
He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 41

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Scalability and efficiency challenges for the exascale
supercomputing system: practice of a parallel supporting
environment on the Sunway exascale prototype system∗

Xiaobin HE†§, Xin CHEN†§, Heng GUO, Xin LIU†‡, Dexun CHEN†‡, Yuling YANG,
Jie GAO, Yunlong FENG, Longde CHEN, Xiaona DIAO, Zuoning CHEN

National Research Center of Parallel Computer Engineering and Technology, Beijing 100190, China
†E-mail: hexiaobin_1984@163.com; ischen.xin@foxmail.com; yyylx@263.net; adch@263.net

Received Sept. 25, 2022; Revision accepted Nov. 29, 2022; Crosschecked Dec. 8, 2022

Abstract: With the continuous improvement of supercomputer performance and the integration of artificial intel-
ligence with traditional scientific computing, the scale of applications is gradually increasing, from millions to tens
of millions of computing cores, which raises great challenges to achieve high scalability and efficiency of parallel
applications on super-large-scale systems. Taking the Sunway exascale prototype system as an example, in this paper
we first analyze the challenges of high scalability and high efficiency for parallel applications in the exascale era.
To overcome these challenges, the optimization technologies used in the parallel supporting environment software
on the Sunway exascale prototype system are highlighted, including the parallel operating system, input/output
(I/O) optimization technology, ultra-large-scale parallel debugging technology, 10-million-core parallel algorithm,
and mixed-precision method. Parallel operating systems and I/O optimization technology mainly support large-
scale system scaling, while the ultra-large-scale parallel debugging technology, 10-million-core parallel algorithm,
and mixed-precision method mainly enhance the efficiency of large-scale applications. Finally, the contributions to
various applications running on the Sunway exascale prototype system are introduced, verifying the effectiveness of
the parallel supporting environment design.

Key words: Parallel computing; Sunway; Ultra-large-scale; Supercomputer
https://doi.org/10.1631/FITEE.2200412 CLC number: TP302

1 Introduction

China’s high-performance computing (HPC) is
entering the exascale era. Compared with the ex-
isting Sunway TaihuLight—China’s strongest super-
computer system, the number of computing cores of
the exascale system will be greatly increased and will
be much more than 10 million. The growth in the
scale of the exascale system will release huge comput-
§ These two authors contributed equally to this work
‡ Corresponding authors
* Project supported by the Key R&D Program of Zhejiang
Province, China (No. 2022C01250) and the National Key R&D
Program of China (No. 2019YFA0709402)

ORCID: Xiaobin HE, https://orcid.org/0000-0001-6785-1561;
Xin CHEN, https://orcid.org/0000-0002-0562-0319
c© Zhejiang University Press 2023

ing power. Taking into account the scalability and
efficiency of parallel applications under such a huge
parallel scale raises great challenges to the design of
the exascale system. In addition, with the increas-
ing demand for computing power in artificial intel-
ligence (AI) applications, the fusion of AI and HPC
applications has become an important breakthrough
direction for HPC applications (Kurth et al., 2018;
Jia et al., 2020). It is also a challenge to support the
high scalability and efficiency of AI applications in
the exascale era of HPC.

The major challenges are as follows:

1. Scalable management to support parallel
applications

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


42 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

In recent years, the performance improvement
of the HPC system depends much more on the in-
crease of the number of processor cores. The num-
ber of computing cores of Sunway TaihuLight (Fu
et al., 2016) has exceeded 10 million, and the num-
ber of computing cores of the exascale supercom-
puter will be much more than 10 million. There-
fore, scalable management is required to flexibly sup-
port parallel applications to achieve the partitioning,
startup, detection, low-power control, and stopping
of the parallel program running on tens of millions
of cores, to ensure the high efficiency of application
management.

2. High-concurrency input/output (I/O) to sup-
port parallel applications

In the exascale era, due to the unprecedented
application scale of HPC, the amount of data gen-
erated during the running of the application also in-
creases explosively. The process number of parallel
data access may reach tens of thousands or even tens
of millions. It is difficult for the traditional single
construction with the shared storage system to meet
the application requirements. Therefore, it is nec-
essary to design a data access technique with large
capacity, high bandwidth, high concurrency, and low
cost for exascale applications, which can flexibly sup-
port concurrent data access of the parallel applica-
tion running on tens of millions of computing cores.

3. Scalable debugging and tuning to support
parallel applications

In the exascale era, due to the huge scale of ap-
plication of HPC, it is common to encounter abnor-
mal running of applications. In addition, to discover
potential bottlenecks with respect to performance,
scalability, and so on, it is necessary to collect mas-
sive application running information, so as to con-
duct data sampling during the application running
(Lin et al., 2021). With the sharp increase in the sys-
tem scale and application complexity, the amount of
debugging information data also increases dramati-
cally. Traditional methods have been unable to meet
the requirements of scalability and complexity of par-
allel applications in the exascale era. Therefore, it
is necessary to implement a debugging and tuning
mechanism oriented to the characteristics of the ex-
ascale system, reducing the interference of data col-
lection and analysis on applications, and improving
the efficiency of debugging and tuning in super-large-
scale scenarios.

4. Efficient parallel algorithms to support par-
allel applications running on tens of millions of com-
puting cores

In the exascale era, to maximize the comput-
ing capability, HPC system developers often need to
design complex heterogeneous on-chip storage and
interconnection systems (Hluchý et al., 2020). Mean-
while, to support the super-large-scale system, it is
necessary to build a complex network interconnec-
tion system. It is a great challenge to design parallel
applications that can maximize the potential of the
system in terms of computing and network inter-
connection. Therefore, it is necessary to refine the
common requirements of HPC applications, provide
a scientific computing parallel framework for specific
supercomputing processors and interconnection net-
work platforms, reduce the programming’s complex-
ity, and ensure the efficient running of applications.

5. Efficient support for AI applications
AI applications show a trend of integration with

traditional HPC, which shows higher requirements
for HPC systems in the exascale era. The purpose
is to adapt to the special configuration of precision
and computing power in the field of AI, improve the
computing efficiency by reducing the precision, and
reduce the pressure of data on memory and commu-
nication. Therefore, providing an AI-oriented paral-
lel application ecology to support the efficient run-
ning of large-scale AI applications on HPC systems
is a necessity.

As a representative in the field of supercomput-
ing in China, the Sunway exascale prototype system
(SEPS) is an exploration to verify the technology
route of the next-generation Sunway supercomput-
ing. The system equipped with the SW26010pro
many-core processors and the self-developed high-
speed network is deployed in the National Supercom-
puting Center in Jinan. Considering the above five
challenges, the system implements a collaborative
design and optimization for the parallel supporting
environment, including the parallel operating sys-
tem, the storage system, the debugging and tuning
system, the scientific and engineering parallel ap-
plication framework, and the AI ecosystem, and a
series of innovative technologies are proposed. The
applicability of the above techniques to exascale su-
percomputers has been verified by the important ap-
plication achievements acquired recently on SEPS.



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 43

2 SEPS architecture

SEPS is a small-scale verification system that
is designed according to the exascale application re-
quirements, and can be scaled up to the exascale
level. The architecture of SEPS is similar to that of
Sunway TaihuLight. As shown in Fig. 1, SEPS con-
sists of the computing system, the computing net-
work, the storage system, the management cluster,
the application debugging server, and the applica-
tion server. The computing system is built using
SW26010pro processors, which are interconnected

Fig. 1 Architecture of the Sunway exascale prototype
system

through the self-developed Sunway computing net-
work. The storage system consists of the burst buffer
and disk storage, provides global shared storage ser-
vices for the computing nodes, and is interconnected
with the whole system through the self-developed
Sunway network. The management cluster provides
the management functions for the whole system. The
application debugging server provides debugging and
tuning services for the applications. The application
server provides services such as application compil-
ing, submitting, and viewing for users.

The system is equipped with the heteroge-
neous many-core processor SW26010pro, which con-
tains 390 computing cores. The architecture of
the many-core processor SW26010pro is shown in
Fig. 2. All computing cores in SW26010pro are di-
vided into six core groups (CGs), and each CG con-
sists of one management processing element (MPE)
and 64 computing processing elements (CPEs), pro-
viding powerful computing capabilities. The sys-
tem achieves network interconnection through Sun-
way’s self-developed network, supports the remote
direct memory access (RDMA) communication pro-
tocol, and has large network bandwidth, which sup-
ports large-scale applications for high-speed mes-
sage passing interface (MPI) communication and

CG4 CG3

Internetwork

CG1 CG2CG0

CG5

Network 
interface

Network 
interface

CPE
array

DDR4

MPE

0 1
8 9

2 3
10 11

4 5
12 13

6 7
14 15

16 17
24 25

18 19
26 27

20 21
28 29

22 23
30 31

32 33
40 41

34 35
42 43

36 37
44 45

38 39
46 47

48 49
56 57

50 51
58 59

52 53
60 61

54 55
62 63

CPE array
8×8

Fig. 2 Architecture of the many-core processor SW26010pro (CG: core group; CPE: computing processing
element; DDR: double data rate; MPE: management processing element)



44 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

I/O. Moreover, applications running on SEPS can
be scaled up to 10 million computing cores.

3 Design of the parallel supporting
environment

The parallel supporting environment of SEPS
provides a comprehensive basic parallel operating
environment for parallel applications. As shown in
Fig. 3, it is composed of the parallel operating sys-
tem, the distributed storage system, the debugging
and tuning system, the scientific computing parallel
framework, and the AI ecosystem.

Fig. 3 Components of the parallel supporting environ-
ment (DNN: deep neural network; ROFS: read-only
file system; HADAFS: HADA file system)

3.1 Parallel operating system

The resource management for the whole system
on SEPS enables users to execute their jobs concur-
rently and achieve the unified management, monitor-
ing, and on-demand allocation for many-core com-
puting nodes. The software helps the system con-
tinue to run even if some failure occurs, and helps
control the energy consumption of applications. The
structure of the parallel operating system is shown
in Fig. 4.

Job management adopts the adaptive multilevel
parallel architecture to support the efficient man-
agement of user jobs in large-scale systems. It can
achieve efficient start-up and operation control of
large-scale parallel jobs and provide users with rich

functions, strong scalability, and a convenient job
environment.

Resource management provides the efficient
management and allocation of different granulari-
ties and heterogeneous resources for the large-scale
system. It adopts the hierarchical parallel and inter-
layer pipeline control mode to replace the traditional
large-scale one-to-many control with a simpler, mul-
tiple parallel one-to-many control. In this way, the
control pressure of the master is reduced, and the
scalability of the system is greatly improved.

Usability management improves the fault-
tolerant operation ability of the system and sup-
ports the reliable operation of large-scale applica-
tions through the fault-tolerant mechanism for typi-
cal application characteristics.

Power management adopts a job-driven power-
capping control method to balance performance and
energy issues effectively. With this method, the
large-scale system can operate efficiently in terms
of energy usage.

3.2 Storage system

SEPS carries a hybrid storage system, consisting
of a global file system (GFS), a burst buffer file sys-
tem (HADAFS), and a read-only file system (ROFS).
The storage architecture is shown in Fig. 5. The
three file systems use different mount paths, so the
applications could choose different paths to store as
per their needs: GFS for general application data ac-
cess, HADAFS for high-performance burst data stor-
age, and ROFS for storage of AI application datasets
or dynamic libraries.

GFS is the most commonly used unit, adopting
a forwarding architecture. The bottom-level GFS is
built on the dedicated I/O nodes and the disk arrays
based on the Lustre file system (Ma et al., 2012). The
upper-level lightweight file system (LWFS) provides
services for forwarding I/O requests from comput-
ing nodes to the backend parallel file system, which
provides an interface compatible with portable op-
erating system interface (POSIX) semantics. The
server of LWFS is deployed to the I/O forwarding
node, and the client is deployed on the computing
node. HADAFS is constructed based on the non-
volatile memory express solid-state drive (NVMe-
SSD) of the I/O forwarding node to obtain high
bandwidth, which provides a unified metadata view
and a POSIX-like I/O interface. ROFS uses the SSD



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 45

Operations software

Integrated system management platform

Job 
management

Job 
management

Job 
scheduling

Job control

Resource 
management

 

Resource 
monitoring

Resource 
allocation

Resource 
booting

Usability
management

Failure 
monitoring

Fault location 
analysis

Fault 
treatment

Power 
management

Power 
monitoring

Power 
analysis

Power
control

System hardware

Fig. 4 Parallel operating system structure

Fig. 5 Sunway storage architecture (CN: comput-
ing node; GFS: global file system; HADAFS: HADA
file system; I/O: input/output; LWFS: lightweight
file system; NVMe-SSD: nonvolatile memory express
solid-state drive; ROFS: read-only file system)

of the I/O forwarding node and the read-only local
virtual file system (VFS) provided by the computing
node to provide a read-only local VFS to support
the requirements of AI software and applications for
large-scale data burst reads.

GFS: GFS is a globally unified storage system
based on Lustre and compatible with the standard
POSIX file system interfaces. Its client is mounted
on the I/O forwarding node and provides global file-
sharing services for computing nodes through the
LWFS forwarding service. Lustre implements active-
active hot standby at multiple levels of the network,
equipment, and services, with strong reliability and
availability, and no single point of failure. The sys-
tem implements a data distribution algorithm based
on performance cognition (Yang et al., 2019), which
can effectively avoid I/O interference between dif-
ferent applications, and avoid faults or performance
reduction of object storage technology (OST) de-
vices, ensuring that the applications have better I/O
performance. GFS supports quality-of-service (QoS)
control of storage performance, and administrators
can set performance limits for specific applications
(Shi et al., 2017; Hua et al., 2019). The above work
is also completely transparent to the application.
The storage system also deploys a beacon perfor-
mance monitoring tool (Chen et al., 2020; Yang et al.,
2022), which can monitor the application’s I/O mode
and performance in real time, and provide an im-
portant reference for application I/O optimization.



46 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

Moreover, GFS supports dynamic allocation of stor-
age resources according to application requirements
(Ji et al., 2019).

HADAFS: To meet the ultra-high-bandwidth
requirements of data reading and writing for some
applications, SEPS deploys SSD-based burst buffer
and the developed burst buffer storage software
HADAFS. HADAFS aggregates the NVMe-SSD
storage space on multiple I/O forwarding nodes and
provides it to users through resource groups. The
format of the HADAFS interface is similar to that
of the POSIX system call interface. HADAFS sepa-
rates data management and data access; therefore, a
set of data management tools named HADASH is de-
signed to implement metadata query and data migra-
tion between Lustre and HADAFS. To fully use the
capacity and bandwidth of NVMe-SSD, HADAFS
does not provide high-reliability capabilities. It is
critical to make full use of the performance of SSD
(Shi et al., 2017), so HADAFS does not use the data
redundancy mechanism. HADAFS supports the lay-
out of data to the nearest SSD of the I/O forward-
ing node, and allocates resources to the application
based on the group of the I/O forwarding node. The
administrator can dynamically reorganize the group
according to the application needs, so as to achieve
better resource utilization.

ROFS: With the development of emerging ap-
plications such as AI and data analysis, some appli-
cations need to repeatedly read a large number of
files and therefore require a high level of concurrent
read performance. However, it is difficult to meet
these requirements with the traditional parallel file
system. In response to this problem, ROFS is de-
signed and developed based on Internet small com-

puter systems interface (ISCSI) technology. It di-
rectly maps part of the SSD space to the computing
node to provide a remote local disk for the computing
node with POSIX-compatible interfaces for applica-
tion. For each computing node, the reading process
of the application is equivalent to local disk access,
and the metadata performance is significantly im-
proved. When running AI applications on the whole
system, the data reading performance of the AI al-
gorithm library and data set is improved by more
than 100 times compared with the original version.
Since ROFS is exported in read-only mode, multiple
computing nodes correspond to a fixed server, and
the mapping between computing nodes and servers
is static.

3.3 Debugging and tuning subsystem

The debugging and tuning subsystem provides
developers with tools to develop a large-scale ap-
plication in less time (Fig. 6). Debugger, paral-
lel debugging tool, and large-scale lightweight de-
bugging tool make up the debugging part. They
support single-node applications, medium-scale ap-
plications, and large-scale applications, respectively.
The tuning part includes a job-level performance
monitoring tool, which can quickly obtain a perfor-
mance overview of the job, and a performance mon-
itoring library, which provides fine-grained analysis
capabilities.

The debugger provides a unified debugging view
of MPE and CPE by threading abstraction, sup-
porting source- and instruction-level program execu-
tion control. The parallel debugging tool is built on
the debugger, which can support fine-grained execu-
tion control for thousands of parallel processes. The

Debugging and tuning subsystem

Debugging part

Debugger

Parallel debugging tool

Large-scale lightweight 
debugging tool

Tuning part

Job-level performance 
monitoring tool

Performance monitoring 
library

Single-node 
application

Medium-scale 
application

Large-scale 
application

Performance
overview of the job

Fine-grained analysis 
API

Fig. 6 Overview of the debugging and tuning subsystem (API: application programming interface)



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 47

large-scale lightweight debugging tool locates abnor-
mal processes by clustering important process states
and can analyze applications with tens of millions of
computing cores in less than 1 min.

The job-level performance monitoring tool is
available to users in the form of a job submission
option, without recompiling the application. The
performance monitoring library provides rich appli-
cation programming interfaces (APIs) for obtaining
the running information of the application, and sup-
ports efficient queries for floating point operations
per second (FLOPS), instructions per cycle (IPC),
cache miss ratio, and so on.

3.4 Scientific computing parallel framework

To reduce the programming’s complexity caused
by the heterogeneous many-core architecture on
SEPS, a scientific computing parallel framework is
designed to meet the common requirements for sci-
ence and engineering computing. The framework
provides a template or paradigm of multilevel par-
allel programming for applications. As shown in
Fig. 7, the framework is composed mainly of two
parts. One part is a domain-oriented parallel pro-
gramming framework, including the SW-Gromacs
software in molecular dynamics simulation (Berend-
sen et al., 1995; Lindahl et al., 2001) and SW-Vina
software in molecular docking simulation (Trott and
Olson, 2009). The other part is the kernel-level par-
allel programming framework for common kernels
in polymorphic applications, including the tensor
math library, sparse math library, and parallel algo-
rithm library. The functions of the framework are as
follows:

1. The domain-oriented parallel programming
framework enables users to easily and efficiently mi-
grate applications developed in some domains to the
many-core architecture. For example, SW-Gromacs

Scientific and engineering parallel application framework

Kernel-level parallel programming framework

Domain-oriented parallel programming framework

Tensor math 
library

Sparse math 
library

Parallel algorithm 
library

Fig. 7 Scientific computing parallel framework

is developed based on the open-source software Gro-
macs (Berendsen et al., 1995; Lindahl et al., 2001).
This software supports basic dynamics-related algo-
rithms, including Newtonian mechanics, energy min-
imization, and regular pattern analysis. SW-Vina is
designed based on the open source molecular docking
software Vina (Trott and Olson, 2009). This software
supports the simultaneous docking of multiple lig-
ands. In addition, this software provides many-core
optimized versions for multiple docking functions.

2. The tensor math library supports the effi-
cient many-core implementation of common tensor
operations, such as general (dense) matrix multi-
ply (GEMM) and tensor transpose, and provides
common interfaces with the standard mathematical
format.

3. The sparse math library supports the effi-
cient many-core implementation of commonly used
sparse algebra operations, such as sparse matrix-
vector multiplication (SPMV) (Merrill and Garland,
2017) and sparse general matrix-matrix multiplica-
tion (SPGEMM) (Buluc and Gilbert, 2012), and pro-
vides common interfaces with various sparse matrix
storage formats, including compressed sparse row
(CSR), compressed sparse column (CSC), and co-
ordinate (COO) formats.

4. The parallel algorithm library provides ad-
vanced parallel algorithms, such as the dynamic load-
balancing algorithm and the discrete memory access
optimization algorithm. Moreover, generic interfaces
and usage examples for these algorithms are given.

The parallel computing framework provides a
parallel programming model on SEPS for domain-
related and public computing requirements, hiding
the complexity of the underlying implementation on
the SW26010pro processor and network, effectively
reducing the difficulty of transplanting and optimiz-
ing codes, accelerating heterogeneous mapping, and
efficiently operating for multifield applications on the
many-core processor.

3.5 SW AI ecosystem

The SW AI ecosystem is built on massively scal-
able AI frameworks (SWMind and SWPyTorch) and
SWDNN, whose composition is shown in Fig. 8.
Based on the system software and runtime, the
AI ecosystem provides model-developing tools and
an efficient/scalable running environment for AI
applications.



48 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

Toolkit

AI application

SWMind SWPyTorch

SWDNN library

AI ecosystem

Runtime & toolkit

Compiler

Profiler

Debugger

Sys. monitor

Fig. 8 The position of the AI ecosystem in Sunway
software (AI: artificial intelligence; DNN: deep neural
network; SW: Sunway; Sys.: system)

1. SWDNN. SWDNN is an accelerated library
based on SEPS for DNNs (Liu S et al., 2021). It pro-
vides highly optimized 32- or 16-bit floating point
(FP32 and FP16, respectively) function interfaces
for these frequently used operators in DNN applica-
tions, including convolution, normalization, pooling,
and activation functions. By invoking the SWDNN
library, users can focus on the construction, train-
ing, and application of NNs, without spending time
on performance optimization. Users need only to re-
place the function of the original program with the
corresponding operator in the SWDNN library to
achieve model acceleration. The following optimiza-
tion techniques are developed in SWDNN:

On-chip memory access optimization: Since the
memory access bandwidth between CPEs in a CG
is higher than that between the CPE and the main
memory, we need to make full use of the on-chip com-
munication to obtain useful data. In many DNN op-
erators, row and column broadcasts in a CG are effec-
tive ways to share data. In addition, the dual buffer-
ing technique is widely used to hide communications
and calculations. We also optimize malloc specifi-
cally to ensure that the assigned data addresses are
aligned to achieve efficient memory access.

On-chip CG memory sharing: Typically, the op-
timized operators in SWDNN are designed based on
a single CG. However, for some special operators,
such as the “embedding” and “bmm” operators, their
required memory far exceeds the capacity of a single
CG. To solve this problem, we develop a CG memory
sharing model; i.e., one MPE occupies the memory of
the entire processor, and all CPEs on the whole pro-
cessor are jointly scheduled. Assuming that N CGs
are used, we need to divide the computation tasks

into N × 64 components to achieve high-efficiency
parallelism.

2. SWMind. For simplicity, efficiency, and ease
of use, we also design a lightweight deep learn-
ing framework, SWMind, which features simple in-
terfaces, optimized communication, and lightweight
mode. Most importantly, the framework provides
many-core accelerated operators and supports large-
scale parallelism on SEPS. By invoking the designed
efficient operators, users can easily construct their
own NN models and write various custom operators.
Compared with existing frameworks, such as Tensor-
flow and PyTorch, SWMind has higher performance
due to elimination of nonessential modules.

3. SWPyTorch. Similarly, the main mission of
SWPyTorch on SEPS is to achieve many-core ac-
celeration of PyTorch and scalability on large-scale
computing nodes. To achieve many-core accelera-
tion, the original serial implementation is replaced
by the corresponding operator in the SWDNN li-
brary. The backend to support distributed data-
parallel (DDP) in SWPyTorch is the MPI. Due to
the support of DDP, model parallelism and data par-
allelism are achieved. Moreover, we modify the im-
plementation of Megatron (Shoeybi et al., 2019), a
natural language processing (NLP) model, to enable
it to run on the Sunway platform with SWPyTorch
and achieve an efficient, large-scale hybrid model and
data parallel pretraining with mixed precision.

4 Optimization technologies

With the expansion of the system scale in the
exascale era, achieving high scalability and efficiency
has become an important challenge for the efficient
operation of applications. As a bridge between ap-
plications and the supercomputing system, the par-
allel supporting environment has become the key to
overcoming this challenge. Therefore, the parallel
supporting environment on SEPS provides compre-
hensive support for the application in terms of scal-
ability and efficiency.

4.1 Scalability optimizations of the exascale
parallel supporting environment

Scalability optimization includes the I/O opti-
mization technology and the debugging technique for
large-scale parallel applications. The goal of I/O op-
timization is to provide diversified storage options



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 49

and solve the problem of concurrent data reading
and writing for the parallel application running on
tens of millions of computing cores. The debugging
technique is a solution to replace the traditional de-
bugging tools that cannot support parallel debug-
ging for the application running on tens of millions
of computing cores.

4.1.1 I/O optimization

The data forwarding software used by the Sun-
way series supercomputers is LWFS, whose server
runs in the data forwarding node and the client
runs in the computing node. Using Filesystem in
USErspace (FUSE) to support Linux-standard file
system interfaces, LWFS has the advantage of high
compatibility. In this way, the I/O requests from the
application running on the computing nodes need
to first enter the kernel FUSE module, and then be
transferred from the kernel mode to the user mode.
In practice, the two switchings (between the ker-
nel mode and user mode) and memory copies lead
to a large software overhead. Therefore, we pro-
pose a user-mode direct data access LIBIO library
for LWFS users (Fig. 9).

Fig. 9 Software architecture of LWFS LIBIO (FUSE:
Filesystem in USErspace; HPC: high-performance
computing; IO: input-output; LWFS: lightweight file
system; VFS: virtual file system)

LIBIO calls the functions of the LWFS client
port in a library manner, including an application re-
quest intercepting component and a standard LWFS
client port component. When the application is run-
ning, the request intercepting component can inter-

cept all I/O requests of the application and transfer
them to the LWFS client port integrated into LIBIO,
and then send them to the server port to execute.
When LIBIO is used, the user does not need to mod-
ify the code; the user has to just link the LIBIO li-
brary in the compilation stage. Moreover, the access
mode in the running application is exactly the same
as that of the traditional kernel file system. Through
the LIBIO library, the single-process bandwidth of a
computing node is increased by more than twice, and
the aggregate bandwidth of a single computing node
is increased by more than five times.

Facing the endless I/O requirements of applica-
tions, for the new generation of Sunway storage sys-
tem, optimization schemes have been designed for
different I/O modes. A new file system HADAFS
is designed and developed. The software stack of
HADAFS is loosely coupled with the traditional
VFS, which relaxes the POSIX semantics and re-
tains only the necessary interface design. The main
features of HADAFS are as follows: (1) adopting
a flat data organization method, which breaks the
limitation of the traditional directory tree structure
and achieves a high degree of scalability; (2) using the
rocksdb-based key-value database to store metadata,
which significantly improves metadata performance;
(3) separating data access and data management, as
well as streamlining storage semantics, which yields
better I/O performance; (4) loose coupling between
software stack and traditional VFS, which guaran-
tees a simple extension interface and strong flexi-
bility in cache management and data management.
Considering the hierarchical data format-5 (HDF5),
network common data form (NetCDF), and other file
formats widely used in scientific computing, we also
transplant HADAFS to support reading and writing
HDF5 and NetCDF files through HADAFS.

For massive data read scenarios in AI applica-
tions, we develop ROFS. Data updates for ROFS
are done by users with distributed dedicated tools.
The mounting of ROFS is automatically completed
by the job scheduling system. ROFS is mounted
before the starting of the job and unmounted after
the completeness of the job. Users need only to use
a fixed mount point to access the ROFS. With the
help of ROFS, the load speed of the dynamic library
of the AI ecosystem in the large-scale application is
100 times higher than that of the GFS scheme based
on Lustre and LWFS.



50 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

4.1.2 Scalable debugging technique for parallel
applications

As the scale of the parallel application grows, it
becomes more difficult and time-consuming to locate
errors that occur during runtime. Many attempts
have been made to address this problem, but the
current advances in debugging techniques are far out-
paced by the increasing need for complex debugging,
and the gap between debugging tools and debugging
requirements is getting wider and wider.

We propose a method that can quickly locate
abnormal processes in very-large-scale applications
(Fig. 10). Our approach includes mainly two aspects:
(1) the important state data of the program are
obtained through the baseboard management con-
troller (BMC) interface; (2) the abnormal process
will be located using our analysis strategies. The
BMC interface provides access to hardware registers
and can obtain data on the entire system quickly by
a hierarchical architecture. We can obtain more data
by extending the interface to more registers, such as
the power consumption, the performance monitoring
unit (PMU), and the status of the memory compo-
nent on the nodes where the process resides. By
optimizing our focus registers, we are able to collect
data from tens of millions of computing cores in a
few seconds (Peng et al., 2022).

The design of the analysis strategy depends on
the metrics we choose. During the running of the
application, there will be a corresponding program
execution space, which contains a large number of
program execution states; this space can reflect the

program anomalies. Therefore, we can locate ab-
normal processes by analyzing anomalies in certain
metrics. The program counter (PC) value, which in-
dicates where the process is currently running, is the
metric we choose. Our analysis strategy includes two
parts: vertical and horizontal. In the vertical aspect,
we analyze the abnormal PC change sequence; in the
horizontal aspect, we cluster the PC values between
different task processes to find the abnormal classes.

Our method achieves the co-design of software
and hardware by combining the hardware BMC sys-
tem. The proposed method has good scalability, and
its capabilities can be extended by collecting other
program execution states and designing new analysis
strategies (Hofer and Mössenböck, 2014).

4.2 Parallel efficiency optimizations of the
exascale parallel supporting environment

For an exascale-oriented new-generation super-
computer, the efficient mapping of computing tasks
contained in the specific application to 10-million-
level computing cores is the key to high-efficiency
operation for the large-scale application. In this sub-
section, we propose ultra-large-scale parallel algo-
rithms for the heterogeneous many-core architecture
to ensure efficient implementation of mapping.

4.2.1 Multilevel parallelization mode

To adapt to the hierarchical memory design of
the heterogeneous many-core architecture, the corre-
sponding multilevel parallelization mode is proposed
for large-scale parallel computing (Fig. 11).

Analysis strategies

Important state data of the program

Vertical BMC

Focus registers

Horizontal 

Extensions based on other program 
states

Designing new analysis strategies

Locating abnormal processes

Fig. 10 Main idea of the very-large-scale debugging method (BMC: baseboard management controller)



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 51

(1) First-level parallelism (2) Second-level (MPI) parallelism (3) Third-level (CPE) parallelism

Physical or geometry 
characteristics

Result

Computing task 1

Computing task 2

Computing task N

Sub-group for MPI

MPI 0
MPI 1

MPI 2
MPI 3

MPI M

CPE
arrayMPE

CPE
arrayMPE

CPE
arrayMPE

CPE
arrayMPE

CPE
arrayMPE

CPE
arrayMPE

CG0 CG1

CG2 CG3

CG4 CG5

MPI 
communication

Fig. 11 Illustration of the multilevel parallelization mode (CG: core group; CPE: computing processing
element; MPE: management processing element; MPI: message passing interface)

At the first level, the computing tasks in the spe-
cific application are divided into multiple indepen-
dent tasks according to physical or geometry charac-
teristics. In this stage, the whole processor pool is
divided into multiple subgroups, and each subgroup
is responsible for calculating an independent task.
Usually, no communication between subgroups is re-
quired at this level. At the second level, i.e., process-
level (MPI) parallelism, the independent task within
the subgroup is mapped to each MPI process, which
generally involves communication between MPI pro-
cesses. The third level is thread-level (CPE) paral-
lelism, where computing tasks are further subdivided
into CPEs within the MPI process. In this way, the
basic mapping of the computing tasks from the ap-
plication level to the core level has been completed.

4.2.2 Adaptive load-balancing algorithm

At the process level (MPI), the possibility of
computational load imbalance is high, especially for
those dynamic applications, in which computation
and data movement change over time. To solve the
problem, an adaptive load-balancing algorithm is
proposed, and the particle-in-cell (PIC) simulation
(Madduri et al., 2011; Derouillat et al., 2018) is used
as an example to introduce in detail.

For the PIC method, it is easy to raise the
computational load imbalance due to the unbal-
anced particle distribution. The proposed adaptive
load-balancing algorithm is illustrated in Fig. 12.

The idea of the original spatial partitioning method
(subfigure on the left) is that each process tracks
and computes the particles in its range. The im-
proved load-balancing method involves particle shar-
ing, which ensures that the number of particles calcu-
lated by each process is as equal as possible (different
colors indicate different processes in the figure). Fi-
nally, the particles responsible for this process are
further distributed into the CPE array for parallel
computation.

4.3 Mixed-precision optimization for AI
applications

When the scale of applications gradually in-
creases, the performance of the program is usually
limited by bandwidth and memory; thus, we adopt
a mixed-precision method (Micikevicius et al., 2018)
to reduce the demand for both. The mixed-precision
method refers to a mixture of single-precision float32
and half-precision float16, which uses half-precision
to store data with less memory, reducing memory
and bandwidth pressure. The floating-point data
format used on the SW26010pro processor follows
the IEEE-754 standard. FP32 and FP16 are shown
in Fig. 13.

Regarding the mixed-precision method, two in-
novations are proposed:

First, we design an adaptive scaling method to
dynamically adjust the data, so that the representa-
tion of the main data is always within the range of



52 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

Body

Process 0 Process 1

Process 2Process 3

Process 0 Process 1

Process 2Process 3 CPE array

Move with time step

Fig. 12 Illustration of the adaptive load-balancing algorithm (CPE: computing processing element) (References
to color refer to the online version of this figure)

15 14 10 9 0

31 30 23 22 0

FP16

FP32

Sign Exponent Fraction 

Sign Exponent Fraction 

Fig. 13 FP16 and FP32 (16- and 32-bit floating points, respectively) schemes

FP16, and the error is kept at a level similar to that
of using only single-precision floating-point numbers.
When the error r is greater than the maximum, i.e.,
“max,” we will reduce the data; when the error r is
less than the minimum, i.e., “min,” we will enlarge
the data (Table 1). This method effectively pre-
vents data underflow and achieves a better balance
between accuracy and efficiency.

Second, we design a filter whose main function
is to filter out the overflow in the calculation process.
According to our method, the percentage of overflow
is less than 2%, so only a small part of the overflow
result will be discarded, which has little effect on the
result.

5 Contributions to various applications

5.1 Scientific and engineering computing
applications

Benefiting from the high performance of SEPS
and the support of the proposed parallel support en-
vironment, hundreds of applications in various fields

Table 1 Adaptive precision scaling

Error analysis Scaling statistics

Δr > Δmax Reduce
Δmin ≤ Δr ≤ Δmax Unchanged

Δr < Δmin Enlarge

have been deployed on the system. These applica-
tions show great scalability potential in large-scale
systems. Fig. 14 shows the expected scalability and
efficiency of several outstanding applications running
on SEPS, and deployment of the application in a
much larger similar system has proved that the ex-
pected scalability and efficiency have been reached
(Gu et al., 2021; Li F et al., 2021; Liu Y et al.,
2021; Shang et al., 2021a, 2021b, 2021c; Xiao et al.,
2021; Ye et al., 2022). Among them, the random
quantum circuit (RQC) simulation, Raman spectra
simulation, and tokamak plasmas simulation have all
been shortlisted for the 2021 Gordon Bell Prize due
to significant progress in these fields. An overview
of the first two applications is listed here, and the
details of the quantum simulator will be elaborated
in Section 5.3.

1. Whole-volume magnetic confinement toroidal
plasmas simulation (Xiao et al., 2021)

A large-scale simulation of magnetic toroidal
plasmas with 1.5 trillion particles is performed on
SEPS. It is the first time that such an unprece-
dented high-resolution evolution of six-dimensional
(6D) electromagnetic fully kinetic plasmas has been
presented. This work can also investigate edge
micro-instabilities directly. This application requires
highly concurrent data read and write during run-
ning. The HADAFS proposed in this paper is used



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 53

Fig. 14 Expected scalability and efficiency of multiple outstanding applications on SEPS (CPE: computing
processing element; KMC: kinetic Monte Carlo; MPE: management processing element; SEPS: Sunway exas-
cale prototype system; SC: International Conference for High Performance Computing, Networking, Storage
and Analysis). References to color refer to the online version of this figure

to build a high-speed file system based on SSD, which
supports burst data output, ensures application scal-
ability, and reduces the time cost of the I/O seg-
ment. In addition, the application uses the proposed
scalable debugging technology, effectively support-
ing the expansion of the parallel scale. Meanwhile,
multilevel parallelism mode (process level and thread
level) is used to improve parallel efficiency. Finally,
the scale of the simulation is expanded to about 40
million computing cores, with strong scalable effi-
ciency of up to 87.5% and weak scalable efficiency of
up to 95.6%.

2. Extreme-scale ab initio quantum Raman
spectra simulation (Shang et al., 2021a)

An accurate and massively parallel ab initio Ra-
man spectra simulation for a real biological system
(consisting of 3006 atoms) is performed on SEPS
with great strong and weak scaling. This work has
also shown the possibility to use the quantum me-
chanical (QM) method for virtual drug screening.
The main challenge of this application is to paral-
lelize the perturbation method. The proposed mul-
tilevel parallelism mode is used to construct a three-
level parallelism strategy, which achieves large-scale
application expansion and ensures a parallel effi-
ciency of more than 80%. Moreover, a similar adap-
tive load-balancing algorithm is used to reduce the
overhead caused by the unbalanced batch distribu-
tion, and the parallel efficiency is further improved.

In the algorithm, the running time and space distri-
bution of each batch are collected in the first iter-
ation. Then, the distributions of all batches in all
processes are recalculated according to the result of
the first iteration. Finally, load balancing is achieved
by keeping the distance between batches within a
process as small as possible and the running time of
each process as close as possible. In both strong and
weak scaling tests, the parallel efficiency exceeds 80%
when the number of computing cores reaches about
20 million.

5.2 AI applications

1. Wu Dao 2.0
Wu Dao (meaning enlightenment in Chinese)

2.0 trained on SW HPC was the world’s biggest nat-
ural language processing (NLP) model when it was
released. The model size of Wu Dao 2.0 is 10 times
larger than that of generative pretrained transformer
(GPT) 3, using 1.75 trillion parameters. Wu Dao
2.0 efficiently expands to tens of millions of cores
on the whole HPC system. In addition, Wu Dao
2.0 explores the scalable boundary of the pretrained
model, and is close to passing the Turing test over
multiple tasks such as image generation, machine
Q&A, and image description. Wu Dao 2.0 is multi-
modal, consists of WenLan, WenYuan, WenHui, and
WenSu, and provides different skills, including text
generation, image recognition, and image generation.



54 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

WuDaoCorpora is a super-large-scale Chinese cor-
pora for pretraining language models. Wu Dao 2.0
acquires skills covering both Chinese and English by
studying 4.9 terabytes (TB) of images and texts, in-
cluding 1.2 TB of Chinese and English texts. Wu
Dao 2.0 can also learn from text and images and
tackle tasks that include both types of data (some-
thing GPT-3 cannot do).

2. Fusion of AI and HPC (Shang et al., 2021c;
Li MF et al., 2022)

The fusion of AI and HPC has made new
progress. In a recent study, through a deep convolu-
tional neural network (CNN) used to fit the quantum
multi-body variational wave function, the quantum
multi-body simulation for the two-dimensional (2D)
highly frustrated J1–J2 Heisenberg model is imple-
mented. It is worth emphasizing that in this study
the optimized ROFS supported in the parallel sup-
porting environment is used to improve the efficiency
of loading TensorFlow dynamic libraries by approxi-
mately 15–100 times compared with the original ver-
sion. Finally, this study investigates various quan-
tum systems with different lattice sizes (including
10 × 10, 16 × 16, and 24× 24), as shown in Fig. 15.
The parallel scalability is expected to extend to 31
850 000 computing cores, and the parallel efficiency
of CNN calculation reaches 92.2% with lattice size
24× 24.

Fig. 15 Expected scalability test for CNN calculation
(CNN: convolutional neural network; CPE: comput-
ing processing element; MPE: management process-
ing element)

Another research team has proposed a Ten-
sorKMC method, combining atomic kinetic Monte
Carlo (AKMC) and neural network potential (NNP,
used for potential energy prediction) and performed

a dynamic simulation of 54 trillion atoms on SEPS.
In multi-layer neural network computing, each layer
needs data input (from the main memory) and out-
put (to the main memory) once, which leads to the
overall speed being limited by the memory access
speed. To solve this problem, a big-fusion operator is
constructed using the proposed two-level paralleliza-
tion mode. The tasks of multiple layers are merged
into a kernel, so that the data are only input in the
first layer and output in the last layer, and all com-
puting tasks are mapped to CPEs. The big-fusion
operator transforms the original memory-intensive
task into a computation-intensive task. Finally, the
number of computing cores increases to >20 million
computing cores with a good parallel efficiency of
82%.

5.3 Quantum simulation exploration for new
computing forms

SW_Qsim (Li F et al., 2021; Liu Y et al.,
2021) is the first attempt of SW HPC in the field
of quantum computing. It is a high-performance
tensor-based simulator (Markov and Shi, 2008) for
random quantum circuits (RQCs). It can simu-
late up to 10 × 10 (qubits) × (1 + 40 + 1) (depth)

RQCs, which is the world’s largest RQC to be
simulated using a classic supercomputer. In 2019,
Google developed the quantum processor Sycamore
(Arute et al., 2019), and claimed that it took about
200 s to sample a QC 1 million times on Sycamore,
while the equivalent task cost about 10 000 years in
the world’s fastest supercomputer Summit at that
time. In 2018, the National Aeronautics and Space
Administration (NASA) and Google implemented
qFlex (Villalonga et al., 2020), a circuit simulator,
which has been redesigned and reimplemented to
use the graphics processing unit (GPU) accelerated
Summit HPC architecture efficiently; it achieved a
peak performance of 92% when simulating circuits of
7×7 (qubits)× (1+40+1) (depth). SW_Qsim uses
the Projected Entangled-Pair States (PEPS) method
(Guo et al., 2019, 2021) and three-dimensional con-
traction skills (Huang et al., 2020; Pan and Zhang,
2021) to perform quantum simulations and achieves
a peak performance of >90% when simulating cir-
cuits of 10×10×(1+40+1), reducing the simulation
time from 10 000 years to 304 s, which closes the
“quantum supremacy” gap between quantum com-
puters and classical supercomputers. The results



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 55

show a near-linear strong and weak scaling pattern
when the number of cores increases from 200 000 to
41 million under different circuits.

The realization of SW_Qsim on the new-
generation Sunway supercomputer is due mainly to
two innovations mentioned in the previous section,
namely, the ultra-large-scale parallel algorithm and
the mixed-precision method.

1. Ultra-large-scale parallel computing of tensor
contraction

As the core of RQC simulation based on the
PEPS method, the calculation process of contract-
ing a closed quantum tensor network to a scalar is
the bottleneck. We have encountered the double
challenges of computing and storage. Taking the
10 × 10 (qubits) × (1 + 40 + 1) (depth) RQC simu-
lation as an example, to solve the memory problem,
we adopt a trick in tensor contraction called “cut”
(Villalonga et al., 2019). We cut the legs of the ten-
sor network and divide the tensor contraction task
into 326 embarrassing parallel tasks, thus alleviat-
ing the storage pressure of the tensor network on the

central processing unit (CPU). Secondly, we adopt
thread-level parallelism on CPEs, assigning each task
to each CPE for calculation, with an unprecedented
parallel scale of 41 932 800 cores. The process is
shown in Fig. 16.

2. Mixed-precision computation method in ten-
sor multiplication

For each step of tensor contraction, we use the
mixed-precision method via adaptive precision scal-
ing (Fig. 17), which greatly reduces the calculation
time. The mixed-precision method is used mainly
in the core section, that is, the part of tensor multi-
plication. First, we convert the part of the input
two tensors that need to be multiplied into half-
precision, and analyze whether it is within the range
of FP16. If not, then we scale the data and set a
global variable to record the zoom factor. Secondly,
we import the half-precision input data into the lo-
cal directive memory (LDM) through direct memory
access (DMA), and use vectorization to accelerate
the transformation of half-precision data to single-
precision data to perform the calculations. Finally,

Tensor evolution

Tensor contraction

1st slice
2nd slice

Scalar result (amplitude)

Thread-level parallelism

MPI_reduce

Simulation process

Task-level parallelism 

Result

Tensor multiplication

Parallel computing on 
64 CPEs

6th slice

Fig. 16 Three-level parallelism of quantum simulation (CPE: computing processing element; MPI: message
passing interface)



56 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

the single-precision calculation result is used as the
input for the next step to continue the loop.

FP32 tensor
(input) FP16 tensor (DMA to CPEs)

FP32 tensor
(do the computation in CPEs)

FP32 results
(output)

Adaptive 

precision scaling

SIMD

Computing 

the results

Fig. 17 Flowchart of the mixed-precision method
(DMA: direct memory access; FP32 and FP16: 32-
and 16-bit floating points; SIMD: single instruction
multiple data; CPE: computing processing element)

6 Conclusions and future work

In the exascale era of HPC, scalability and ef-
ficiency become the key to determining the applica-
tion value of the exascale supercomputer, and the
challenges are growing rapidly with the expansion
of the scale of the parallel system. This paper in-
troduces the design of a parallel application sup-
port environment of SEPS and analyzes the key
technologies of software in guaranteeing the scal-
ability and efficiency of exascale applications. At
present, various contributions have been made, and
nearly 30 applications are expected to efficiently
scale to tens of millions of computing cores, in which
three applications were shortlisted for the highest
award in the field of HPC applications “2021 Gordon
Bell Award,” five applications were accepted by SC
2021, and two applications were accepted by PPoPP
2022. Looking to the future, new complex appli-
cations reveal novel characteristics, such as compu-
tation and data movement varying with time, dis-
creteness and sparseness caused by data non-locality,
macro-scale complex task flow, micro-scale complex
instruction flow, and mixed or variable precision.
Given these new features, we will carry out research
on novel parallel algorithms and parallel support-
ing software design and optimization methods to
prosper application development in the field of HPC
and improve the domestic supercomputer software
ecosystem.

Contributors
Xin LIU and Dexun CHEN designed the research. Heng

GUO, Yuling YANG, and Jie GAO performed the simu-

lations. Yunlong FENG and Longde CHEN analyzed the

results. Xiaobin HE and Xin CHEN drafted the paper.

Xiaona DIAO and Zuoning CHEN helped organize the pa-

per. Xiaobin HE and Xin CHEN revised and finalized the

paper.

Compliance with ethics guidelines
Xiaobin HE, Xin CHEN, Heng GUO, Xin LIU, Dexun

CHEN, Yuling YANG, Jie GAO, Yunlong FENG, Longde

CHEN, Xiaona DIAO, and Zuoning CHEN declare that they

have no conflict of interest.

Data availability
The data that support the findings of this study are

available from the corresponding authors upon reasonable

request.

References
Arute F, Arya K, Babbush R, et al., 2019. Quantum

supremacy using a programmable superconducting pro-
cessor. Nature, 574(7779):505-510.
https://doi.org/10.1038/s41586-019-1666-5

Berendsen HJC, van der Spoel D, van Drunen R, 1995. Gro-
macs: a message-passing parallel molecular dynamics
implementation. Comput Phys Commun, 91(1-3):43-
56. https://doi.org/10.1016/0010-4655(95)00042-E

Buluc A, Gilbert JR, 2012. Parallel sparse matrix-matrix
multiplication and indexing: implementation and ex-
periments. SIAM J Sci Comput, 34(4):C170-C191.
https://doi.org/10.1137/110848244

Chen Q, Chen K, Chen ZN, et al., 2020. Lessons learned
from optimizing the Sunway storage system for higher
application I/O performance. J Comput Sci Technol,
35(1):47-60.
https://doi.org/10.1007/s11390-020-9798-5

Derouillat J, Beck A, Pérez F, et al., 2018. SMILEI: a col-
laborative, open-source, multi-purpose particle-in-cell
code for plasma simulation. Comput Phys Commun,
222:351-373.
https://doi.org/10.1016/j.cpc.2017.09.024

Fu HH, Liao JF, Yang JZ, et al., 2016. The Sunway Tai-
huLight supercomputer: system and applications. Sci
China Inform Sci, 59(7):072001.
https://doi.org/10.1007/s11432-016-5588-7

Gu J, Feng JW, Hao XY, et al., 2021. Establishing a non-
hydrostatic global atmospheric modeling system (iA-
MAS) at 3-km horizontal resolution with online inte-
grated aerosol feedbacks on the Sunway supercomputer
of China. https://arxiv.org/abs/2112.04668v1

Guo C, Liu Y, Xiong M, et al., 2019. General-purpose
quantum circuit simulator with projected entangled-
pair states and the quantum supremacy frontier. Phys
Rev Lett, 123(19):190501.
https://doi.org/10.1103/PhysRevLett.123.190501

Guo C, Zhao YW, Huang HL, 2021. Verifying random
quantum circuits with arbitrary geometry using tensor
network states algorithm. Phys Rev Lett, 126(7):070502.
https://doi.org/10.1103/PhysRevLett.126.070502



He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58 57

Hluchý L, Bobák M, Müller H, et al., 2020. Heterogeneous
exascale computing. In: Kovács L, Haidegger T, Szakál
A (Eds.), Recent Advances in Intelligent Engineering.
Springer, Cham, p.81-110.
https://doi.org/10.1007/978-3-030-14350-3_5

Hofer P, Mössenböck H, 2014. Efficient and accurate stack
trace sampling in the Java hotspot virtual machine.
Proc 5th ACM/SPEC Int Conf on Performance Engi-
neering, p.277-280.
https://doi.org/10.1145/2568088.2576759

Hua Y, Shi X, Jin H, et al., 2019. Software-defined QoS for
I/O in exascale computing. CCF Trans High Perform
Comput, 1(1):49-59.
https://doi.org/10.1007/s42514-019-00005-9

Huang C, Zhang F, Newman M, et al., 2020. Classical
simulation of quantum supremacy circuits.
https://arxiv.org/abs/2005.06787

Ji X, Yang B, Zhang TY, et al., 2019. Automatic,
application-aware I/O forwarding resource allocation.
Proc 17th USENIX Conf on File and Storage Technolo-
gies, p.265-279.

Jia WL, Wang H, Chen MH, et al., 2020. Pushing the limit
of molecular dynamics with ab initio accuracy to 100
million atoms with machine learning. Proc Int Conf
for High Performance Computing, Networking, Storage
and Analysis, p.1-14.
https://doi.org/10.1109/SC41405.2020.00009

Kurth T, Treichler S, Romero J, et al., 2018. Exascale
deep learning for climate analytics. Proc Int Conf for
High Performance Computing, Networking, Storage and
Analysis, p.649-660.
https://doi.org/10.1109/SC.2018.00054

Li F, Liu X, Liu Y, et al., 2021. SW_Qsim: a minimize-
memory quantum simulator with high-performance on
a new Sunway supercomputer. Proc Int Conf for
High Performance Computing, Networking, Storage and
Analysis, p.1-13.

Li MF, Chen JS, Xiao Q, et al., 2022. Bridging the gap
between deep learning and frustrated quantum spin sys-
tem for extreme-scale simulations on new generation of
Sunway supercomputer. IEEE Trans Parall Distrib
Syst, 33(11):2846-2859.
https://doi.org/10.1109/TPDS.2022.3145163

Lin F, Liu Y, Guo YY, et al., 2021. ELS: emulation system
for debugging and tuning large-scale parallel programs
on small clusters. J Supercomput, 77(2):1635-1666.
https://doi.org/10.1007/s11227-020-03319-6

Lindahl E, Hess B, van der Spoel D, 2001. GROMACS
3.0: a package for molecular simulation and trajectory
analysis. J Mol Model, 7(8):306-317.
https://doi.org/10.1007/s008940100045

Liu S, Gao J, Liu X, et al., 2021. Establishing high perfor-
mance AI ecosystem on Sunway platform. CCF Trans
High Perform Comput, 3(3):224-241.
https://doi.org/10.1007/s42514-021-00072-x

Liu Y, Liu X, Li F, et al., 2021. Closing the “quantum
supremacy” gap: achieving real-time simulation of a
random quantum circuit using a new Sunway supercom-
puter. Proc Int Conf for High Performance Computing,
Networking, Storage and Analysis, Article 3.
https://doi.org/10.1145/3458817.3487399

Ma YJ, Lv S, Liu YQ, 2012. Introduction and application of
cluster file system Lustre. Sci Technol Inform, (5):139-
140 (in Chinese).

Madduri K, Ibrahim KZ, Williams S, et al., 2011. Gyroki-
netic toroidal simulations on leading multi- and many-
core HPC systems. Proc Int Conf for High Performance
Computing, Networking, Storage and Analysis, p.1-12.
https://doi.org/10.1145/2063384.2063415

Markov IL, Shi YY, 2008. Simulating quantum computation
by contracting tensor networks. SIAM J Comput,
38(3):963-981. https://doi.org/10.1137/050644756

Merrill D, Garland M, 2017. Merge-based parallel sparse
matrix-vector multiplication. Proc Int Conf for
High Performance Computing, Networking, Storage and
Analysis, p.678-689.
https://doi.org/10.1109/SC.2016.57

Micikevicius P, Narang S, Alben J, et al., 2018. Mixed
precision training. Proc 6th Int Conf on Learning
Representations.

Pan F, Zhang P, 2021. Simulating the Sycamore quantum
supremacy circuits.
https://arxiv.org/abs/2103.03074v1

Peng D, Feng Y, Liu Y, et al., 2022. Jdebug: a fast,
non-intrusive and scalable fault locating tool for ten-
million-scale parallel applications. IEEE Trans Parall
Distrib Syst, 33(12):3491-3504.
https://doi.org/10.1109/TPDS.2022.3157690

Shang HH, Li F, Zhang YQ, et al., 2021a. Extreme-scale
ab initio quantum Raman spectra simulations on the
leadership HPC system in China. Proc Int Conf for
High Performance Computing, Networking, Storage and
Analysis, Article 6.
https://doi.org/10.1145/3458817.3487402

Shang HH, Li F, Zhang YQ, et al., 2021b. Accelerating
all-electron ab initio simulation of Raman spectra for
biological systems. Proc Int Conf for High Performance
Computing, Networking, Storage and Analysis, Article
41. https://doi.org/10.1145/3458817.3476160

Shang HH, Chen X, Gao XY, et al., 2021c. TensorKMC: ki-
netic Monte Carlo simulation of 50 trillion atoms driven
by deep learning on a new generation of Sunway super-
computer. Proc Int Conf for High Performance Com-
puting, Networking, Storage and Analysis, Article 73.
https://doi.org/10.1145/3458817.3476174

Shi X, Li M, Liu W, et al., 2017. SSDUP: a traffic-aware
SSD burst buffer for HPC systems. Proc Int Conf on
Supercomputing, p.1-10.
https://doi.org/10.1145/3079079.3079087

Shoeybi M, Patwary M, Puri R, et al., 2019. Megatron-LM:
training multi-billion parameter language models using
model parallelism. https://arxiv.org/abs/1909.08053

Trott O, Olson AJ, 2009. AutoDock Vina: improving the
speed and accuracy of docking with a new scoring func-
tion, efficient optimization, and multithreading. J Com-
put Chem, 31(2):455-461.
https://doi.org/10.1002/jcc.21334

Villalonga B, Boixo S, Nelson B, et al., 2019. A flexible high-
performance simulator for verifying and benchmarking
quantum circuits implemented on real hardware. NPJ
Quant Inform, 5(1):86.
https://doi.org/10.1038/s41534-019-0196-1



58 He et al. / Front Inform Technol Electron Eng 2023 24(1):41-58

Villalonga B, Lyakh D, Boixo S, et al., 2020. Establishing
the quantum supremacy frontier with a 281 Pflop/s
simulation. Quant Sci Technol, 5(3):034003.
https://doi.org/10.1088/2058-9565/ab7eeb

Xiao JY, Chen JS, Zheng JS, et al., 2021. Symplectic
structure-preserving particle-in-cell whole-volume simu-
lation of tokamak plasmas to 111.3 trillion particles and
25.7 billion grids. Proc Int Conf for High Performance
Computing, Networking, Storage and Analysis, Article
2. https://doi.org/10.1145/3458817.3487398

Yang B, Ji X, Ma XS, et al., 2019. End-to-end I/O moni-
toring on a leading supercomputer. Proc 16th USENIX
Conf on Networked Systems Design and Implementa-
tion, p.379-394.

Yang B, Zou YL, Liu WG, et al., 2022. An end-to-end and
adaptive I/O optimization tool for modern HPC storage
systems. IEEE Int Parallel and Distributed Processing
Symp, p.1294-1304.
https://doi.org/10.1109/IPDPS53621.2022.00128

Ye YJ, Song ZY, Zhou SC, et al., 2022. swNEMO_v4.0:
an ocean model based on NEMO4 for the new-
generation Sunway supercomputer. Geosci Model Dev,
15(14):5739-5756.
https://doi.org/10.5194/gmd-15-5739-2022

Xiaobin HE received his BE degree from
the Harbin Institute of Technology, Harbin,
China, in 2006, and his MS degree from
Shanghai Jiao Tong University, Shanghai,
China, in 2009. He is currently an associate
researcher at the National Research Center
of Parallel Computer Engineering and Tech-
nology, Beijing, China. His main research

interests include high-performance computing and distributed
storage systems.

Xin CHEN received his BE degree from
the National Digital Switching System
Engineering & Technological Research
Center (NDSC), Zhengzhou, China, in
2016, and his MS degree from NDSC
in 2018. He is a research assistant at
the National Research Center of Paral-
lel Computer Engineering and Technol-

ogy, Beijing, China. His research activities focus on high-
performance parallel computation and applications.

Xin LIU received her PhD degree from
PLA Information Engineering University,
Zhengzhou, China, in 2006. She is cur-
rently a research fellow at the National
Research Center of Parallel Computer En-
gineering and Technology, Beijing, China.
She is a designer of the scientific and en-
gineering application platform of the Sun-

way TaihuLight System, responsible for the large-scale paral-
lel algorithm research and application software development.
Her research interests include parallel algorithms and parallel
application software.

Dexun CHEN received his PhD degree
from Tsinghua University, Beijing, China,
in 2021. He is currently a research fellow
at the National Research Center of Par-
allel Computer Engineering and Technol-
ogy, Beijing, China. His research interests
include high-performance computing and
parallel application software.


	Introduction
	SEPS architecture
	Design of the parallel supporting environment
	Parallel operating system
	Storage system
	Debugging and tuning subsystem
	Scientific computing parallel framework
	SW AI ecosystem

	Optimization technologies
	Scalability optimizations of the exascale parallel supporting environment
	I/O optimization
	Scalable debugging technique for parallel applications

	Parallel efficiency optimizations of the exascale parallel supporting environment
	Multilevel parallelization mode
	Adaptive load-balancing algorithm

	Mixed-precision optimization for AI applications

	Contributions to various applications
	Scientific and engineering computing applications
	AI applications
	Quantum simulation exploration for new computing forms

	Conclusions and future work

