
994 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Aperceptual andpredictive batch-processingmemory
scheduling strategy for aCPU-GPUheterogeneous system∗

Juan FANG‡, Sheng LIN, Huijing YANG, Yixiang XU, Xing SU
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

E-mail: fangjuan@bjut.edu.cn; lins@emails.bjut.edu.cn; yangkx@emails.bjut.edu.cn;

xuyx@emails.bjut.edu.cn; suxing@bjut.edu.cn

Received Oct. 11, 2022; Revision accepted Jan. 4, 2023; Crosschecked Feb. 23, 2023

Abstract: When multiple central processing unit (CPU) cores and integrated graphics processing units (GPUs)
share off-chip main memory, CPU and GPU applications compete for the critical memory resource. This causes
serious resource competition and has a negative impact on the overall performance of the system. We describe
the competition for shared-memory resources in a CPU-GPU heterogeneous multi-core architecture, and a shared-
memory request scheduling strategy based on perceptual and predictive batch-processing is proposed. By sensing
the CPU and GPU memory request conditions in the request buffer, the proposed scheduling strategy estimates the
GPU latency tolerance and reduces mutual interference between CPU and GPU by processing CPU or GPU memory
requests in batches. According to the simulation results, the scheduling strategy improves CPU performance by
8.53% and reduces mutual interference by 10.38% with low hardware complexity.

Key words: CPU-GPU heterogeneous; Multi-core; Unified memory; Access scheduling
https://doi.org/10.1631/FITEE.2200449 CLC number: TP391.9

1 Introduction

With the growing demand for computing, het-
erogeneous computing has drawn extensive atten-
tion. Modern systems-on-a-chip usually consist of
multiple types of cores with different functions (Chen
et al., 2017). This approach is of interest because het-
erogeneous architectures can greatly improve com-
putational efficiency. The widespread use of image
processing units such as graphics processing units
(GPUs) for image rendering and scientific computing
makes CPU-GPU (here, CPU is short for central pro-
cessing unit) heterogeneous architectures the most
used heterogeneous computing systems in our lives.
Today, high-end systems-on-a-chip include powerful

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 62276011 and 61202076) and the Natural Science
Foundation of Beijing, China (No. 4192007)

ORCID: Juan FANG, https://orcid.org/0000-0002-4542-8727
c© Zhejiang University Press 2023

CPU and GPU cores, both of which have significant
memory system requirements.

CPU-GPU heterogeneous computing systems
are classified as separated and integrated CPU-
GPU heterogeneous architectures (Mittal and Vet-
ter, 2015), as shown in Fig. 1. In the separated ar-
chitecture, a large amount of data needs to be trans-
mitted between the host and the device through a
peripheral component interconnect express (PCIe)
bus, but the transmission efficiency of the PCIe bus
is limited by its own implementation mechanism and
cannot reach the theoretical peak. This problem be-
comes a performance bottleneck in CPU-GPU het-
erogeneous computing systems. The integrated GPU
and CPU share off-chip main memory, which is called
a unified memory architecture (UMA). The archi-
tecture avoids the problem of memory copying and
simultaneously reduces power consumption and ex-
tends endurance effectively. AMD’s accelerated pro-
cessing unit (APU) (Bouvier et al., 2014), Apple’s

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 995

M1 series, and others use this architecture.

CPU GPU

LLC

System
memory

CPU GPU

Cache Cache

System
memory

Graphics
memory

Fig. 1 Integrated and separated CPU-GPU hetero-
geneous architectures (CPU: central processing unit;
GPU: graphics processing unit; LLC: last level cache)

It is found that while the CPU-GPU hetero-
geneous architecture with unified memory elimi-
nates data transmission between components and re-
duces latency, UMA has serious data consistency and
shared-resource contention issues (Power et al., 2013;
Zhang et al., 2017; Hazarika et al., 2020). Today, uni-
fied memory is a critical shared resource in heteroge-
neous multi-core architectures, but memory requests
from CPU and GPU applications on different cores
are interleaved in the request buffer, which reduces
the efficiency of existing memory scheduling. Appli-
cations with a large number of memory requests, par-
ticularly GPU applications, seriously interfere with
the execution of memory-sensitive applications and
reduce their performance. As the number of work-
loads increases in the CPU-GPU heterogeneous ar-
chitecture with unified memory, the interference be-
tween CPU and GPU core memory requests becomes
more severe. Unfortunately, most existing mem-
ory request scheduling algorithms require a relatively
complex hardware implementation or a large and ex-
pensive request buffer to provide sufficient visibility
of the entire global request stream, which is very
difficult to implement on real machines. The first-
ready first-come first-serve (FRFCFS) scheduling al-
gorithm is still used on most real machines. There-
fore, an access scheduling algorithm with low hard-
ware complexity that can effectively reduce CPU and
GPU interference is necessary.

To reduce CPU-GPU interference and satisfy
the requirements of low hardware complexity, in
this study we propose a perceptual and predictive
batch-processing (PPBP) memory scheduling strat-
egy, which has three main phases: (1) sensing CPU
and GPU memory access requests in the request
buffer, (2) estimating the GPU latency tolerance,

and (3) using the FRFCFS scheduling algorithm to
process CPU and GPU memory requests in batches.

This paper makes the following contributions:
1. We propose a simple and effective scheme to

predict GPU latency tolerance. We predict GPU la-
tency tolerance by accurately predicting the number
of threads being executed in GPU by sensing the
execution in the memory controller.

2. We propose the PPBP scheduling strategy.
It reduces the interference between CPU and GPU
memory requests and improves CPU performance
without affecting GPU performance, while incurring
low hardware cost and complexity.

3. We build a CPU-GPU heterogeneous system
and perform a detailed comparison of PPBP with
several other scheduling algorithms. Our results
show that PPBP has better scalability, can effec-
tively improve CPU performance by 8.53%, and can
reduce CPU-GPU interference by 10.38%.

2 Related works

Currently, memory request scheduling research
on the CPU homogeneous multi-core architecture,
integrated GPU architecture, and separated GPU
architecture is a popular research topic. Research on
the CPU homogeneous multi-core architecture at-
tempts to improve throughput and thread fairness
in shared dynamic random-access memory (DRAM)
systems (Mutlu and Moscibroda, 2008; Kim et al.,
2010; Subramanian et al., 2015; di Sanzo et al., 2020).
The shader core is the primary focus on GPU mem-
ory request scheduling research. Researchers are
primarily concerned with minimizing the difference
in latency between threads and increasing the core
memory access speed with low latency tolerance (Jog
et al., 2013; Fang et al., 2015; Wang HN and Jog,
2019; Lin et al., 2020; Wang QH et al., 2022).

With the development of the CPU-GPU het-
erogeneous architecture with unified memory, there
has been extensive research on shared-memory com-
petition, and some studies have provided dedicated
memory request schedulers for heterogeneous sys-
tems. GPU requests seriously interfere with CPU
requests in shared memory, because GPU requests
occupy most space in the request buffer and limit
the analysis of CPU application memory access be-
haviors. To alleviate this problem, CPU and GPU
requests need to be separated. To separate CPU

996 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

and GPU requests and reduce interference, the seg-
mented memory scheduler (SMS) (Ausavarungnirun
et al., 2012) divides all requests in the request buffer
into source-specific batches according to the request
source. To accomplish the same goal as SMS,
criticality-aware memory scheduling (CAMS) (Fang
et al., 2020) establishes two request buffers in the
memory controller to store CPU and GPU memory
requests, separately.

More works tend to analyze GPU execution and
then dynamically prioritize GPU memory requests.
A dynamic priority scheduler adopts tile-based de-
ferred rendering (TBDR) for dynamic progress es-
timation (Jeong et al., 2012). This scheduler gives
GPU and CPU equal access priority when the GPU
rendering rate lags behind the target rendering rate.
During the last 10% of the rendered frames, GPU ac-
cess takes precedence over CPU access. To estimate
the dynamic progress of GPU workloads, deadline-
aware memory scheduler for heterogeneous systems
(DASH) scheduling (Usui et al., 2016) statically par-
titions the physical address space between CPU and
GPU datasets and allocates two independent mem-
ory controllers to schedule access. CLAMS (Jog
et al., 2016) is a new memory request scheduling al-
gorithm for GPU memory access scheduling, which
considers the latency tolerance of the cores that gen-
erate memory requests. The key idea of CLAMS is to
use the proportion of critical requests in the memory
request buffer to switch between critical and local
optimization scheduling strategies.

3 Motivation

CPU and GPU architectures determine their
memory access characteristics. GPU is used pri-

marily for a large number of parallel computations
because it has many computing cores. GPU sched-
ules cyclically in multiple applications, which results
in a large number of memory requests. CPU per-
forms more logical computations than GPU and as-
signs a larger number of calculation workloads to
GPU, which results in fewer memory requests of
CPU. Figs. 2a and 2b show the CPU and GPU mem-
ory request intensities, respectively. According to
our simulation results on the constructed CPU-GPU
heterogeneous system model, the average number of
GPU memory requests per unit time is 50 times the
number of CPU memory requests. At the same time,
due to program location, when the applications run
only on the CPU or GPU systems, the row buffer
hit rate of CPU applications is between about 40%
and 80% and the row buffer hit rate of GPU ap-
plications is between about 45% and 85%. If the
applications run on a CPU-GPU heterogeneous sys-
tem with CPU and GPU interference, the row buffer
hit rate of CPU applications is reduced by 23%–35%,
as shown in Fig. 3a, and the row buffer hit rate of
GPU applications is reduced by 11%–25%, as shown
in Fig. 3b.

When CPU and GPU compete for shared re-
sources, they are affected differently because of their
differences in memory request characteristics. As the
number of workloads increases, the effects become
more severe. Figs. 4a and 4b present the performance
of CPU and GPU benchmarks when executed with
varying numbers of benchmarks, respectively.

Compared to individual execution, simultane-
ous execution of two benchmarks results in an av-
erage decrease of 3.72% in CPU performance and
1.12% in GPU performance. When four bench-
marks are executed, the average performance drop is

0
50

100
150
200
250
300
350

M
em

or
y

in
te

ns
ity

 (M
PK

I)

0
50

100
150
200
250
300
350

M
em

or
y

in
te

ns
ity

 (M
PK

I)

Benchmark Benchmark
(a) (b)

str
ea

mclu
ste

r

bla
ck

sc
ho

les

fre
qm

ine
rtv

iew

flu
ida

nim
ate

bo
dy

tra
ck

x2
64

sw
ap

tio
ns

ca
nn

ea
l

pe
nn

an
t

all
Syn

cP
rim

s
fw

_h
ip

mis_
hip

ss
sp

_e
ll

lul
es

h
bc

_h
ip

co
lor

_m
ax

min

pa
ge

ran
k_

sp
mv

Fig. 2 Comparison of memory intensity between CPU (a) and GPU (b) applications (MPKI: misses per
thousand instructions)

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 997

0
20
40
60
80

R
ow

 b
uf

fe
r h

it
ra

te
 (%

)

CPU alone CPU shared GPU alone GPU shared

0
20
40
60
80

R
ow

 b
uf

fe
r h

it
ra

te
 (%

)

Benchmark Benchmark
(a) (b)

str
ea

mclu
ste

r

bla
ck

sc
ho

les

fre
qm

ine
rtv

iew

flu
ida

nim
ate

bo
dy

tra
ck

x2
64

sw
ap

tio
ns

ca
nn

ea
l

pe
nn

an
t

all
Syn

cP
rim

s
fw

_h
ip

mis_
hip

ss
sp

_e
ll

lul
es

h
bc

_h
ip

co
lor

_m
ax

min

pa
ge

ran
k_

sp
mv

Fig. 3 Comparison of row buffer hit rate between CPU (a) and GPU (b) applications

1.12% 6.69%
17.54%

0
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

IP
C

Benchmark
(b)

pe
nn

an
t

all
Syn

cP
rim

s

fw
_h

ip

mis_
hip

ss
sp

_e
ll

lul
es

h
bc

_h
ip

co
lor

_m
ax

min

pa
ge

ran
k_

sp
mv

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

IP
C

Alone 2 benchmarks 4 benchmarks 8 benchmarks

Alone 2 benchmarks 4 benchmarks 8 benchmarks

Benchmark
(a)

str
ea

mclu
ste

r

bla
ck

sc
ho

les

fre
qm

ine
rtv

iew

flu
ida

nim
ate

bo
dy

tra
ck

x2
64

sw
ap

tio
ns

ca
nn

ea
l

AVG

3.72%
17.58%

27.20%

AVG

Fig. 4 CPU (a) and GPU (b) throughput when executing different numbers of benchmarks simultaneously
(IPC: instructions per cycle)

17.58% for CPU and 6.69% for GPU. Similarly, when
eight benchmarks are executed concurrently, the av-
erage performance decreases by 27.20% for CPU and
17.54% for GPU. Interference between CPU and
GPU applications has a devastating impact on CPU
performance when CPU and GPU share memory.
So, CPU and GPU requests must be separated to
reduce the interference between them.

GPU cores of different operating states have dif-
ferent latency tolerance for memory requests. By
analyzing the GPU execution principle, when a core
has a large number of warps that are stalled due to
memory access, the latency tolerance of the core is
low. In contrast, if a core has a large number of
ready warps, the core can cyclically schedule ready
warps to hide memory access latency. As a result,

998 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

perceiving the numbers of ready warps and mem-
ory access warps per core can effectively estimate
the latency tolerance of the core. By estimating the
latency tolerance of all cores, we can dynamically as-
sign different priorities to cores to improve the overall
performance of the system. However, most of exist-
ing methods (Jog et al., 2016; Rai and Chaudhuri,
2017; Bitalebi and Safaei, 2023) are complicated and
difficult to implement on hardware, so a simple and
low-hardware-dependency method must be found.

In light of the problems discovered during the
simulations, the following solutions are proposed in
this study:

1. To address the problem that CPU and GPU
memory requests interfere with each other and to
greatly reduce CPU performance, we separate CPU
and GPU requests by processing CPU and GPU
memory requests in batches, respectively. FRFCFS
is used to schedule and process only CPU or GPU re-
quests over a period of time. This method eliminates
the need to force the separation of CPU and GPU re-
quests in the request buffer, reduces CPU and GPU
interference, and decreases hardware complexity.

2. In view of the fact that existing methods
for the delay tolerance estimation of the GPU core
are too complicated, we propose a new calcula-
tion method to estimate the GPU delay tolerance.
The new method predicts the number of execution
threads in GPU by counting the number of GPU
threads in the memory controller request buffer over
a period of time. The memory access threads in
CPU and GPU are threads that exist in the current
request buffer. We estimate the latency tolerance of
GPU through these two metrics.

3. CPU is more severely affected when CPU and
GPU access the memory at the same time. In re-
sponse to this issue, we appropriately increase the
CPU memory request batch size to improve the CPU
memory request priority within the range of GPU la-
tency tolerance.

4 PPBP scheduling strategy

The PPBP scheduling strategy proposed in this
study consists of three stages. In the first stage, the
requests for CPU and GPU memory access in the
request buffer are perceived, including the numbers
of CPU and GPU requests and the number of GPU
threads. In the second stage, the latency tolerance

of GPU is estimated and the priorities of CPU and
GPU memory access are adjusted by modifying the
batch sizes of CPU and GPU memory requests. In
the third stage, CPU and GPU requests are sched-
uled and processed in batches through the FRFCFS
scheduling algorithm to reduce the interference be-
tween CPU and GPU requests.

4.1 Variables of PPBP

The first stage of the PPBP scheduling strategy
needs to keep track of several variables. First, we
introduce the concept of quantum, which represents
a fixed period of system time. Second, we intro-
duce the concept of cycle, and multiple quanta form
a cycle. During each quantum, the PPBP schedul-
ing strategy will count the number of CPU requests,
the number of GPU requests, and the number of
memory access threads generated by GPU in the re-
quest buffer. In the entire cycle, we calculate the
total number of memory access threads generated
by GPU. These data are used to dynamically esti-
mate the latency tolerance and adjust the priorities
of CPU and GPU memory access requests.

Based on the PPBP scheduling strategy, if a
quantum is too long, CPU and GPU memory re-
quests will be suspended for a long time, while if
a quantum is too short, the performance of PPBP
cannot be exerted, so we set the range of a quantum
to 100 000 ticks. Because long or short cycles will
increase the estimation error of the number of GPU
threads and cause inaccurate estimation of the GPU
delay tolerance, we set four quanta as one cycle af-
ter many simulations. Because CPU and GPU are
affected differently, a higher priority is provided for
CPU by default. The coefficient of the GPU priority
is set to 0.5 based on the simulation results, and we
denote it by symbol G′.

4.2 Latency tolerance estimation of GPU

To reduce the complexity of existing scheduling
strategies for the estimation of GPU core execution,
PPBP dynamically estimates only GPU core exe-
cution by counting the number of memory access
requests in the request buffer. In this study, the
number of GPU memory access threads that exist
in the request buffer is used to represent the num-
ber of threads that GPU establishes for memory ac-
cess, and we denote it by GPUThreadquantum. The

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 999

memory access threads follow a Pareto distribution,
which means that the longer the workload runs, the
longer it is expected to run. According to Pareto
distribution, we predict the number of all threads in
the current GPU by the number of all GPU memory
access threads that have appeared in a cycle, which
is denoted by GPUThreadcycle.

Fig. 5 shows the actual number of GPU threads,
the predicted number of GPU threads, and the esti-
mation error. According to the results, our method
can achieve an estimation accuracy of >85%. We
estimate the latency tolerance of GPU by predicting
the numbers of executing threads and threads ac-
cessing memory in GPU. The method for calculating
GPU latency tolerance is shown in Eq. (1):

LatencyTolerance =
GPUThreadcycle

GPUThreadquantum
. (1)

GPU latency tolerance decreases as the ratio
of the number of memory access threads to the total
number of threads increases. Based on the estimated
GPU delay tolerance, the memory access priorities
and the batch sizes of CPU and GPU memory re-
quests are dynamically adjusted.

4.3 Batch size of memory requests

Two variables are considered when PPBP ad-
justs the batch sizes of CPU and GPU memory re-
quests: the ratio of the number of GPU memory re-
quests to the total number of memory requests and
the estimated GPU latency tolerance:

GPUPRO =G′ numREQGPU

numREQCPU + numREQGPU

·
(
1 +

1

LatencyTolerance

)
. (2)

According to the equation, when the number
of GPU memory requests increases and the GPU
latency tolerance decreases, the memory access pri-
ority and the batch size of GPU memory requests
increase.

PPBP controls the batch size by controlling the
time to process CPU or GPU batches. Algorithm 1
shows the core code of the PPBP scheduling algo-
rithm. We divide a quantum into two parts, one for
processing CPU batches and the other for processing
GPU batches. We dynamically adjust the batch sizes
of two periods based on the GPU latency tolerance.

Algorithm 1 Perceptual and predictive batch-
processing (PPBP)
Input: numREQCPU, numREQGPU, and
LatencyTolerance

Output: Schedulability of the memory
requests
1: if numREQCPU �= 0 and numREQGPU �= 0 then
2: compute the GPU proportion GPUPRO

3: else if numREQCPU = 0 then
4: GPUPRO = 1
5: else
6: GPUPRO = 0
7: end if
8: nextQuantum = Quantum

9: if isCPU and GPUPRO �= 0 then
10: isCPU = false

11: nextQuantum∗ = GPUPRO

12: else if !isCPU and GPUPRO �= 1.0 then
13: isCPU = true

14: nextQuantum∗ = 1−GPUPRO

15: end if

Estimation error

0

100

80

60

40

20

0

120

5 10 15 20 25 30 35 40 45 50 55
Execution time

60 65 70 75 80 85 90 95 100
0

Er
ro

r r
at

e
(%

)

N
um

be
r o

f G
PU

 th
re

ad
s 14

12

10

8

6

4

2

16
Actual Predicted

Fig. 5 Estimated number of GPU threads (Data are collected at an interval of five quanta, and one scale of
the execution time spans 5× 105 ticks)

1000 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

4.4 Hardware implementation

PPBP abandons the GPU latency tolerance ac-
quisition scheme, which is difficult to implement on
hardware in existing studies, and estimates the GPU
latency tolerance in a novel and simple way. The
scheme sacrifices a little accuracy, but greatly re-
duces the complexity of hardware implementation.
First, PPBP needs to count the numbers of CPU
and GPU requests in the request buffer of the mem-
ory controller and the number of threads of GPU
that are accessing memory in a quantum. To im-
plement the quantum, each memory controller has a
duration counter. Then, at the end of each quantum,
the number of GPU access threads in a cycle and the
above statistics are updated. The GPU latency tol-
erance is also calculated according to Eq. (1), and the
priority of GPU is calculated according to Eq. (2).
To maintain the above data indicators, a data table
needs to be created in the memory controller. De-
pending on the data range of each metric, the data
table requires only 32 bits of physical memory to
meet the requirements. Next, the FRFCFS schedul-
ing algorithm processes CPU or GPU requests within
a quantum in batches, depending on the priority of
GPU, and this step does not require additional hard-
ware overhead. Table 1 shows the hardware cost of
PPBP in detail, including the size of four registers
and a continuous time counter. The consumption of
the algorithm execution includes:

1. In each quantum, the numbers of CPU re-
quests, GPU requests, and GPU memory access
threads are counted.

2. At the end of the quantum, the number of
GPU single-cycle memory access threads is updated,
GPU latency tolerance is predicted, and GPU prior-
ity is calculated.

3. FRFCFS processes CPU or GPU access re-
quests in batches in one quantum.

5 Simulations

5.1 Implementation of the simulations

On the gem5 (Binkert et al., 2011) simulator, we
built a heterogeneous computing system with eight
CPU cores and 16 GPU computing cores to evalu-
ate the performance of the PPBP scheduling strat-
egy. The gem5 simulator is a modular platform for
computer architecture research, which encompasses
system-level architecture as well as processor micro-
architecture. The gem5 simulator supports two dis-
tinct system architectures; system simulation (SE)
and full system (FS) modes are available. The SE
mode can simulate the majority of operating-system-
level services, and also provide a good functional sim-
ulation speedup. The FS mode can accurately sim-
ulate system time and the overhead by simulating
a complete system, including the operating system,
thread scheduling in user and kernel modes, and var-
ious devices.

In the simulations, we evaluated the perfor-
mance of the PPBP scheduling strategy in various
scenarios by running a mixture of CPU and GPU
benchmarks in different numbers. The CPU bench-
marks were mounted on the specified CPU, where
CPUs with the benchmark could access memory
and CPUs without the benchmark were idle dur-
ing the simulations, so they had no effect on other
CPUs. Like CPU benchmarks, GPU benchmarks
were mounted on the specified CPU, and CPU sched-
uled GPU to execute parallel computations. We
evaluated the performance of PPBP on architec-
tures with eight CPUs and one GPU, and com-
pared PPBP with existing scheduling algorithms:
one CPU benchmark and one GPU benchmark,
two CPU benchmarks and two GPU benchmarks,
and four CPU benchmarks and four GPU bench-
marks. To prevent interference between CPU or
GPU cores from becoming the main cause of system

Table 1 Additional state (over FRFCFS) required for a possible PPBP implementation

Component Description/Purpose Size (number of additional bits)

numREQcpu (register) Number of CPU requests in the request buffer log2 numREQCPU (6)

numREQgpu (register) Number of GPU requests in the request buffer log2 numREQGPU (12)

GPUThreadcycle (register) Number of GPU memory access threads in a cycle log2 GPUThreadcycle (8)

GPUThreadquantum (register) Number of GPU memory access threads in a span log2 GPUThreadquantum (8)

Time counter of a quantum Count the execution time and update the range
(time counter)

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 1001

performance degradation, a same number of CPU
and GPU benchmarks were conducted for each sim-
ulation. Also, to ensure that the simulation cov-
ered the possibilities as much as possible, we ran-
domly mixed an equal number of CPU and GPU
benchmarks and ensured that each CPU benchmark
and each GPU benchmark were combined with each
other at least once. All simulations were conducted
several times and the average performance was ob-
tained. Using the mechanisms described above, we
evaluated every possible PPBP execution under the
heterogeneous architecture consisting of eight CPUs
and one GPU, and guaranteed the accuracy of the
simulation data.

We used the FS mode for the simulation to en-
sure the simulation accuracy, and strictly controlled
the execution time of each workload to ensure that
the CPU and GPU workloads were executed and
terminated at the same time. So, the interference
between CPU and GPU applications can be fully
observed.

5.2 System configuration

The CPU was an X86 architecture with a two-
level private cache, and the GPU was an AMD APU
architecture. To fully use the GPU performance, the
GPU had only 16 computing units (CUs), and each
CU had a private first level cache. The CPU and
GPU shared the last level cache and main memory.
Table 2 provides the details of our simulated hetero-
geneous architecture.

Table 2 Configuration of the simulation system

Component Configuration

CPU 8 cores, 2.3 GHz, X86, out-of-order
GPU 16 computing units, 800 MHz, X86,

out-of-order
LLC 512 KB shared, 128-bit line, 8-way, LRU

DRAM 8 GB; channel/rank/bank: 1/2/8;
row buffer size: 2 KB

5.3 Workloads

We chose the typical 12 benchmarks in PAR-
SEC3.0 (Zhan et al., 2016) as CPU benchmarks,
and 12 benchmarks provided in gem5-resources
(Jamieson and Chandrashekar, 2022), such as lulesh,
pennant, and DNNMark, as GPU benchmarks (Ta-
ble 3). PARSEC3.0 is a benchmark suite consist-

ing of multi-thread programs that focus on a new
type of workload, covers a variety of domains, and
is intended to represent a shared-memory program
for the next-generation chip multiprocessors. The
GPU benchmark program is an official set of sta-
ble and gem5-compatible GPU benchmark programs
provided by gem5 that is extremely stable and of-
fers experimental repeatability. Table 3 shows the
memory intensities (the number of memory accesses
per 1000 instructions) and the row buffer hit rate of
each benchmark. As the memory intensity of the
benchmark becomes higher, the interference with
other cores will spring up more frequently during
memory accesses. Therefore, we randomly mixed
each workload to ensure that each CPU benchmark
and each GPU benchmark were combined with each
other once to cover all possible combinations of mem-
ory intensities. To reduce the complexity of the al-
gorithm and improve the hardware implementation,
we considered only the mutual interference between
GPU and CPU in our simulations, so we did not
distinguish between memory-intensive and sensitive
benchmarks. In total, we used 24 workloads to eval-
uate the performance of PPBP.

5.4 Metrics

Our quantitative analysis of the PPBP schedul-
ing strategy is presented in terms of CPU-GPU in-
terference and system performance. We used the
weighted_speedup metric to evaluate the perfor-
mance of CPU and GPU, which is shown in Eq. (3).
We used a commonly used weighted_speedup met-
ric to measure the system throughput, comparing the
performance degradation between executing a single
benchmark and executing multiple benchmarks si-
multaneously. The GPU load was also mounted on
the CPU cores in the integrated CPU and GPU het-
erogeneous architecture. When the GPU code was
executed, CPU scheduled GPU to perform parallel
computations, so the weighted_speedup was used to
measure the GPU performance.

weighted_speedup =
n∑

i=1

IPCshared
i

IPCalone
i

. (3)

We used the average_slowdown to measure the
level of the interference between CPU and GPU
memory requests. The average_slowdown refers
to the average performance degradation across all
applications. The larger the average deceleration,

1002 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

the greater the interference between the memory re-
quests. The average deceleration is calculated in
Eq. (4):

average_slowdown =
1

n

n∑
i=1

IPCalone
i

IPCshared
i

. (4)

6 Evaluation and analysis

We compared the performance and anti-
jamming performance of PPBP, FRFCFS, FRFCFS-
Cap, and BLISS. The FRFCFS scheduling algorithm
uses row buffers in a row buffer hit-first fashion, and
old requests take precedence over new requests. Be-
cause GPU applications generate a large number of
requests to access the same row in the CPU-GPU
heterogeneous architecture, FRFCFS unfairly gives
GPU applications a higher priority, which seriously
affects CPU performance. FRFCFS-Cap is an FR-
FCFS modification that limits the number of con-

secutive row buffer hit requests that an application
can make. BLISS is a memory request scheduling al-
gorithm in a homogeneous architecture proposed by
Subramanian et al. (2015). The algorithm dynami-
cally divides applications into two types, disturbed
and undisturbed, and gives disturbed applications a
higher priority.

6.1 Performance analysis

Fig. 6 shows the normalized weighted speedup
provided by four algorithms on nine representa-
tive CPU workloads when four CPU benchmarks
and four GPU benchmarks were executed simulta-
neously. Compared with FRFCFS, PPBP improved
the system performance by 14.64% at maximum and
8.53% on average. Compared with the previously
implemented BLISS with the best performance, the
performance of PPBP was improved by about 5%.

Fig. 7a shows the performance of algorithms

Table 3 Characteristics of CPU and GPU benchmarks running on the baseline

No.
Benchmark MPKI Row buffer hit rate (%)

CPU GPU CPU GPU CPU GPU

1 streamcluster pennant 16.83 96.35 68.00 75.94
2 blackscholes allSyncPrims 2.68 123.98 64.97 77.82
3 freqmine fw_hip 6.47 261.43 68.82 45.54
4 rtview mis_hip 0.54 58.17 64.48 68.81
5 fluidanimate sssp_ell 3.31 51.27 60.62 80.29
6 bodytrack lulesh 3.76 314.77 73.11 84.08
7 x264 bc_hip 5.29 111.17 56.72 65.68
8 swaptions color_maxmin 1.08 52.27 80.04 60.78
9 canneal pagerank_spmv 34.02 70.00 38.52 71.90
10 facesim DNNMark 13.64 143.53 70.10 75.64
11 ferret ForceTreeTest 1.31 88.57 62.27 69.56
12 vips square 4.28 63.45 66.52 75.59

MPKI: misses per thousand instructions

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

N
or

m
al

iz
ed

 w
ei

gh
te

d_
sp

ee
du

p

FRFCFS FRFCFS-Cap

 Benchmark

BLISS PPBP

str
ea

mclu
ste

r

bla
ck

sc
ho

les

fre
qm

ine
rtv

iew

flu
ida

nim
ate

bo
dy

tra
ck

x2
64

sw
ap

tio
ns

ca
nn

ea
l

AVG

Fig. 6 CPU performance of PPBP and three other algorithms

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 1003

when they executed one CPU benchmark and one
GPU benchmark simultaneously. Fig. 7b shows the
performance of algorithms when they executed two
CPU benchmarks and two GPU benchmarks simul-
taneously. Fig. 7c shows the performance of algo-
rithms when they executed four CPU benchmarks
and four GPU benchmarks simultaneously. In the
case of running a CPU benchmark and a GPU bench-
mark, PPBP does not show its significant advantage
compared to other algorithms. However, as the num-
ber of workloads increased, PPBP gradually showed
its advantages. In the case of four CPU bench-
marks and four GPU benchmarks, the performance
of PPBP increased by 8.53% compared with FR-
FCFS, and the performance of PPBP was much bet-
ter than that of BLISS. When more workloads were
executed concurrently, the number of threads that
accessed memory concurrently increased, whereas
BLISS classified these threads, which increased the
system latency and hardware complexity. PPBP
simply separated memory requests into CPU and
GPU memory requests. Its complexity did not in-
crease with an increase in the number of workloads,
so its adaptability and stability were strong.

However, on the GPU side, the performance of
PPBP was not very good, and it can only guarantee
that GPU performance did not decline. There are
multiple computation cores in GPU. As the number
of workloads increased, the number of cores acti-
vated increased, and there was mutual interference
between different cores as well. PPBP considers only
the interference between CPU and GPU memory re-
quests, and does not consider the interference be-
tween memory requests from different GPU cores,
which results in poorer GPU performance. In the fu-
ture, we will focus on the interference between GPU
cores, to enable PPBP to further improve system
performance.

6.2 Interference between CPU and GPU

Fig. 8 shows the performance of algorithms in
dealing with the interference between CPU and GPU
memory requests under different numbers of CPU
and GPU workloads. Obviously, PPBP was superior
to the three other algorithms in handling mutual
interference, and this advantage became more obvi-
ous as the number of workloads performed increases.
Compared with FRFCFS, PPBP reduced the mutual
interference between CPU and GPU by 10.38%. At
the same time, BLISS demonstrated excellent per-
formance in a CPU homogeneous architecture, but
it is unsuitable to be applied to CPU-GPU hetero-
geneous architectures.

By comparing the above two performance met-
rics, we conclude that the PPBP scheduling strategy
can improve the performance of CPU applications
and reduce the interference between CPU and GPU
memory requests based on low hardware cost and
complexity.

6.3 Analysis of PPBP

Figs. 9a and 9b show the trends of CPU and
GPU performances with different quantum sizes
when four CPU benchmarks and four GPU bench-
marks were executed, respectively. The simulations

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

2 4 8

Av
er

ag
e_

sl
ow

do
w

n

Number of CPU and GPU benchmarks

FRFCFS FRFCFS-Cap BLISS PPBP

Fig. 8 Average_slowdown at different numbers of
CPU and GPU applications

0.90
0.94
0.98
1.02
1.06
1.10

0.90
0.94
0.98
1.02
1.06
1.10

CPU GPU

FRFCFS FRFCFS-Cap BLISS PPBP

0.90
0.94
0.98
1.02
1.06
1.10

CPU GPU

N
or

m
al

iz
ed

w
ei

gh
te

d_
sp

ee
du

p

N
or

m
al

iz
ed

w
ei

gh
te

d_
sp

ee
du

p

N
or

m
al

iz
ed

w
ei

gh
te

d_
sp

ee
du

p

FRFCFS FRFCFS-Cap BLISS PPBP

CPU GPU

FRFCFS FRFCFS-Cap BLISS PPBP

Core Core Core
(a) (b) (c)

Fig. 7 Performance of PPBP and three other algorithms with one (a), two (b), and four (c) CPU and GPU
benchmarks

1004 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

indicated only how the size of the quantum from
1 × 103 to 1 × 107 affected PPBP. When the quan-
tum size was too small, the number of CPU or GPU
requests processed in batches became insufficient.
PPBP was equivalent to FRFCFS when the quan-
tum size was infinitely small. As a result, the quan-
tum was too narrow to benefit from PPBP. When the
quantum was too wide, the number of CPU or GPU
requests processed in batches was too large, and the
switching time between CPU and GPU requests was
too long, which seriously affected CPU and GPU
performance. At the same time, because the number
of GPU memory requests was much larger than the
number of CPU memory requests, CPU was more
severely affected. As shown in Fig. 9, the perfor-
mance of CPU was the best when the quantum size
was 1 × 105, and the performance of GPU was the
best when the quantum size was 1 × 107. Because
the main purpose of PPBP is to improve CPU perfor-
mance and reduce the impact of GPU on CPU, and
the improvement in GPU performance was small, we
set the quantum size to 1× 105.

Figs. 10a and 10b indicate the trends in CPU
and GPU performances with different GPU priority
factors, respectively. When the GPU priority factor

was smaller, the CPU priority was higher. CPU per-
formance gradually decreased when the GPU prior-
ity coefficient was increased. However, in 0.30–0.55,
the CPU performance did not change significantly.
This is because when the CPU priority is higher, the
interference of memory requests between CPU and
GPU becomes the most important factor that affects
the CPU performance. However, if the GPU prior-
ity coefficient is too small, too much time is spent in
processing CPU memory requests, and GPU memory
requests need to wait for a long time, which seriously
affects GPU performance. So, after simulations the
best GPU priority coefficient was 0.50.

7 Conclusions

To handle the problem of CPU performance
degradation caused by the severe competition of
shared memory in the CPU-GPU heterogeneous ar-
chitecture, a PPBP scheduling strategy is proposed
in this paper, which aims to reduce the destructive
impact on CPU memory access with low hardware
complexity. First, PPBP dynamically estimates the
GPU latency tolerance by perceiving the conditions
of CPU and GPU memory requests in the request

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

N
or

m
al

iz
ed

 w
ei

gh
te

d_
sp

ee
du

p

1×103 1×104 1×105 1×106 2×106 1×107 1×103 1×104 1×105 1×106 2×106 1×107
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

N
or

m
al

iz
ed

 w
ei

gh
te

d_
sp

ee
du

p

Quantum size Quantum size
(a) (b)

Fig. 9 PPBP performance with varied PPBP quantum sizes: (a) CPU; (b) GPU

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

N
or

m
al

iz
ed

 w
ei

gh
te

d_
sp

ee
du

p

0.30 0.35 0.40 0.50
 Priority factor Priority factor

0.55 0.60 0.70
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

N
or

m
al

iz
ed

 w
ei

gh
te

d_
sp

ee
du

p

(b)(a)

0.30 0.35 0.40 0.50 0.55 0.60 0.70

Fig. 10 PPBP performance with different GPU priority factors: (a) CPU; (b) GPU

Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006 1005

buffer, to appropriately increase the memory ac-
cess priority of CPU applications. Then, CPU or
GPU memory requests are scheduled and processed
in batches based on the FRFCFS scheduling algo-
rithm, to reduce the interference between CPU and
GPU. The evaluation results show that PPBP has
better performance in mixed execution with differ-
ent numbers of CPU and GPU benchmarks. Com-
pared with previous memory schedulers, PPBP re-
duces hardware complexity, improves the possibil-
ity of hardware implementation, and provides better
performance and fairness for CPU without reducing
GPU performance. In the future, we will consider the
interference between GPU and CPU cores in PPBP,
to further improve system performance.

Contributors
Juan FANG and Sheng LIN designed the research.

Sheng LIN and Yixiang XU processed the data. Sheng LIN,

Huijing YANG, and Xing SU drafted the paper. Juan FANG

and Xing SU helped organize the paper. Sheng LIN and Xing

SU revised and finalized the paper.

Compliance with ethics guidelines
Juan FANG, Sheng LIN, Huijing YANG, Yixiang XU,

and Xing SU declare that they have no conflict of interest.

Data availability
The data that support the findings of this

study are openly available in PARSEC3.0 at

https://parsec.cs.princeton.edu/parsec3-doc.htm.

References
Ausavarungnirun R, Chang KKW, Subramanian L, et al.,

2012. Staged memory scheduling: achieving high
performance and scalability in heterogeneous systems.
Proc 39th Annual Int Symp on Computer Architecture,
p.416-427. https://doi.org/10.1109/ISCA.2012.6237036

Binkert N, Beckmann B, Black G, et al., 2011. The gem5 sim-
ulator. ACM SIGARCH Comput Archit News, 39(2):1-
7. https://doi.org/10.1145/2024716.2024718

Bitalebi H, Safaei F, 2023. Criticality-aware priority to accel-
erate GPU memory access. J Supercomput, 79(1):188-
213. https://doi.org/10.1007/s11227-022-04657-3

Bouvier D, Cohen B, Fry W, et al., 2014. Kabini: an AMD
accelerated processing unit system on a chip. IEEE Mi-
cro, 34(2):22-33. https://doi.org/10.1109/MM.2014.3

Chen W, Ray S, Bhadra J, et al., 2017. Challenges and
trends in modern SoC design verification. IEEE Des
Test, 34(5):7-22.
https://doi.org/10.1109/MDAT.2017.2735383

di Sanzo P, Pellegrini A, Sannicandro M, et al., 2020. Adap-
tive model-based scheduling in software transactional

memory. IEEE Trans Comput, 69(5):621-632.
https://doi.org/10.1109/TC.2019.2954139

Fang J, Yu L, Liu ST, et al., 2015. KL_GA: an application
mapping algorithm for mesh-of-tree (MoT) architecture
in network-on-chip design. J Supercomput, 71(11):4056-
4071. https://doi.org/10.1007/s11227-015-1504-y

Fang J, Wang MX, Wei ZL, 2020. A memory scheduling
strategy for eliminating memory access interference in
heterogeneous system. J Supercomput, 76(4):3129-3154.
https://doi.org/10.1007/s11227-019-03135-7

Hazarika A, Poddar S, Rahaman H, 2020. Survey on mem-
ory management techniques in heterogeneous comput-
ing systems. IET Comput Dig Tech, 14(2):47-60.
https://doi.org/10.1049/iet-cdt.2019.0092

Jamieson C, Chandrashekar A, 2022. gem5 GPU accuracy
profiler (GAP). Proc 4th gem5 Users Workshop, p.44.

Jeong MK, Erez M, Sudanthi C, et al., 2012. A QoS-aware
memory controller for dynamically balancing GPU and
CPU bandwidth use in an MPSoC. Proc Design Au-
tomation Conf, p.850-855.

Jog A, Kayiran O, Nachiappan NC, et al., 2013. OWL:
cooperative thread array aware scheduling techniques
for improving GPGPU performance. ACM SIGPLAN
Not, 48(4):395-406.
https://doi.org/10.1145/2499368.2451158

Jog A, Kayiran O, Pattnaik A, et al., 2016. Exploiting core
criticality for enhanced GPU performance. Proc ACM
SIGMETRICS Int Conf on Measurement and Modeling
of Computer Science, p.351-363.
https://doi.org/10.1145/2896377.2901468

Kim Y, Han D, Mutlu O, et al., 2010. ATLAS: a scalable
and high-performance scheduling algorithm for multiple
memory controllers. Proc 16th Int Symp on High-
Performance Computer Architecture, p.1-12.
https://doi.org/10.1109/HPCA.2010.5416658

Lin CH, Liu JC, Yang PK, 2020. Performance enhancement
of GPU parallel computing using memory allocation
optimization. Proc 14th Int Conf on Ubiquitous Infor-
mation Management and Communication, p.1-5.
https://doi.org/10.1109/IMCOM48794.2020.9001771

Mittal S, Vetter JS, 2015. A survey of CPU-GPU hetero-
geneous computing techniques. ACM Comput Surv,
47(4):69. https://doi.org/10.1145/2788396

Mutlu O, Moscibroda T, 2008. Parallelism-aware batch
scheduling: enhancing both performance and fairness of
shared DRAM systems. Proc Int Symp on Computer
Architecture, p.63-74.
https://doi.org/10.1109/ISCA.2008.7

Power J, Basu A, Gu JL, et al., 2013. Heterogeneous system
coherence for integrated CPU-GPU systems. Proc 46th

Annual IEEE/ACM Int Symp on Microarchitecture,
p.457-467. https://doi.org/10.1145/2540708.2540747

Rai S, Chaudhuri M, 2017. Using criticality of GPU accesses
in memory management for CPU-GPU heterogeneous
multi-core processors. ACM Trans Embed Comput Syst,
16(5s):133. https://doi.org/10.1145/3126540

Subramanian L, Lee D, Seshadri V, et al., 2015. The black-
listing memory scheduler: balancing performance, fair-
ness and complexity.
https://arxiv.org/abs/1504.00390v1

1006 Fang et al. / Front Inform Technol Electron Eng 2023 24(7):994-1006

Usui H, Subramanian L, Chang KKW, et al., 2016. DASH:
deadline-aware high-performance memory scheduler for
heterogeneous systems with hardware accelerators.
ACM Trans Archit Code Optim, 12(4):65.
https://doi.org/10.1145/2847255

Wang HN, Jog A, 2019. Exploiting latency and error tol-
erance of GPGPU applications for an energy-efficient
DRAM. Proc 49th Annual IEEE/IFIP Int Conf on De-
pendable Systems and Networks, p.362-374.
https://doi.org/10.1109/DSN.2019.00046

Wang QH, Peng Z, Ren B, et al., 2022. MemHC: an op-
timized GPU memory management framework for ac-
celerating many-body correlation. ACM Trans Archit
Code Optim, 19(2):24.
https://doi.org/10.1145/3506705

Zhan XS, Bao YG, Bienia C, et al., 2016. PARSEC3.0:
a multicore benchmark suite with network stacks and
SPLASH-2X. ACM SIGARCH Comput Archit News,
44(5):1-16. https://doi.org/10.1145/3053277.3053279

Zhang F, Zhai JD, He BS, et al., 2017. Understanding co-
running behaviors on integrated CPU/GPU architec-
tures. IEEE Trans Parall Distrib Syst, 28(3):905-918.
https://doi.org/10.1109/TPDS.2016.2586074

	Introduction
	Related works
	Motivation
	PPBP scheduling strategy
	Variables of PPBP
	Latency tolerance estimation of GPU
	Batch size of memory requests
	Hardware implementation

	Simulations
	Implementation of the simulations
	System configuration
	Workloads
	Metrics

	Evaluation and analysis
	Performance analysis
	Interference between CPU and GPU
	Analysis of PPBP

	Conclusions

