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Abstract: A novel algorithm that combines the generalized labeled multi-Bernoulli (GLMB) filter with signal
features of the unknown emitter is proposed in this paper. In complex electromagnetic environments, emitter
features (EFs) are often unknown and time-varying. Aiming at the unknown feature problem, we propose a method
for identifying EFs based on dynamic clustering of data fields. Because EFs are time-varying and the probability
distribution is unknown, an improved fuzzy C-means algorithm is proposed to calculate the correlation coefficients
between the target and measurements, to approximate the EF likelihood function. On this basis, the EF likelihood
function is integrated into the recursive GLMB filter process to obtain the new prediction and update equations.
Simulation results show that the proposed method can improve the tracking performance of multiple targets,
especially in heavy clutter environments.
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1 Introduction

The objective of multi-target tracking is to
transform uncertain measurement information into
deterministic target state information. At present,
multi-target tracking methods include two cate-
gories: (1) data association algorithms (Guo YF
et al., 2015), such as probabilistic data association
(PDA) (Guo YF et al., 2016), joint PDA (JPDA)
(Guo YF et al., 2020a, 2020b; Zhu Y et al., 2021),
and multiple hypotheses tracking (MHT) (Chen
et al., 2004, 2008); (2) random finite set (RFS) meth-
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ods (Mahler RPS, 2007; Da et al., 2021). The former
requires complex data association operations. The
latter models the state and measurement information
of the target as an RFS, which can effectively avoid
the complex data correlation process and is a popular
multi-target tracking method nowadays. The core of
the RFS is the Bayesian multi-objective filter, which
propagates the posterior density of multi-objective
states recursively in time.

Because Bayesian multi-objective filters do not
have closed solutions, approximation methods such
as probability hypothesis density (PHD), cardinal-
ity PHD (CPHD), and multi-Bernoulli (MB) filters
have been proposed one after another (Mahler RPS,
2003; Mahler R, 2007; Ristic et al., 2013). It is as-
sumed that the multi-object probability distribution
in PHD and CPHD filters is a Poisson process and
an independent and identically distributed process,
respectively. PHD and CPHD filters recursively
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propagate the combination of the statistical mo-
ments and cardinality distribution of the posterior
distribution. It is assumed that the multi-target
probability distribution in the MB filter is an MB
process, and the MB filter directly approximates
the multi-objective probability distribution and re-
curses the parameters of the MB distribution. Imple-
mentations of these filters include Gaussian mixture
(GM) and sequential Monte Carlo (SMC) (Vo and
Ma, 2006; Li et al., 2016), as well as multiple ex-
tended versions (Li et al., 2017, 2018; Wang et al.,
2021), such as distributed PHD/CPHD filter (Bat-
tistelli et al., 2013; Da et al., 2020; Yi et al., 2020;
Li and Hlawatsch, 2021; Yi and Chai, 2021) and dis-
tributed Bernoulli filter (Li et al., 2019). However,
these filters cannot directly form track information.

To address the inherent drawback of the above
filters, Vo et al. (2014) introduced a conjugate prior
based on the Chapman–Kolmogorov equation to de-
rive a multi-target tracking algorithm for obtaining
target track labels, i.e., the generalized labeled multi-
Bernoulli (GLMB) filter. Vo et al. (2017) further
improved the real-time performance of the GLMB
filter by combining the prediction and update steps
and introducing Gibbs sampling to truncate the den-
sity. More extended applications have been devel-
oped, such as the multi-model GLMB filter (Yi et al.,
2017; Wu et al., 2021) and the distributed GLMB fil-
ter (Herrmann et al., 2021).

However, as the number of clutters in the target
tracking scene increases, the differentiation between
the target measurement and the clutter gradually
decreases. The tracking performance of the above
RFS filters will be degraded to different degrees.
To improve the anti-clutter performance of RFS fil-
ters, some algorithms integrate multi-dimensional
independent information into the RFS filters. Bar-
Shalom et al. (2005) proposed a target tracking algo-
rithm with classification information by integrating
target classification information into the data asso-
ciation process. In the target tracking scenarios, the
amplitude of the target echo is stronger than those
coming from clutter. Clark et al. (2010) proved that
the amplitude information of the target echo can im-
prove the multi-target state estimation accuracy, and
applied it to PHD and CPHD filters under Gaus-
sian conditions. Similarly, amplitude information
was integrated into MB and GLMB filters to im-
prove multi-target tracking performance in the lit-

erature (Liu C et al., 2018; Peng et al., 2018; Sun
et al., 2020). Doppler information was also widely
employed in multi-target tracking (Peng et al., 2018;
Jin et al., 2019).

In a multi-heterogeneous sensor tracking sys-
tem, we can not only obtain the target’s kinetic
information (Cao and Zhao, 2022), but also inter-
cept the emitter features (EFs) which are called the
pulse description words (PDWs), such as radio fre-
quency (RF), pulse width (PW), and pulse repetition
frequency (PRF). Each feature reflects the electro-
magnetic characteristics of the emitter in different
dimensions, and plays a vital role in the classifica-
tion and identification of the emitter. RF is the fre-
quency at which electromagnetic waves are emitted,
and is closely related to the working state and mod-
ulation mode of the emitter. PW is the duration of
the transmitted pulse to the maximum value. PRF
determines the maximum unambiguity range and ra-
dial velocity of the radar. To our knowledge, there
are few studies of RFS filters with EFs; Zhou and
Zhu (2015) and Zhu YQ (2015) are the only ones in
which EFs were integrated in a PHD filter with the
prerequisite that the EFs are known and non-time-
varying. The filter does not form track information.

In a real target tracking scenario, the target
track is necessary and the EFs are usually unknown
and time-varying. In this paper, the state and mea-
surement of the target are extended, and the EF
identification method based on dynamic clustering
of the data field is proposed to solve the problem
of unknown EF. On this basis, an improved fuzzy
C-means (FCM) algorithm is proposed, which can
approximately calculate the time-varying EF like-
lihood and solve the problems that EFs are time-
varying and the probability distribution is unknown.
Then the EFs are integrated into the GLMB filter to
solve the problem that the track cannot be generated
directly. The filter proposed in this paper can im-
prove multi-target tracking performance, especially
in heavy clutter environments.

2 Background

We briefly review the GLMB filter, including
labeled RFS, multi-object state transition model,
multi-object observation model, and GLMB. Read-
ers can refer to Vo et al. (2014) for details.
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2.1 Labeled RFS

Denote X as the single target state space and L

as the discrete label space. L : X × L → L is the
projection defined by L((x, �)) = �. Then L(X) is
called the label of point x ∈ X × L. A finite subset
X of X× L is said to have distinct labels if and only
if X and its labels L(X) = {L(x) : x ∈ X} have
the same cardinality. The available label indicator
function is defined as

Δ(X) � δ|X|[|L(X)|], (1)

where |X | is the cardinality distribution.

2.2 Multi-object state transition model

Given the multi-object state X , each (x, �) ∈ X

either survives with probability Ps(x, �) and propa-
gates to get a new state (x+, �+), or dies with prob-
ability 1 − Ps(x, �). For notational compactness,
the subscript k for the time index is omitted and
the subscript “+” is used to denote the next time.
The new state includes the objects of survival and
new birth. The set B+ of the new birth objects is
distributed according to the labeled multi-Bernoulli
(LMB) density:

fB+ (B+) =Δ (B+)
[
1B+rB,+

]L(B+)

· [1− rB,+]
B+−L(B+)

p
B+

B,+,
(2)

where rB,+(�) is the probability of the birth object
with label �, pB,+(·, �) is the distribution of the cor-
responding kinetic states, and B is the label space for
the birth objects. Assuming that the target’s move,
birth, and death are independent of each other, the
multi-object transition density is (Vo et al., 2014)

f+ (X+|X) =fs,+ (X+ ∩ X× L|X)

· fb,+ (X+ − (X× L)) ,
(3)

where fs,+(·) and fb,+(·) represent the density func-
tions of the surviving target and the birth target,
respectively. X+ is the multi-target state at the next
time, and

fs,+(W |X) = Δ(W )Δ(X)1L(X)(L(W ))[Φ(W ; ·)]X ,
(4)

Φ(W ;x, �) =
(
1− 1L(W )(�)

)
(1− Ps(x, �))

+
∑

(x+,�+)∈W

δ� [�+]Ps(x, �)f+ (x+|x, �) ,

(5)

where 1L(X)(L(W )) is the generalization of the
indicator function. When L(X) ⊆ L(W ),
1L(X)(L(W )) = 1; otherwise, 1L(X)(L(W )) = 0.
Δ(·) is the distinct label indicator function. Ps(x, �)

is the target survival probability. When �+ = �, we
have δ� [�+] = 1. f+ (x+|x, �) represents the state
transition function.

2.3 Multi-object observation model

Given the multi-object state X , each (x, �) ∈ X

is either detected with probability PD(x, �) or missed
with probability 1 − PD(x, �). The multi-target ob-
servation set consists of detected objects and Pois-
son clutter (density K). Assuming that the detec-
tions are independent of each other and of clutter,
the multi-object likelihood function is given by (Vo
et al., 2014)

g(Z|X) =
∑

θ∈Θ(L(X))

∏

(x,�)∈X

ψ
(θ(�))
Z (x, �), (6)

where Θ is the set of positive 1−1 maps θ : L → {0 :

|Z|}, and

ψ
(θ(�))
Z (x, �) =

⎧
⎨

⎩

PD(x,�)g(zθ(�)|x,�)
K(zθ(�))

, θ(�) > 0,

1− PD(x, �), θ(�) = 0.
(7)

Here, map θ represents that � generates detection
zθ(�) ∈ Z with θ(�) = 0 if � is undetected, and any
measurement is assigned to at most one object.

2.4 GLMB

An effective implementation of GLMB is δ-
GLMB, which is a special GLMB. In this study, δ-
GLMB is abbreviated as GLMB and its density is
defined by

π(X) = Δ(X)
∑

ξ∈Ξ,I∈F(L)

ω(I,ξ)δI [L(X)]
[
p(ξ)
]X

,

(8)
where ω(I,ξ) and p(ξ)(·, �) are the weights and proba-
bility density functions respectively, and

∑
ω(I,ξ) =

1. ξ is the history of association maps, and I is the
set of object labels.

The cardinality distribution of the GLMB is
given by

Pr(|X | = n) =
∑

I,ξ

δn[|I|]ω(I,ξ), (9)
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while the existence probability and probability
density of the track with label � are

r(�) =
∑

I,ξ

1I(�)ω
(I,ξ), (10)

p(x, �) =
1

r(�)

∑

I,ξ

1I(�)ω
(I,ξ)p(ξ)(x, �). (11)

3 GLMB filter with EFs

This section describes the implementation of the
GLMB filter with EFs. Section 3.1 gives the likeli-
hood approximation calculations for the EFs. The
recursive process of the GLMB filter with EFs is
shown in Section 3.2.

3.1 Likelihood approximation of EFs

Due to the complexity of the real electromag-
netic environment, EFs are usually unknown and
time-varying, and their distribution is also unknown.
Therefore, the likelihood of the emitters is not di-
rectly available. To address these issues, dynamic
clustering based on data fields is first used to esti-
mate the EFs. Then, inspired by PDA (it considers
that all measurements can be derived from the tar-
get with different probabilities), an improved FCM
algorithm is proposed to approximate the correlation
weights of measurements with respect to the target
and clutter, i.e., the EF likelihood.

3.1.1 EF estimation

The core idea of dynamic clustering based on
data fields is to treat the EF samples as particles

with mass. Dynamic clustering can radiate energy
into the feature space, thus creating a data field. Ac-
cording to the data field principle, the samples in
the feature space interact with each other. The dy-
namic clustering is accomplished by moving to differ-
ent clustering centers under the action of field forces
(Guo Q et al., 2016).

Given a set {v1,v2, · · · ,vN} of EF samples,
where vi (i = 1, 2, · · · , N) is the position vector in-
cluding the RF, PW, and PRF information, accord-
ing to the nuclear radiation field model, the potential
function of any position vector v is

ϕ(v) =

N∑

i=1

ϕi(v) =

N∑

i=1

mie
−(‖v−vi‖/σ)2 , (12)

where mi is the mass of feature i, and
∑N

i=1mi = 1.
“‖ · ‖” represents the Euclidean distance. σ is the
impact factor, controlling the range of effect on the
data sample. Based on Eq. (12), the field intensity
of target vi at time t is

F (t) (vi) = mi

N∑

j=1

mjrij(t)e
−(‖rij(t)‖/σ)2 , j �= i,

(13)
where rij(t) is the distance vector between targets
vi and vj . Each target moves in the direction of
the larger potential value under the action of the
field force. After many iterations, we will obtain the
cluster centers of the EFs. Fig. 1 shows an example of
dynamic clustering. Each of the equipotential lines
has the same potential value. The local maximum
potential value surrounded by equipotential lines is
called the potential center. Usually, the potential

Fig. 1 An example of dynamic clustering: (a) potential field formed by the data sample in a two-dimensional
space; (b) potential value of the data sample
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center is located at the center of the data sample, so
the potential center is often regarded as the cluster
center of the data sample.

3.1.2 Likelihood calculation of the EFs

The EFs obtained in Section 3.1.1 are usually
time-varying and their density distribution is un-
known. Inspired by PDA (all measurements in the
correlation gate can originate from the target with
different probabilities; i.e., each measurement can
be associated with both target and clutter), an im-
proved FCM algorithm is proposed. It can approxi-
mate the likelihood of EFs by calculating the corre-
lation coefficient of the measurement with respect to
the target and clutter. Because the FCM algorithm
is a data clustering method based on the optimiza-
tion of the objective function, the clustering result is
the degree of correlation of each sample to the cluster
center. The concept of correlation degree is the same
as the concept of likelihood in this study. They are
all correlation coefficients between the measurement
and the target. The objective function of the FCM
clustering algorithm can be given by

J =

ns∑

i=1

nc∑

j=1

μm
ijd

2
ij , (14)

where ns and nc represent the numbers of samples
and clusters respectively, m is the weighted index,
μij ∈ [0, 1] denotes the correlation coefficient be-
tween sample i and cluster j, and dij represents the
distance between sample i and cluster j. To optimize
the objective function J , the correlation coefficient
is given by a Lagrange multiplier algorithm:

μij =
1

∑nc

k=1

(
dij

dik

)2/(m−1)
=

(
d2ij
)1/(1−m)

∑nc

k=1 (d
2
ik)

1/(1−m)
.

(15)
In the GM implementation, each Gaussian com-

ponent of the predicted intensity represents a candi-
date target, so the feature parameter corresponding
to each Gaussian component can be treated as a cen-
ter of the cluster. The correlation coefficient of each
measurement with respect to the target and clutter
can be calculated based on the center of the cluster.

Assume that the feature measurement set at
time k is

{
e
(i)
k =

(
rf′k,i, prf

′
k,i, pw

′
k,i

)}Ne
k

i=1
, where N e

k

is the number of measurement points. Because the
three-dimensional features of RF, PRF, and PW can

be processed independently, we take RF as an exam-
ple to illustrate the calculation process of the corre-
lation coefficient, and then fuse the correlation coef-
ficient of the three-dimensional features.

However, the time-varying features lead to the
time-varying center of the cluster. We need to cal-
culate the optimal center of the cluster at each time.
First, a set of cluster center candidates is established
which contains all possible values of RF features. It
has been obtained in Section 3.1.1:

Ecenter =
{
(rfcenter1 , rfcenter2 , · · · , rfcenterl1)1 ,

(rfcenter1 , rfcenter2 , · · · , rfcenterl2)2 , · · · ,
(rfcenter1 , rfcenter2 , · · · , rfcenterln)Jk

}
,

(16)
where rfcenter is the cluster center of the RF features,
and Jk is the number of candidate targets at time k.
Then, we take a sample as an example to calculate
the correlation coefficient of each cluster center in
Ecenter:

μi,center =
{
(μi,center1 , μi,center2 , · · · , μi,centerl1)1 ,

(μi,center1 , μi,center2 , · · · , μi,centerl2)2 , · · · ,
(μi,center1 , μi,center2 , · · · , μi,centerln)Jk

}
.

(17)
According to the principle of the maximum

correlation coefficient, the optimal cluster center
rfcenter = {rfk,1, rfk,2, · · · , rfk,Jk

} of each candidate
target is obtained. The corresponding distance ma-
trix is given by

Drf =

⎛

⎜
⎜
⎜
⎜
⎝

d210 d211 · · · d21Jk

d220 d221 · · · d22Jk

...
...

...
d2Ne

k0
d2Ne

k1
· · · d2Ne

kJk

⎞

⎟
⎟
⎟
⎟
⎠
, (18)

where

d2ij =

{∥
∥rf′k,i − rfk,j

∥
∥2 , j �= 0,

‖Δrf‖2 , j = 0.
(19)

Here, Δrf is the resolution about RF. Finally, the
correlation coefficient matrix Urf of the RF feature
is

Urf =

⎛

⎜
⎜
⎜
⎜
⎝

μrf
10 μrf

11 · · · μrf
1Jk

μrf
20 μrf

21 · · · μrf
2Jk

...
...

...
μrf
Ne

k0
μrf
Ne

k1
· · · μrf

Ne
kJk

⎞

⎟
⎟
⎟
⎟
⎠
. (20)
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In Urf , μrf
i0 represents the correlation coefficient

of measurement i with respect to the clutter. Sim-
ilarly, we can obtain the correlation coefficient ma-
trices of PRI and PW as Uprf and Upw, respectively.
Therefore, for arbitrary feature measurements, the
likelihoods of EFs with respect to the candidate tar-
get and clutter can be approximately calculated by
fusing different features (RF, PRF, and PW):

gk =
μrf
ijμ

prf
ij μ

pw
ij

∑Jk

l=0 μ
rf
ilμ

prf
il μ

pw
il

, (21)

ck =
μrf
i0μ

prf
i0 μ

pw
i0∑Jk

l=0 μ
rf
ilμ

prf
il μ

pw
il

. (22)

3.2 Recursive process of the GLMB filter with
EFs

The signal features of the radar emitter are usu-
ally highly related to the actual application of the
radar, and are not necessarily related to whether the
platform is moving. Therefore, we consider the EFs
and the target kinetic information to be independent.

The state and measurement of the target are
augmented. The augmented state x̃ and measure-
ment z̃ include not only kinetic information but also
EF information:

x̃ = [x;xe] , z̃ = [z; ze] , (23)

where x and z represent the target kinetic state and
measurement respectively, and xe and ze indicate the
EF state and measurement information respectively.

Given the GLMB filtering density (Eq. (8)) at
time k, the likelihood of the EFs in Section 3.1 is
integrated into the GLMB recursion (Vo et al., 2017).
The GLMB filtering density at time k+1 is given by

πZ+(X) ∝ Δ(X)
∑

I,ξ,I+,θ+

ω(I,ξ)ω
(I,ξ,I+,θ+)
Z+

·δI+ [L(X)]
[
p
(ξ,θ+)
Z+

]X
,

(24)

where I ∈ F(L), ξ ∈ Ξ, I+ ∈ F (L+) , θ+ ∈ Θ+, and

ω
(I,ξ,I+,θ+)
Z+

=1Θ+(I+) (θ+)
[
1− P̄ (ξ)

s

]I−I+ [
P̄ (ξ)
s

]I∩I+

· [1− rB,+]
B+−I+ r

B+∩I+
B,+

[
ψ̄
(ξ,θ+)
Z+

]I+
,

(25)
P̄ (ξ)
s (�) =

〈
p(ξ)(·, �), Ps(·, �)

〉
, (26)

ψ̄
(ξ,θ+)
Z+

(�+) =
〈
p̄
(ξ)
+ (·, �+) , ψ(θ+(�+))

Z+
(·, �+)

〉
, (27)

p̄
(ξ)
+ (x+, �+)

=1L (�+)

〈
Ps(·, �)f+ (x+ | ·, �+) , p(ξ) (·, �+)

〉

P̄
(ξ)
s (�+)

+ 1B+ (�+) pB,+ (x+, �+) ,

(28)

p
(ξ,θ+)
Z+

(x+, �+) =
p̄
(ξ)
+ (x+, �+)ψ

(θ+(�+))
Z+

(x+, �+)

ψ̄
(ξ,θ+)
Z+

(�+)
,

(29)

ψZ+(x, �) =⎧
⎪⎨

⎪⎩

PD(x,�)g+
(
z
θ(�)
+ |x,�

)
g+

(
z
θ(�)
e,+ |x,�

)

λc
(
z
θ(�)
+

)
c
(
z
θ(�)
e,+

) , θ(�) > 0,

1− PD(x, �), θ(�) = 0.

(30)
Here, 〈·〉 denotes the inner product, and g+

(
z
θ(�)
+ | ·

)

and c
(
z
θ(�)
+

)
represent the measurement likelihood

and the clutter density of the kinetic state, respec-
tively. g+

(
z
θ(�)
e,+ | ·

)
and c

(
z
θ(�)
e,+

)
denote the mea-

surement and clutter likelihood functions of the EF,
respectively. λ is the average clutter intensity.

The GLMB filter recursive process with EFs fol-
lows the efficient implementation in Vo et al. (2017).
Ranked assignment and Gibbs sampling are used
to efficiently generate GLMB components with high
filtering weights, while maintaining diversity across
the generated samples. For the state estimation of
the multiple targets, we use a suboptimal marginal
multi-objective estimator (Vo et al., 2014). The max-
imum a posteriori (MAP) cardinality estimate is first
found from the cardinality distribution. Then, we ex-
tract the labels and average estimates of the multi-
target states from the highest weighted component
that has the same cardinality as the MAP cardinality
estimate.

4 Simulations

In this section, we compare the tracking perfor-
mances of the proposed EFs aided by GLMB and
GLMB filters (Vo et al., 2017) under linear Gaussian
conditions.

The size of the target surveillance region is V =

[−1000, 1000] m× [−1000, 0] m. Each target can be
described by its state vector x = (x, ẋ, y, ẏ)T, which
includes the positions and speeds of the x-axis and y-
axis. Assume that the velocity of the target is nearly
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constant, and its state equation can be given by

xk =

⎡

⎢
⎢
⎣

1 Ts 0 0

0 1 0 0

0 0 1 Ts
0 0 0 1

⎤

⎥
⎥
⎦xk−1+

⎡

⎢⎢
⎢
⎣

T 2
s

2 0

Ts 0

0
T 2
s

2

0 0

⎤

⎥⎥
⎥
⎦
µk−1,

(31)
where Ts = 1 s is the sampling period. µk−1 is state
process noise and its covariance matrix is

Qk−1 =

[
σ2 0

0 σ2

]
, (32)

where σ = 2 m/s2. In the simulations, the EFs
are ek = (rfk, prfk, pwk)

T. Their specific parame-
ter settings, which are unknown in our algorithm,
are shown in Table 1. Take RF as an example to
illustrate the meaning of stagger, agility, and jitter
in Table 1.

Stagger uses two or more RF features to form
a set {rf1, rf2, · · · , rfme}, where me is the number of
elements. The RF features are repeatedly generated
by

rfk = rfi, i = k mod me. (33)

RF jitter is given by rfk = rf0 + ε, where rf0
is the mean of the feature and ε = [−ς, ς ] follows
a Gaussian distributed random variable. ς is the
maximum jitter for the feature, set to 5%.

Agility means that the carrier frequency of ad-
jacent pulses changes rapidly and randomly within a
certain frequency band, and its model is

rfk = rf0 +
Bs

2
sin (2πkfTr + ϕ0) , (34)

where Bs is the slip bandwidth, f is the agile fre-
quency, Tr is the arrival time, and ϕ0 is the initial
phase.

The measurement equations of the target are

zk =

[
1 0 0 0

0 0 1 0

]
xk +wk, (35)

e′k = ek +we
k, (36)

where e′k is the EF measurement, ek is the EF, and
wk and we

k are the zero mean Gaussian noises with
covariance matrices

Rk =

[
σ2
x 0

0 σ2
y

]
, Re

k =

⎡

⎣
σ2
rf 0 0

0 σ2
prf 0

0 0 σ2
pw

⎤

⎦ .

(37)
Here σx = σy = 10 m, σrf = 30 MHz, σprf = 5 kHz,
and σpw = 10 μs.

The resolution of the feature is the variance of
the measurement noise. The probability of target
detection is pD,k = 0.98. The simulation time is
T = 100 s. Clutter can be generated according
to a Poisson point-process with Kk(z) = λV c(z),
where λ is the average number of clutters per scan,
V is the surveillance region, and c(z) is the spa-
tial distribution of clutter, which is assumed to
be uniform in the surveillance region. RF, PRF,
and PW of the clutter are uniformly distributed in
[0, 5000] MHz, [0, 1000] kHz, and [0, 1000] μs,
respectively. The target survival probability is
ps,k = 0.99, and the birth model is an LMB RFS

with πb =
{
r
(i)
b , p

(i)
b

}4

i=1
, where rb = 0.03 and

p
(i)
b = δ

(
eb − e

(i)
b

)
N
(
x;m

(i)
b ,Pb

)
with m

(1)
b =

[0, 0, 0, 0]T, m
(2)
b = [400, 0,−600, 0]T, m

(3)
b =

[−800, 0,−200, 0]T, m(4)
b = [−200, 0, 800, 0]T, Pb =

diag (10, 10, 10, 10)
2. e(i)b is the cluster center of EFs

and is randomly initialized according to the solution
result in Section. 3.1.1. In the proposed method, the
weighted form of FCM is m = 5.

As for the tracking performance evaluation, we
use the optimal subpattern assignment (OSPA) met-
ric (Schuhmacher et al., 2008), whose cut-off is cOSPA

=100 and norm order is pOSPA=100. For each case,
we perform 100 Monte–Carlo (MC) simulations.

Table 1 Signal features of the emitters

Emitter Working state Radio frequency (MHz) Pulse repetition frequency (kHz) Pulse width (μs)

1 1 1000–1200 (Agility) 10–15 (Stagger) 320–360 (Stagger)
2 1200 (Jitter) 20 (Jitter) 265–315 (Agility)
3 1300–1400 (Stagger) 25 (Jitter) 320–360 (Agility)

2 1 1400 (Jitter) 30 (Jitter) 415–465 (Agility)
3 1 1500–1600 (Stagger) 35 (Jitter) 280–320 (Agility)

2 1700 (Jitter) 35–40 (Agility) 320–370 (Stagger)
3 1800–1900 (Agility) 35 (Jitter) 370–420 (Agility)

4 1 2000 (Jitter) 40–45 (Stagger) 225–275 (Agility)

Agility, jitter, and stagger in the bracket are the modulation types of the emitter features
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The cluster center features after dynamic clus-
tering based on the data field are shown in Fig. 2.
It can be seen that there are seven cluster centers
after clustering, and the EFs of each cluster center
are shown in Table 2.

The trajectory of the target is shown in Fig. 3.
These trajectories with cluttered measurements and
position estimates from a single simulation are shown
in Fig. 4 (150 clutter returns per scan over the re-
gion). The born time of targets 1, 2, and 3 is the
same, k = 1 s. Target 4 is born at k = 20 s. Targets
1 and 3 die at time k = 70 s, and targets 2 and 4
die at time k = 100 s. It can be seen from Fig. 4
that the proposed method has satisfactory tracking
performance in the cluttered environment.

To verify the advantages of the proposed
method, it is compared with the GLMB filter (Vo
et al., 2017) with the same clutter density (150 clut-
ter returns per scan over the region). Figs. 5 and 6
show the cardinality estimation and OSPA distance
of the proposed method and GLMB filter over the
time, respectively. It can be seen that the proposed
method has significant advantages.
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Fig. 2 Dynamic clustering based on the data field
PW: pulse width; RF: radio frequency; PRF: pulse repetition
frequency

Table 2 Features of each cluster center

Cluster center PW (μs) RF (MHz) PRF (kHz)

1 252.62 2257.74 42.61
2 293.13 1251.42 21.06
3 300.10 1553.09 36.39
4 339.00 1446.63 25.92
5 339.20 1055.36 12.64
6 375.65 1803.17 36.91
7 441.85 1509.07 31.48

PW: pulse width; RF: radio frequency; PRF: pulse repetition
frequency

To further verify the anti-clutter performance of
the proposed method, the average OSPA distances
of the proposed method and GLMB filter are com-
pared under different clutter intensities. As shown
in Fig. 7, the average OSPA distance of the GLMB
filter increases rapidly with increasing clutter inten-
sity, while the average OSPA distance of the pro-
posed method increases slowly. This indicates that
the performance of the GLMB filter is susceptible

x 

y

Fig. 3 Target trajectories
At “©” locations, targets are born and at “�” locations,
targets die

x
y

Fig. 4 True target positions and position estimates
on x (a) and y (b) coordinates

Fig. 5 Cardinality estimation of the GLMB and the
GLMB with the EF filter
GLMB: generalized labeled multi-Bernoulli; EF: emitter feature
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Fig. 6 OSPA distance of the GLMB and GLMB with
the EF filter
OSPA: optimal subpattern assignments; GLMB: generalized la-
beled multi-Bernoulli; EF: emitter feature
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Fig. 7 Average OSPA distance vs. the number of
clutters per scan
EF: emitter feature; GLMB: generalized labeled multi-Bernoulli;
OSPA: optimal subpattern assignments

to the clutter, while the proposed method is less
susceptible to the clutter (i.e., it has stronger re-
sistance to the clutter).

In summary, the proposed method has not only
satisfactory multi-target tracking performance, but
also satisfactory anti-clutter performance.

5 Conclusions

This paper proposes an improved GLMB filter
that integrates unknown and time-varying features of
the emitter signals. It employs the feature informa-
tion of the emitter to enhance the discrimination be-
tween the target and the clutter. It can be seen from
the simulation results that the proposed method has
significant performance advantages compared with
the GLMB filter in heavy clutter scenarios.
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