case, shared_sigalgs and shared_
sigalgs_len are co-related stateful variables. The
vulnerability is caused by improper handling of this
group of stateful variables, which are assigned and
used at the same time but not cleared simultane-
ously, resulting in inconsistent states between them.
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To achieve these states, we need to construct specific
packages or large numbers of prefix messages that
can reach the corresponding state according to the
behavior of the protocol software. Because such er-
rors are triggered by a more complicated path and a
more in-depth state than a regular binary file, this
kind of vulnerability, which occurs in protocol soft-
ware, can hardly be disclosed by the state-of-the-art
static tools.

3 Design

3.1 Definitions

3.1.1 Stateful network protocols

In view of the features of stateful protocols, us-
ing the finite state machine (FSM) theory to describe
the protocols has been proved to have excellent per-
formance and outstanding scalability. An FSM ab-
stracted by a network protocol represents a mathe-
matical model of a set of states, the events that can
trigger the state machine, the actions to be executed
when certain events occur in a specific format in re-
ceived packages, and the transitions from the current
state to a successive one.
Definition 1 Let M be an FSM of a stateful net-
work protocol that consists of n states and m tran-
sitions (n, m>0). M is a quintuple of the following
form:

M = (Q, ξ, δ, q0, F ), (1)

where Q is a non-empty finite set of states. Q =
⋃n

i=0 qi. ∀q ∈ Q, q is a state of M. ξ is a set of input
messages from network. The elements of ξ follow a
finite sequence 〈ξ1, ξ2, ..., ξm〉. δ : Q × ξ → Q is a
state transition function. q0 ∈ Q is the initial state of
M. F is a non-empty finite set of final states. F ⊆ Q,
∀q ∈ F , where q is a final state of M.

3.1.2 State of variables

Definition 2 Let W be a stateful protocol software
program, and let var1, var2, ..., varn (n>0) be the
variables of W. Then V is the set of these variables.
V ={var1, var2, ..., varn}, and the set V |ti={var1|ti ,
var2|ti , ..., varn|ti} is the combination of variable
values at one point of a timeline, where ti is any time
in the execution process of W.
Definition 3 Let W be a stateful protocol software
program, and let var1, var2, ..., varn (n>0) be the

variables of W.
1. If an initialized variable varx is written at

ti, then it is used (accessed or modified) at tj by
the condition of varx|ti ; we say the value of varx|tj
is related to varx|ti (i < j), and varx is a stateful
variable. So, varx|ti logically implies that varx|tj
can be marked as varx|ti → varx|tj , or for brevity,
just (varx)state.

2. If the value of vary is affected by the value of
varx (e.g., vary records the current length of varx), or
the writing operation for vary is conditional on the
value of varx, when varx changes, vary will change
accordingly; we say vary is associated with varx
and use tuple (varx,vary) for representation. If the
value of vary|ti is associated with varx|ti , and varx|tj ,
vary|tj are related to varx|ti , vary|ti(i < j), varx and
vary are correlated stateful variables and we write
(varx|ti ,vary|ti) → (varx|tj ,vary|tj ), or for brevity,
just (varx,vary)state.

3.1.3 State of protocol software

The state of a protocol software program is
jointly determined by the runtime values of all in-
ternal variables and registers during the execution
of the program. In the protocol software state ma-
chine, an input (or package) will cause the software
to perform a series of transitions from the previous
state.
Definition 4 Let W be a stateful protocol software
program. Let V be the set of variables and Reg be
the set of registers that W uses. S = V ∪ Reg,
and the set S|ti = V |ti∪ Reg|ti is the combination
of variables and register values at one point on the
timeline, where ti is any time during the execution
process of W.

3.1.4 State space of protocol software

Due to the progress of control flow, the values
of the program’s internal variables and registers also
change along with external inputs. The state space
of a protocol software program is all possible states
of variables, and is a Cartesian product formed by
the states of all variables within the software.
Definition 5 Let W be a stateful protocol software
program, and let S be a state of W at one point on
the timeline. Then S∗ is the state space of W. S∗ =

S|t1 × S|t2 × ... × S|tn(n > 0), where ti (1 ≤ i ≤ n)
is any time during the execution process of W.
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3.2 Depiction of stateful variables

Note that vulnerabilities caused by stateful vari-
ables may not be disclosed sufficiently under limited
conditions, especially without source code or with
software using proprietary protocols, because state-
ful variables are not thoroughly searched or some
states are not fully explored. However, automatic
discovery of such stateful variables in protocol soft-
ware is a good way to provide candidates for stateful
errors. We will depict stateful variables through a
range of multi-dimensional analyses in the following.

3.2.1 Stateful variables can reflect the transitions of
protocol states

Network protocols stipulate the behaviors of en-
tities participating in communication at a certain
time, as well as the responses to specific events or
packages. Consequently, protocol states are usually
determined by these network events and messages
because interactions between communication entities
have become the driving force for continual transi-
tions of protocol states. In communication progress
of protocol software, contents stored in the variables
that represent the protocol state and its transitions
are often related to the entity of the current session,
and there has been a great certainty of values be-
tween the same entities and within the same session.
From the life cycle perspective, such variables are
usually generated and assigned when the two com-
municating parties establish a connection after the
protocol service starts, and their lives can often be
persistent in the runtime. To this end, it is of great
significance to determine whether a variable has a
stateful characteristic by recording the timestamp
when it is assigned a value and tracking its life cycle
by means of dynamic analysis.

According to the previous statement, the states
of protocol software can be represented by the state-
ful variables in the program. The changes in vari-
able values probably occur when transitions of the
corresponding software states take place, and we in-
troduce a symbol “⇒” to represent such a causal
relationship. Therefore, based on Definitions 1 and
3, we develop the following proposition:
Proposition 1 Let M be an FSM representing
a stateful protocol. Q is the state set of M. Q =
⋃n

i=0 qi (n > 0), ∀q ∈ Q, q is a state of M, and
δ : Q × ξ → Q is a state transition function. W is

a software program of M. V is the set of variables in
W. If δ : qs × ξ → qt (0 < s < t < n) happens at ti,
where ti is any time during the execution process of
W,

1. ∃Var ∈ V, qs ⇒ Var|ti−u , and qt ⇒ Var|ti+v

(1 < u, v < n), then (qs → qt) ⇒ Varstate, or
2. ∃Var1,Var2 ∈ V, qs ⇒ (Var1|ti−u →

Var2|ti−u), and qt ⇒ (Var|ti+v → Var2|ti+v ) (1 <

u, v < n), then (qs → qt) ⇒ (Var1,Var2)state.

3.2.2 Stateful variables can reflect the transitions of
software states

Protocol software programs are implementa-
tions of network protocols, and the states of proto-
col software are closely associated with the protocol
states. The states of software usually have something
to do with the numerical values or data structures as
global variables or static variables inside. When a
binary is loaded into memory, static variables are
usually mapped to the data segment (for initialized
static variables) or block started by symbol (BSS,
for uninitialized static variables), and global vari-
ables are dynamically allocated and reclaimed in the
heap area by the operating system (OS). For this
reason, it is helpful to judge whether a variable has a
stateful characteristic by tracking operations of the
core areas such as heap, BSS, and data segment in
the memory address space of the program using dy-
namic analysis.
Proposition 2 Let W be a software program of
stateful protocol M. S∗ is the state space of W. If
∃S|ta , S|tb ∈ S∗, the transition from S|ta to S|tb
S|ta → S|tb happens at ti, where ta, ti, tb are time
points in the execution process of W,

1. ∃Var ∈ V, Varaddr ∈ (Memheapaddr
∪

Membssaddr ∪ Memdataaddr), (S|ta → S|tb) ⇒
(Var|ta → Var|tb), then (S|ta → S|tb) ⇒ Varstate,
or

2. ∃Var1,Var2 ∈ V, Var1addr ,Var2addr ∈
(Memheapaddr

∪ Membssaddr ∪ Memdataaddr), (S|ta →
S|tb) ⇒ (Var1|ta → Var2|ta) → (Var1|tb → Var2|tb),
then (S|ta → S|tb) ⇒ (Var1,Var2)state.

3.2.3 Stateful variables can reflect the security and
reliability of key data operations

In view of the particularity and importance of
the data stored in the stateful variable, operations on
reading, modifying, and clearing must comply with
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the protocol specifications, conform to the logic of
program state transitions, and be restricted by the
security mechanism of the OS. From the perspec-
tive of the definition-usage relationship of variables,
considering one single variable itself, any operation,
reading or writing, should not only abide by the sys-
tem’s safe operation sequence to avoid UAF, DF, and
other similar vulnerabilities, but also maintain the
consistency of the variable with its previous state and
avoid violating the particular constraints concerning
any other variable associated with it. In this connec-
tion, it is feasible to differentiate whether a variable
has a stateful characteristic by recording all oper-
ations of the memory blocks allocated with global
and static variables in the life span, to reverse the
definition-usage chain of these variables and check
constraints and consistency based on the definition-
usage relationship based on dynamic analysis.
Definition 6 Let W be a stateful protocol soft-
ware program and V be the set of variables in W.
Var is a variable that belongs to V. If an instruction
Ins, located in the basic block BB, is an assignment
instruction to Var in W, then we say the value of Var
is defined at the instruction Ins corresponding to the
basic block BB and write def(Var, Ins, BB).
Definition 7 Let W be a stateful protocol soft-
ware program and V be the set of variables in W.
Var is a variable that belongs to V. If an instruction
Ins, located in the basic block BB, is a reference in-
struction to Var in W, then we say the value of Var
is used at the instruction Ins corresponding to the
basic block BB and write use(Var, Ins, BB).
Definition 8 Let W be a stateful protocol soft-
ware program, V be the set of variables in W,
and P be the set of execution paths of W. Var
is a variable that belongs to V. If there is a path
p from def(Var, Ins1,BB1) to use(Var, Ins2,BB1)

or to use(Var, Ins2,BB2) (Ins1 ≺ Ins2) in P,
where Ins1 ≺ Ins2 represents that Ins1 pre-
cedes Ins2 in P, then we say it is a definition-
usage path or definition-usage chain about Var
in P and write du(Var, Ins1,BB1, Ins2,BB1) or
du(Var, Ins1,BB1, Ins2,BB2) ∈ P .
Proposition 3 Let M be an FSM representing a
stateful protocol. W is a software program of M,
V is the set of variables in W, and P is the set of
execution paths of W. Two cases are considered:

1. If ∃Var ∈ V, ∃du(Var, Ins1,BB1, Ins2,BB2)

∈ P, Ins1 is executed at ti, Ins2 is executed at

tj (0 < i < j), where ti, tj are time points in the exe-
cution process of W, du(Var, Ins1,BB1, Ins2,BB2) ⇒
(Var|ti → Var|tj ), and ∃du(Var, Ins1,BB1, Ins2,

BB2, Ins3,BB3) ∈ P, Ins3 is executed at tk (0 < i <

j < k), du(Var, Ins1,BB1, Ins2,BB2, Ins3,BB3) ⇒
(Var|tj = Var|tk), then du(Var, Ins1,BB1, Ins2,BB2,

Ins3,BB3) ⇒ Varstate.
2. If ∃Vara,Varb ∈ V, ∃du(Vara, Insa1

,BB1,

Insa2
,BB2), du(Varb, Insb1 ,BB1, Insb2 ,BB2) ∈ P,

Insa1
is executed at ti, Insa2

is executed at
tj (0 < i < j), where ti, tj are time points in
the execution process of W, Insb1 is executed at
ti + Δt, Insb2 is executed at tj + Δt (Δt > 0),
du(Vara, Insa1

,BB1, Insa2
,BB2) ⇒ (Vara|ti →

Vara|tj ), du(Varb, Insb1 ,BB1, Insb2 ,BB2) ⇒
(Varb|ti+Δt → Varb|tj+Δt), and ∃du(Vara, Insa1

,

BB1, Insa2
,BB2, Insa3

,BB3), du(Varb, Insb1 ,BB1,

Insb2 ,BB2, Insb3 ,BB3) ∈ P, Insa3 is executed at
tk (0 < i < j < k), Insb3 is executed at tk + Δt,
du(Vara, Insa1

,BB1, Insa2
,BB2, Insa3

,BB3) ⇒
(Vara|tj = Vara|tk), du(Varb, Insb1 ,BB1, Insb2 ,BB2,

Insb3 ,BB3) ⇒ (Varb|tj+Δt = Varb|tk+Δt), then
du(Vara, Insa1 ,BB1, Insa2 ,BB2, Insa3 ,BB3)∧
du(Varb, Insb1 ,BB1, Insb2 ,BB2, Insb3 ,BB3) ⇒
(Vara,Varb)state.

3.3 Key techniques

3.3.1 Analysis of transitions of protocol states

On the assumption that protocol states will
change with input and output packages in the ses-
sion, the current protocol state is stored mainly in
certain data structures in heap and the data/BSS
segment, and updated with each package exchange
in the form of a request-reply as time goes on. That
is to say, when a protocol program receives and sends
data packets, it often corresponds to the state tran-
sition of the program or even the protocol. In par-
ticular, the protocol state is represented by global
or static variables from the perspective of software,
whose lifetime goes across certain individual package
exchanges, spanning almost an entire session. Con-
sidering this feature, we can use a dynamic instru-
mentation method to insert some probe codes for
capturing the request-reply data, take notes about
where they are stored, and record the timestamp
of state transitions and the sequence of the current
package in the session when communication entities
process data packets by system calls on the basis of
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parsing the semantics of instructions.

3.3.2 Analysis of heap and data segment

According to the memory management mech-
anism of mainstream operating systems, different
parts of a binary are loaded into different areas in
the memory address space. According to the depic-
tion above, protocol software stateful variables may
exist in the following forms:

1. Variables in heap. Heap is a piece of vir-
tual memory space that can be dynamically allo-
cated to the running process on demand. Vari-
ables in heap are necessarily handled by system
calls, for instance, malloc (similarly including cal-
loc and realloc) for allocating, free for releasing,
and mem read/mem write for reading and writing.
Therefore, we can hook these system calls mentioned
above to implement dynamic instrumentation when
they are called.

2. Variables in the BSS segment. In the virtual
memory address space of an executable file, the BSS
segment (.bss) is used mainly to store uninitialized
global variables and local static variables. Memory
in BSS is allocated statically. The value of an unini-
tialized variable is usually set to 0, and will actually
be assigned when initialized. The starting address
and spatial scale of BSS can be found by virtual
memory address space mapping when the binary is
loaded. Then we can monitor all the operations in
this specific area for dynamic instrumentation.

3. Variables in the data segment. The data
segment (.data) is used to hold the initialized global
static variables and local static variables. These two
types of variables are handled and used in the same
way as constants or read-only variables and are state-
less. So, these variables can be ignored in the process
of stateful variable identification.

It is worth mentioning that the data segment
and BSS segment are combined and referred to the
data segment in Linux, so the latter two forms above
are processed together accordingly.

Based on the analyses above, we can use a dy-
namic instrumentation method to insert some probe
codes for monitoring allocation and release in the
address range that belongs to the heap, and con-
tinuously tracking operations by memory read and
memory write events in the heap, BSS, and data seg-
ment. Then we can obtain a view of the definition-
usage chain of variables in accordance with their evo-

lution throughout the life cycle.

3.3.3 Analysis of the definition-usage chain

Based on the characteristics of the definition-
usage chain, operation security analysis of the
definition-usage chain can be carried out to estimate
whether the variable has a stateful characteristic.

For one single variable, in the case of no asso-
ciated variable, if its definition-usage relationship is
concentrated in a basic block, it is reasonable to in-
fer that it does not have any stateful characteristic.
However, if its definition-usage cross-spans several
basic blocks, the sequence of reading and writing
operations should be considered. When it contains
“write-before-read” spanning basic blocks, the vari-
able is determined to have a stateful characteristic.
For multiple variables with correlation, reading and
writing operations of these variables are inspected
by relative and contrastive analysis. If there is a sit-
uation of allocating, using, or releasing a group of
co-related variables simultaneously, we can make a
deduction that they are all stateful.

Specifically, for this, information related to the
protocol state, such as the authentication status,
encryption suites, and client data to be processed,
is typically stored in the form of structures. A
logical address calculated by the base plus an off-
set is mostly applied to access this type of data
structure. In view of such features, the states of
a structure can be determined according to recorded
mem read/mem write events with the base and the
size of the address space where the memory block is
located. If the logical address is in a certain range of
an allocated memory block in heap, the offset from
the base of the block will be recorded, and it is pre-
dicted to be a structure variable. If several structure
variables allocated in a certain position are read or
written in a tiny time span during the program ex-
ecution, it can be inferred that there is a certain
correlation between these variables.

3.3.4 Discovering stateful variables

According to the analysis of the characteristics
of stateful variables in Section 3.2, we describe and
record the properties of the stateful variables with
such a data structure in the implementation. The
attributes that depict a stateful variable consist of
a starting address, size, segment/section, allocation



410 Huang et al. / Front Inform Technol Electron Eng 2023 24(3):403-416

time, freeing time, and a number of marks that re-
flect operations on the variable stored in this virtual
memory block.

In addition, we summarize some information
that needs to be used in the analysis process and
extract it into a tiny database. Such information
may include, for example, details of memory address
distribution of the binary, the format of packages to
be sent to the program, and the states and behaviors
of the protocol software (Table 1). This information
forms our knowledge base.

Table 1 Components of the knowledge base

Content Details

Memory address
distribution of
the program

Information about the program
header, section headers, and allo-
cation range of the virtual mem-
ory address space, which can be
continuously obtained before and
during the running of the program
by the ELF parsing tool

Format of
input data
packages

Packages for testing are generated by
capturing network traffic or craft-
ing data manually, the format of
which can be described by JSON
to assist in locating input data
during the analysis.

Coarse-grained
behaviors of
protocol
software

Information recorded dynamically
during the execution of the pro-
gram, including the action and
time of handling input/output
packages, control flow of the ex-
ecution path, and state flag in-
ferred from protocol specification

Based on the above elements, we use the algo-
rithm shown in Fig. 1 to look for stateful variables
that meet our requirements. Because the behaviors,
interactions, and handled packages of different pro-
tocol software programs are different, we summarize
some basic information of each object to be tested
for processing by the algorithm, which is the knowl-
edge base in Fig. 1. Therefore, we can apply this
approach to binaries of protocol software for discov-
ering stateful variables automatically.

4 Implementation

Our prototype system is implemented on top of
the PANDA dynamic analysis platform, and devel-
oped through a Python interface named PyPANDA,
which shields the discrepancies between analysis

Fig. 1 Flowchart of the automatic discovery algorithm
for stateful variables of network protocol software

tasks and guest virtual machine behavior and re-
duces the access threshold of whole-system dynamic
analysis. So, we can use the plugin mechanism in
PyPANDA for our analysis tasks, replaced with the
analysis logic mentioned above. Fig. 2 shows the
overall architecture implemented by our prototype
system composed of four parts: recording and replay-
ing module, protocol state analysis module, address
space analysis module, and definition-usage chain
analysis module. For details on the implementation
of each module, please refer to the supplementary
materials.

5 Evaluation

The experiments in this section are designed to
evaluate the prototype system in two parts, testing in
a benchmark, ProFuzzBench (see Section 1.2 in the
supplementary materials), and testing in real-world
programs. Then we focus on the experimental results
to answer the following three research questions:
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Fig. 2 Overview of the prototype system for automatic discovery of stateful variables in network protocol
software

Q1 (Effectiveness) Can the prototype system ac-
tually discover stateful variables automatically?

To answer this question, we will conduct experi-
ments on nine sorts of protocol software programs in
the benchmark and two kinds of real-world software
programs.
Q2 (Efficiency) Can the prototype system dis-
cover stateful variables fast enough?

To answer this question, we will perform ex-
periments on these protocol software programs by
one regular communicating interaction. Then we
check the execution time taken by the protocol soft-
ware when it performs normal execution and with
our analysis plugins loaded.
Q3 (Determinacy) Can the prototype system
make a deterministic replay of the execution process
of the protocol program?

To answer this question, we will compare the
translation blocks visited on the execution paths of
the protocol program between the recording stage
and the replaying stage, to check if there is any di-
vergence in the analysis.

During the evaluation, our analysis experiments
are performed on a server with Dual CPU Intel
Xeon E5-4650 v4 @ 2.20 GHz and 128 GB mem-
ory, running the Ubuntu Server 16.04 OS. The
PANDA framework is capsulated in Docker, and
the analysis tools we developed are loaded into
Docker to target different programs. As men-
tioned above, our experimental subjects of net-
work protocol software consist of two parts. For
a benchmark, we select nine protocols and their

corresponding implementations from ProFuzzBench
as experimental objects, namely: DAAP/forked-
daapd, 28.3; DICOM/Dcmtk, 3.6.6; DNS/Dnsmasq,
2.86; DTLS/TinyDTLS, a refactored version that
could be easier to use as a standalone (e.g., without
bindings to a specific IP-stack); FTP/LingtFTP, 2.2;
RTSP/Live555, 2020.04.24; SIP/Kamailio, 5.5.0;
SMTP/Exim, 4.95; SSH/OpenSSH, 8.8p1.

Beyond the test cases in the benchmark, we ap-
ply our analysis technique on real-world programs:
TLS/OpenSSL, 1.1.1j; SSH/LibSSH, 0.8.9. These
two software programs are based on TLS and SSH,
respectively, and have been picked for evaluation be-
cause both of them define a series of negotiation
and authentication stages between the server and
the client in the communication to establish a more
secure network connection. The working processes of
these protocols have typical stateful characteristics
and are suitable for our evaluation experiments.

5.1 Effectiveness

To evaluate if our approach can be applied to
various protocol software, we introduce some widely
used metrics: true positive rate (TPR) or recall, true
negative rate (TNR), false positive rate (FPR), false
negative rate (FNR), precision (P), and F1-measure
(F1) (see Section 3 in the supplementary materials).

We perform our implementations on the 11
protocol software programs mentioned above, and
record the number of stateful variables automati-
cally discovered (Table 2). Subsequently, we obtain
the source codes, the numbers of global variables
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and variables with stateful characteristics in the code
through human checking, and then the results of six
evaluation metrics (Table 3), which indicate the ef-
fectiveness of the prototype system. In conclusion,
the arithmetic mean values of TPR and P are 82%
and 96%, respectively.

Table 2 The number of stateful variables automati-
cally discovered by the prototype system compared to
the numbers of global variables and stateful variables
estimated by manual inspection from 11 protocol soft-
ware programs

Protocol software
Number of variables

SVDA GVFM SVEM

DAAP/forked-daapd 314 446 388
DICOM/Dcmtk 372 593 453
DNS/Dnsmasq 0 288 163
DTLS/TinyDTLS 168 226 201
FTP/LingtFTP 216 379 263
RTSP/Live555 398 580 477
SIP/Kamailio 499 647 593
SMTP/Exim 569 742 681
SSH/OpenSSH 759 962 920
TLS/OpenSSL 738 934 897
SSH/LibSSH 405 591 479

SVDA: stateful variables discovered automatically; GVFM:
global variables found manually; SVEM: stateful variables
estimated manually

From the experimental results, we observe that
the prototype system can discover most of the state-
ful variables accurately in the software of stateful
network protocols, for example, LightFTP, Live555,
Exim, OpenSSL, and LibSSH. For stateless net-
work protocols, the prototype system gives a con-
clusion that no stateful variable has been found in
the software, such as Dnsmasq. The reason for our
decision is that the request sent to the Dnsmasq
server in the experiment is only to query the IP
address corresponding to one testing domain name,
such as /daemon.com/. In such a simple request-
and-response iteration, the Dnsmasq server enters
into neither multi-session concurrency nor multi-
level nested logic, so it is reasonable that stateful
characteristics are not identified.

Note that we choose open-source protocol soft-
ware for experimental purposes due to the require-
ments of the experimental evaluation metrics, so it
can be used for manual verification after automatic
discovery of stateful variables is finished. However,
this technical solution is designed based on the char-
acteristics of the executable file. In principle, it can

still work without the source code. Under the cir-
cumstances, additional work will be needed to verify
the discovered stateful variables.

5.2 Efficiency

For the convenience of experimentation and mi-
gration, we encapsulate the PANDA framework and
analysis module in Docker, and then test 11 exper-
imental subjects using Dockers. During the exper-
iment, we send data packages of a specific network
protocol through the client program to simulate the
process of message interaction between the client and
the server. Furthermore, we keep and compare the
duration of the original independent running and
instrumentation running through PANDA after the
analysis plug-in is loaded. Specifically, the original
execution time of the protocol program is the time it
takes from the start of the server until it finishes an
iteration of package interaction by the protocol with
the client. The instrumentation execution time of
the protocol program is the time for loading the pre-
served program execution recording and the analysis
plug-in through PANDA, running the instrumented
analysis code for stateful variables during the iter-
ation of package interaction between the server and
the client by replaying, and collecting the generated
information and outputs in the end. Table 4 shows
the original execution time and instrumentation ex-
ecution time of 11 protocol software programs used
in our evaluation.

Indeed, the instrumentation execution time is
determined by the complexity of the protocol soft-
ware, the capacity of interactive data packages, and
the quantity of instrumentation instructions. It can
be seen that the time cost of analyzing software
that only interacts with data packages (Live555, Ka-
mailio, etc.) is within a reasonable range. For soft-
ware with complicated behaviors, such as file trans-
ferring (forked-daapd) or encrypting (OpenSSL),
there would be a relative slowdown versus its original
execution time. Because we do not conduct the pars-
ing and prediction of function semantics, the time
overhead is wasted mainly on processing these com-
plex functions. Considering that our evaluation ex-
periments are performed on PANDA in Docker, we
believe that if it is executed on a real machine in
a production environment, the execution efficiency
will be improved to a certain extent. In general, the
time overhead above is acceptable.
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Table 3 Results of six evaluation metrics for indicating the effectiveness of our prototype system

Protocol software TPR (%) TNR (%) FPR (%) FNR (%) P (%) F1 (%)

DAAP/forked-daapd 80.58 89.23 10.77 19.42 97.77 88.35
DICOM/Dcmtk 81.88 95.89 4.11 18.12 98.39 89.38
DNS/Dnsmasq 0.00 100.00 0.00 100.00 NA NA
DTLS/TinyDTLS 81.87 56.82 43.18 18.13 88.69 85.14
FTP/LingtFTP 81.12 89.23 10.77 18.88 93.52 86.88
RTSP/Live555 82.94 88.03 11.97 17.06 96.48 89.20
SIP/Kamailio 83.57 72.00 28.00 16.43 95.79 89.26
SMTP/Exim 83.16 79.22 20.78 16.84 97.19 89.63
SSH/OpenSSH 82.23 75.00 25.00 17.77 98.16 89.49
TLS/OpenSSL 82.09 80.43 19.57 17.91 98.78 89.67
SSH/LibSSH 84.05 88.19 11.81 15.95 96.30 89.76

Table 4 The original and instrumentation execution
time during recording and replaying analysis

Protocol Original Instrumentation
software execution time (s) execution time (s)

forked-daapd 41.2938 8919.4608
Dcmtk 205.4913 40 738.0453
Dnsmasq 211.2848 2156.0601
TinyDTLS 183.6226 661.6658
LingtFTP 389.9277 61 566.1171
Live555 953.3180 63 872.3061
Kamailio 255.3647 14 969.4787
Exim 276.7425 51 114.5468
OpenSSH 259.9624 45 595.6720
OpenSSL 243.7826 51 925.6938
LibSSH 50.5591 3521.5197

5.3 Determinacy

To check the determinacy of replaying, we focus
on the execution paths of the program. The base ad-
dresses of the translation blocks passing on the pro-
gram execution path will be recorded in proper order
during the recording stage. The translation blocks on
the replay path will also be logged into a set. Then,
we compare the set of base addresses of translation
blocks obtained in the above two stages and calculate
the difference between them. According to our de-
sign, we set some acceptable divergences (about 2%)
because they are a bit imprecise on the edges where
we start and stop. Table 5 shows the results of 11
testing objects. The second and third columns show
the numbers of translation blocks visited during the
execution when recording and replaying respectively.
The fourth column shows the number of translation
blocks independently observed in both replaying and
the original execution path. The fifth column is the
percentage of the number of translation blocks cov-

ered by the execution path during the replay process
to the total number of translation blocks in the orig-
inal execution process.

In summary, the consistency between replay ex-
ecution and the original execution can reach 98%,
which is in line with the requirements for determin-
istic replaying in experimental design.

6 Discussion

We have compared our work with several exist-
ing mainstream solutions in terms of functionality
(Table 6). Although we have achieved some suc-
cess, discovering stateful variables in network proto-
col software is a really challenging task, and there
are still a few limitations in the prototype system
when encountering complex problems in the actual
production environment.

The automatic discovery technology for stateful
variables discussed above is based on the generation
and utilization patterns of variables, with instrumen-
tation analysis. As shown in efficiency evaluation,
instrumentation execution will create some perfor-
mance loss; it is an inherent flaw of dynamic taint
analysis, with relatively high time cost and space
overhead. For some complicated protocol software
programs, loading runtime libraries and doing li-
brary function calls will also be involved in the run-
ning process. In such cases, whether the recording
and replaying mechanism can remain deterministic
and whether the instrumentation analysis of library
function calls can remain efficacious by using our ap-
proach require further verification and evaluation.

As an implementation of one network proto-
col, the existence of stateful variables is a common
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Table 5 Determinacy of execution paths of network protocol software during recording and replaying analysis

Protocol software ntb_rec ntb_rep ntb_rep_rec Determinacy (%)

DAAP/forked-daapd 13 581 13 704 13 580 99.993
DICOM/Dcmtk 30 727 30 891 30 726 99.997
DNS/Dnsmasq 20 677 20 852 20 677 100
DTLS/TinyDTLS 17 355 17 377 17 354 99.994
FTP/LingtFTP 29 034 29 100 29 034 100
RTSP/Live555 27 470 27 532 27 470 100
SIP/Kamailio 36 004 36 108 36 001 99.992
SMTP/Exim 32 060 32 201 32 060 100
SSH/OpenSSH 39 828 39 319 39 243 98.531
TLS/OpenSSL 40 724 40 710 40 547 99.565
SSH/LibSSH 25 596 25 773 25 595 99.996

ntb_rec, ntb_rep, and ntb_rep_rec represent the numbers of translation blocks accessed during the execution of recording,
accessed during the execution of replaying, and observed in both replaying and recording execution trace, respectively

Table 6 Comparison of typical techniques related to identifying stateful variables

Technique Targeted source Static or Adapted for Analyzing Identifying
or author code or binary dynamic network protocol program states stateful variables

Behrad Garmany Source Static No No No
InvsCov Both Both Not fully Yes Partly
AFLNet Both Dynamic Yes Yes No
UAFL Source Both Not fully Partly Partly
StateAFL Source Dynamic Yes Yes Partly
SNPSFuzz Both Dynamic Yes Yes No
Our approach Both Both Yes Yes Yes

phenomenon, but not all of them are potentially
dangerous. Our plan is to obtain key information
about stateful variables and to identify key behav-
iors in the memory space. In the future, we may
use symbolic taint analysis and conclic testing meth-
ods based on this knowledge, to assist the analysis
tools in finding vulnerabilities more efficiently and
accurately in network protocol software.

7 Related works

7.1 Static analysis of detection of variables

Static program analysis methods have been
widely used in mining potential vulnerabilities, es-
pecially for detecting variables that may be mis-
taken or misused in programs. Giuffrida et al. (2013)
presented an infrastructure for monitoring multiple
types of variables. They defined a series of secu-
rity constraints as invariants, and then checked the
violation of these invariants by monitoring the real-
time execution. A static value-flow analysis method
was proposed by Ye et al. (2014), who built a value
flow graph based on source code to measure the un-

defined variables. Safelnit (Milburn et al., 2017) is
a binary-hardening-based approach for reducing the
usage of uninitialized variables. Reading variables
that have been allocated but not assigned in the
heap and stacks can be discovered and detected by
leveraging a multi-variant execution approach. Gar-
many et al. (2019) presented a static analysis frame-
work that transforms the binary executables into a
knowledge representation that builds the base for
specifically crafted algorithms to find uninitialized
variables. In addition, there are some systems that
implement methods combining static and dynamic
analysis (Bruening and Zhao, 2011; Stepanov and
Serebryany, 2015). For one thing, certain knowl-
edge can be generated by static analysis; for another
thing, the usage of variables on the executed paths
can be analyzed by fuzzing tools or testing suites
guided by this knowledge with some appropriate cor-
pus. In contrast, besides focusing on the life and
use of variables, we combine the program’s tracking
state transformation with static analysis, and use in-
strumentation technology to gather and analyze the
logic of variables, and as such, our approach is more
targeted for analyzing network protocol software.
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7.2 Stateful network protocol testing

There have been several techniques for discov-
ering vulnerabilities in network protocol software.
Fuzzing is a prevailing feasible approach for auto-
matic testing of program states with exploration and
detection. AFLNET (Pham et al., 2020) is the first
greybox fuzzer for protocol implementations, identi-
fying the server states and progressive regions in the
state space by using the server’s response codes. It
then senses the message structures and state tran-
sitions of the network protocol. InvsCov (Fioraldi
et al., 2021) tracks all variables at the basic-block
level to learn likely invariants and partition the state
space, so the feedback can be distinguished when
an input violates these invariants and rewards it.
StateAFL (Natella, 2022) instruments the protocol
software at compile-time, inserting probes on mem-
ory allocations and network I/O operations, and in-
fers the current protocol state of the target by analyz-
ing snapshots of long-lived memory areas at runtime
for stateful coverage-based greybox fuzzing. SNPS-
Fuzzer (Li et al., 2022) dumps the context informa-
tion about a specific state when the protocol soft-
ware is running and restores the snapshot when the
state needs to be fuzzed. It also proposes a mes-
sage chain analysis algorithm to explore more and
deeper states. Another type of vulnerability detec-
tion technique for network protocol software is model
checking. Musuvathi and Engler (2004) proposed a
model based on C and C++ code to check for errors
in TCP/IP and AODV implementations. Brumley
et al. (2007) analyzed different implementations of
network protocol and built models from them, and
then checked them against a protocol specification
model to discover errors in implementations. The
technology proposed in this paper can be applied
to stateful network protocol testing, and the results
can be an auxiliary engine for process scheduling in
fuzzing, guiding fuzzing tools to more complex paths
and deeper states, thereby improving the testing ac-
curacy and efficiency.

7.3 Recording and replaying techniques

The recording and replaying techniques must
continuously monitor the behavior of the OS and
record the responses to external non-deterministic
events for accuracy (Dunlap et al., 2002; Saito, 2005).
How to properly handle non-deterministic events be-
comes a core mechanism for deterministic replaying.

In general, it can be divided into a hardware method
and a software method. The former method cus-
tomizes hardware to handle non-deterministic events
(Hower and Hill, 2008; Montesinos et al., 2008;
Pokam et al., 2013), and the latter method relies
on modified OS kernels (Bergan et al., 2010; Avi-
ram et al., 2012). There are some typical works
with the capability of deterministic recording and re-
playing for the whole system besides PANDA. SMP-
ReVirt (Dunlap et al., 2008) supports recording and
replaying of an entire unmodified system with multi-
processor hardware. RR (O’Callahan et al., 2017)
is a lightweight tool that runs only one thread at a
time to avoid non-deterministic events caused by in-
teroperations between different CPU cores, working
in the user space. In our prototype system, the func-
tional modules are built upon PANDA. The main
reasons why we make this choice are as follows: (1)
repeatability—recordings can be replayed as many
times as needed, which means that the same se-
quence of instructions is executed in the same or-
der every time; (2) scalability—recordings can be
replayed with instrumentations or plugins that are
as heavy as needed for analysis; (3) determinacy—
recordings can be deterministic because PANDA
has taken a snapshot of the state of system first
and logged trace point information to distinguish
one state from another when it encounters non-
deterministic events.

8 Conclusions

In this paper, we infer and discover the stateful
variables that are used to store and reflect the state
of network protocol software from the life cycle and
operational characteristics of variables by analyzing
prominent operations in the critical areas of mem-
ory from activities of the program. We design and
implement a prototype system for automatically dis-
covering stateful variables in protocol software, and
then perform experiments for the prototype system
on nine programs in ProFuzzBench and two real-
world programs. The average TPR can reach 82%,
and the average precision can be up to about 96%.
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