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Abstract: Cross-modal retrieval tries to achieve mutual retrieval between modalities by establishing consistent
alignment for different modal data. Currently, many cross-modal retrieval methods have been proposed and have
achieved excellent results; however, these are trained with clean cross-modal pairs, which are semantically matched
but costly, compared with easily available data with noise alignment (i.e., paired but mismatched in semantics).
When training these methods with noise-aligned data, the performance degrades dramatically. Therefore, we propose
a robust cross-modal retrieval with alignment refurbishment (RCAR), which significantly reduces the impact of noise
on the model. Specifically, RCAR first conducts multi-task learning to slow down the overfitting to the noise to
make data separable. Then, RCAR uses a two-component beta-mixture model to divide them into clean and noise
alignments and refurbishes the label according to the posterior probability of the noise-alignment component. In
addition, we define partial and complete noises in the noise-alignment paradigm. Experimental results show that,
compared with the popular cross-modal retrieval methods, RCAR achieves more robust performance with both types
of noise.
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1 Introduction

In this paper, we focus on the robust image–text
cross-modal retrieval problem, which involves search-
ing an image (or text) for a given sentence (or image).
It offers a broader range of applications and provides
a better user experience than uni-modal retrieval,
such as news search and product retrieval (Wang
KY et al., 2016). State-of-the-art algorithms are
trained with paired multi-modal data (e.g., Fig. 1a)
and provide good results. Nonetheless, those clean
paired data are modally aligned, which are expen-
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sive. With the explosive growth of multimedia data,
the cross-modal data collected from the Internet are
easily available, but most of them have some noise
alignments, i.e., paired data but mismatched seman-
tically. In general, these data exist in three forms:
clean alignment, partial noise alignment, and com-
plete noise alignment (Fig. 1). Experiments reveal
that current methods perform badly in the context
of noise-aligned data. Therefore, we propose a new
method, named robust cross-modal retrieval with
alignment refurbishment (RCAR), to solve the noise-
alignment image–text retrieval problem.

Traditional cross-modal retrieval methods
(Faghri et al., 2018; Li KP et al., 2019; Chen H et al.,
2020; Diao et al., 2021) project different modal data
into a shared semantic space, treat paired modal data
as positive instances and unpaired ones as negative
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Fig. 1 Three types of data-alignment instances: (a) a clean instance is modally aligned, meaning that image and
text have consistent semantics; (b) a partial noise-alignment instance denotes a pair with partially mismatched
semantics; (c) a complete noise-alignment instance indicates a pair with entirely mismatched semantics. Noise
semantics are marked in red. References to color refer to the online version of this figure

instances and are optimized by contrastive learning,
as shown in Eq. (1), which maximizes the image–text
similarity between positive instances (i, t) and mini-
mizes the similarity between negative instances (i, t̂)
(Faghri et al., 2018):

�(i, t)=
∑

t̂

[α− s(i, t)+s(i, t̂)]++
∑

î

[α− s(i, t)+s(̂i, t)]+,

(1)

where α is the similarity margin and generally takes
a value of 0.2, s(i, t) is the similarity between image
and text, and [x]+ takes the larger value between
0 and x. However, when the positive instance is
unaligned, the model will still maximize the similar-
ity incorrectly. Furthermore, cross-modal retrieval
can also be reached by image–text matching (ITM),
which concatenates the input of image and text to
a transformer-based model and performs the binary
classification using the classification [CLS] token (Lu
et al., 2019; Chen YC et al., 2020; Li XJ et al., 2020).
Despite the fact that this type of method has strong
interaction capabilities, incorrect labels still degrade
the model performance.

In contrast to image classification with noisy la-
bels (Lin XY et al., 2021), we concentrate on cross-
modal retrieval with noise-aligned multi-modal data,
which takes mismatched multi-modal instance pairs
into account rather than incorrectly labeled images.
Note that many noisy label methods cannot be ap-
plied to the noise-alignment problem directly be-
cause these methods study class-level noise rather
than instance-level noise in multi-modal data. How-
ever, there are still some methods that can be used,
for example, sample selection (Han et al., 2018; Jiang

et al., 2018) and label correction (Reed et al., 2015;
Arazo et al., 2019). To make full use of noise-
alignment pairs, we apply the method of refurbishing
labels. To make this practicable, we adopt ITM in-
stead of contrastive learning to train the cross-modal
retrieval model, because changing the binary align-
ment label is not affected by the batch size and is
easy to reach compared with finding an aligned text
(image) to the image (text). Inspired by Arazo et al.
(2019), we fit the ITM loss to a two-component beta-
mixture model (BMM) to separate the cross-modal
samples into clean and noisy samples. However, di-
rectly solving the noise-alignment problem with this
method is not practical. According to our observa-
tions of ITM loss, noise-alignment data are quickly
fitted due to the strong fitting ability of transformer-
based models, in contrast to the slow decline in
noise-labeled image classification loss. Consequently,
noise-alignment instances have higher loss only dur-
ing a narrow time window at the beginning, which re-
sults in lack of adequate time and makes it difficult to
distinguish clean and noise alignments from the loss
distribution. Therefore, it is necessary to slow down
the model’s fitting to the noise alignment, which can
result in a larger time window for modeling a well-
categorized BMM. We discover that learning with
ITM and masked language modeling (MLM) makes
it possible. On one hand, MLM is self-supervised
and no additional noise is brought in. On the other
hand, multi-task learning (MTL) consisting of these
two tasks reduces the risk of overfitting on the sin-
gle task of ITM as a regularization method (Ruder,
2017).
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To summarize, the contributions of this paper
are as follows:

1. From a practical standpoint, we divide the
noise-alignment problem into two categories, partial
noise alignment and complete noise alignment, based
on whether the noise-alignment modality contains
the same semantics.

2. We present a robust cross-modal retrieval
method, RCAR, which combines the noise correc-
tion theory with MTL.

3. We construct these two types of noise on two
datasets, i.e., Microsoft Common Objects in Context
(MS-COCO) and Flickr30K. We test our method and
prove its robustness. Compared with popular meth-
ods, RCAR reaches the best retrieval efficiency.

2 Related works

2.1 Image classification with label noise

Image classification with noisy labels is a signif-
icant task in the field of computer vision, referring
to the classification under noise supervision. Exist-
ing strategies, such as sample loss reweighting (Liu
and Tao, 2016; Wang RX et al., 2018; Zhang et al.,
2021), label refurbishing (Reed et al., 2015; Ma XJ
et al., 2018; Arazo et al., 2019), and robust learning
(Manwani and Sastry, 2013; Ghosh et al., 2017; Ma
X et al., 2020), have been investigated from various
perspectives to reduce the impact of noise on the
model. Sample loss reweighting (Liu and Tao, 2016)
defines the sample importance weight as the quotient
of the joint probability of the true and false distri-
butions, with the correct sample having the larger
weight value. The “Active Bias” (Chang et al., 2017)
method assumes that the prediction variance reflects
the degree of inconsistency and sample difficulty and
weights the loss accordingly.

In contrast to sample loss reweighting, label
refurbishment attempts to avoid overfitting to in-
correct labels by refurbishing a noisy label. Deep
neuron network (DNN) prediction is used to update
the labels (Song et al., 2020). These methods, in
some ways, enable the model to build self-confidence
and robustness. The first way to implement this
idea is bootstrapping. Reed et al. (2015) established
a bootstrapping method that uses the label confi-
dence discovered during cross-validation to update
the target label of training data. Dynamic boot-

strapping (Arazo et al., 2019) uses the expectation-
maximization (EM) algorithm to evaluate the like-
lihood of a sample being cleanly labeled dynami-
cally. SELFIE (Song et al., 2019) corrects the high-
confidence training sample by substituting the label
with network prediction.

The purpose of the robust loss function is to
provide loss functions that keep the risk of unseen
test data low even when the data are noisy. Man-
wani and Sastry (2013) investigated the noise tol-
erance property of risk minimization (under various
loss functions), theorized a sufficient condition for
the loss function, and made the risk minimization of
this function a noise tolerance for binary classifica-
tion. The robust mean absolute error (MAE) (Ghosh
et al., 2017) model, on the other hand, demon-
strates that the MAE loss shows a better general-
ization since it satisfies the aforementioned require-
ment. The curriculum loss (CL) model in Lyu and
Tsang (2020) shows that 0-1 loss offers some robust-
ness; however, optimization is challenging. Hence,
they proposed a very straightforward and effective
loss. Additionally, it is demonstrated that CL pro-
vides a tighter upper bound for the 0-1 loss than the
typical alternative loss based on summation. Rather
than using a predetermined threshold or calculation
to do curriculum learning, MentorNet (Jiang et al.,
2018) applies a data-driven strategy. However, Men-
torNet is a self-training system that tends to accu-
mulate errors. All these methods focus on image
classification with noisy labels and cannot directly
be applied in robust cross-modal learning because of
modal heterogeneity.

2.2 Cross-modal retrieval

Cross-modal retrieval is the process of finding
a common representation space for various modali-
ties so that they can retrieve each other. The most
important problem that needs to be solved is modal
heterogeneity. For modal retrieval strategies, there
are two approaches (Geigle et al., 2022). The first ap-
proach involves early interaction methods (Jia et al.,
2021; Radford et al., 2021). This kind of method
maps image regions and text words to the same di-
mension before concatenating the input to the trans-
former and then performs the binary classification
task using the [CLS] token. Cross-modal retrieval
methods are usually used to train several large-
scale multi-modal pre-training models (Yang et al.,
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2022). The reason is that these are simple in prin-
ciple, fast to train, and treat image regions and text
words as equal tokens that can be fully interacted
with inter-modal features while also fully interacting
with intra-modal features, which is more beneficial
to reducing inter-modal heterogeneity. The second
approach is late interaction methods, e.g., visual-
semantic embedding (VSE++) (Faghri et al., 2018),
stacked cross attention network (SCAN) (Lee et al.,
2018), and similarity graph reasoning and attention
filtration (SGRAF) (Diao et al., 2021), which en-
code the modalities individually, project them into
a shared latent semantic space, and then compute
the similarity between the projected points for con-
trastive learning. According to the features used,
this technique can be divided into two types. The
first category mines the hardest negative for targeted
training using the global features of the modal data
(Faghri et al., 2018), with the image’s global fea-
tures retrieved using ResNet (He et al., 2016) and
the text’s global features extracted using gate recur-
rent unit (GRU) (Chung et al., 2014). The second
category (Lee et al., 2018; Li KP et al., 2019; Chen
H et al., 2020; Diao et al., 2021; Messina et al., 2021)
uses local features of modal data, with the image’s
modal local features extracted using bottom-up at-
tention and the text’s modal local features extracted
using GRU or BERT (Devlin et al., 2019). The
most significant distinction between these methods
is the method of calculating the image–text simi-
larity. Lee et al. (2018) used stacked cross atten-
tion to find potential alignment between regions and
words and thereby to infer image–text global simi-
larity. Li KP et al. (2019) pointed out that simply
using the features of image region lacks the seman-
tic concept of the scene, and that directly calculating
the image–text similarity is not the best option; they
proposed the use of a graph convolutional neural net-
work to infer the image region’s relations, generating
the region’s features with a semantic concept of the
scene. In fact, semantics can be complicated, such
as shallow and confusing. Chen H et al. (2020) com-
puted the image–text similarity using an iterative
matching strategy to achieve semantic alignment for
mining various semantic complexities. Diao et al.
(2021) used the graph convolutional neural network
to obtain the similarity. However, these methods
are trained with clean image–text pairs and generate
bad results under noise-alignment supervision.

3 Proposed method

Cross-modal retrieval can be formulated as the
problem of learning a model f(I, T ) to predict the
similarity of image I and text T from a set of
multi-modal training instances D = {(Ii, Ti, yi)}Ni=1

with yi ∈ {0, 1} being the binary ground-truth label
that indicates whether the image–text pair (Ii, Ti) is
aligned (1) or not (0). For the noise-alignment prob-
lem, it is defined that some image–text pairs (Ij , Tj)

cannot be identified in the training data, which are
unaligned but are labeled as positive incorrectly.

3.1 Model pipeline

As illustrated in Fig. 2, RCAR contains an im-
age encoder, a text encoder, a single-stream trans-
former as a cross-modal encoder, and an alignment
refurbisher. In this way, an input image I and in-
put text T can be encoded into two sequences of
embeddings {v1, v2, · · · , vO} and {w1, w2, · · · , wL},
where O is the number of detected image regions
and L is the length of the sentence. As the in-
put of the cross-modal encoder, we concatenate
the image and text embeddings into one sequence
{[CLS], v1, v2, · · · , vO, w1, w2, · · · , wL}. At the start
of training, MTL is used with ITM and MLM to
prevent the model from overfitting the noisy data.
Then, ITM is conducted to do cross-modal retrieval.
The refurbisher starts working after the warm-up pe-
riod and it trains the network for m epochs.

3.2 Training objectives

3.2.1 ITM process

We use ITM as shown in Eq. (2) to predict
whether a pair of image and text is aligned or not.
Then, we make a binary classification according to
the [CLS] token.

�ITM(I, T ) = −
N∑

i=1

yTi logp(Ii, Ti), (2)

where p(Ii, Ti) denotes the binary softmax probabil-
ity of the ith pair.

3.2.2 MLM process

In addition to ITM, we apply MLM to motivate
MTL. The input words are randomly masked off with
a 15% probability and the masked ones are replaced
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Fig. 2 Illustration of robust cross-modal retrieval with alignment refurbishment (RCAR). RCAR learns a
robust cross-modal retrieval model by combining a modal alignment refurbisher with multi-task learning.
Image–text matching (ITM) and masked language modeling (MLM) are used to motivate multi-task learning
to alleviate overfitting to the noise. To make full use of noisy data, the refurbisher is used to correct the
noise-alignment label yi. FC: fully connected

with a special token [MASK]. The objective is to
minimize the negative log-likelihood of these masked
words by observing their context words w\m and all
image regions v:

�MLM(θ) = −E(w,v)∼DlogPθ(wm | w\m, v), (3)

where θ represents the trainable parameter.

3.3 Alignment refurbisher

For noise-alignment correction, we introduce an
alignment refurbisher which builds a mixture dis-
tribution model. Although the Gaussian mixture
model (GMM) is the most widely used, its perfor-
mance in approximating the loss distribution of a
mixture of clean and noisy samples is worse than
that of BMM (Arazo et al., 2019), because BMM
can model both symmetric and skewed distributions
ranging in [0, 1] (Ma ZY and Leijon, 2011). By
modeling the normalized ITM loss of the image–text
pairs, the refurbisher fits a two-component BMM
that can be defined as follows:

p(�) =

2∑

k=1

μkf(� | αk, βk), (4)

where μk is the mixing coefficient of the kth mix-
ture component and f(� | αk, βk) is the probability
density function of the kth beta distribution:

f(� | αk, βk) =
Γ(αk + βk)

Γ(αk)Γ(βk)
�αk−1(1− �)βk−1, (5)

where Γ(·) is the gamma function and αk, βk > 0.
To fit BMM to the ITM loss, we apply an EM

algorithm. We define latent variable λk(�) = p(k |
�), which represents the posterior probability of the
value � being originated by mixture component k. In
the expectation-step (E-step), the Bayes rule is used
to update the latent variables λk(�) with the other
parameters μk, αk, and βk being fixed:

λk(�) =
μkf (� | αk, βk)∑K
k=1 μkf (� | αkβk)

. (6)

After the E-step, we fix λk(�) and use a weighted
version of the method of moments to estimate the
distribution parameters αk, βk:

αk = �̄k

(
�̄k

(
1− �̄k

)

σ̂2
k

− 1

)
, βk =

αk

(
1− �̄k

)

�̄k
, (7)

where �̄k represents a weighted average of the losses
{�i}Ni=1 of each training sample {Ii, Ti}Ni=1 and σ̂2

k

represents the weighted variance estimate:

�̄k =

∑N
i=1 λk (�i) �i∑N
i=1 λk (�i)

, σ̂2
k =

∑N
i=1 λk (�i)

(
�i − �̄k

)2
∑N

i=1 λk (�i)
.

(8)
Then the updated mixing coefficients μk’s can be
calculated in the following way:

μk =
1

N

N∑

i=1

λk (�i) . (9)
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Finally, we can estimate the probability that the
image–text pair is noise-aligned by calculating the
posterior probability:

λt(�i) = p (t | �i) = p(t)p (�i | t)
p (�i)

, (10)

where t indicates the noise-alignment class, which is
the beta component with a larger mean value.

We refurbish only the positive instance because
the negative instance is manually constructed and
clean. With the computation above, the alignment
label yi can be refurbished in the following manner:

yiref = H((1− λt(�i)) yi + λt(�i)zi), (11)

where zi is the one-hot class prediction and H uses
the class with the highest probability after weighted
summation as a hard label. The loss after alignment
refurbishment can be denoted as follows:

�ref = −
N∑

i=1

yTiref log (p(Ii, Ti)) . (12)

4 Experiments

4.1 Experimental settings

4.1.1 Noise-alignment type

From a practical standpoint, we propose two
types of noise alignment with different proportions.
The first type is partial noise alignment, which means
that the image and text have matched semantics par-
tially as shown in Fig. 1b. It is constructed by cal-
culating the Jaccard similarity, as shown in Eq. (13),
of the objects between different positive pairs, which
measures the similarity between two sets of classes
(Niwattanakul et al., 2013):

J (A,B) = |A ∩B|/|A ∪B|. (13)

Then, we replace the image or text randomly ac-
cording to the similarity matrix. The second type
is complete noise alignment, which means that the
image and text are totally mismatched in terms of se-
mantics, as shown in Fig. 1c, and this is constructed
by replacing the captions of the images randomly.

4.1.2 Data sources

We construct complete noise alignment on two
public datasets, i.e., MS-COCO (Lin TY et al., 2014)

and Flickr30K (Huiskes and Lew, 2008), and adopt
partial noise alignment on only MS-COCO because
the image–text pairs in MS-COCO have class infor-
mation in the form of 80-dimensional one-hot vec-
tors. For each type of noise, we validate our method’s
robustness at four different noise ratios, i.e., 0%,
20%, 40%, and 60%, and report the results of other
experiments at the 40% noise ratio. For the origi-
nal dataset, MS-COCO contains 123 287 images and
five captions for each image. Flickr30K consists of
31 000 images collected from the Flickr website, and
here also each image is associated with five captions.
We follow the split in Karpathy and Li (2015).

4.1.3 Evaluation metrics

We use the recall at K (R@K ), which is defined
as the fraction of queries for the correctly retrieved
item among the closest K points to the query to
measure the performance of image retrieval and text
retrieval.

4.1.4 Implementation details

The entire network is trained on a TITAN
RTX GPU. Following the method of Messina et al.
(2021), we adopt faster regions with convolutional
neural networks (Faster R-CNN) (Ren et al., 2017)
as the image encoder and a pre-trained BERT (De-
vlin et al., 2019) as the text encoder, to extract local
features. An eight-layer transformer is used with
eight heads per layer. We train RCAR with MTL
for 10 epochs and with ITM for 20 epochs. The
model is warmed-up for seven epochs. The batch
size is set to 64. We use the Adam (Kingma and
Ba, 2015) optimizer with a learning rate initialized
by 3× 10−5 and use the cosine annealing strategy to
update parameters.

4.2 Retrieval results on noisy cross-modal
datasets

We provide the results of representative mod-
els, including VSE, VSE++, visual semantic reason-
ing network (VSRN), transformer encoder reason-
ing and alignment network (TERAN), SCAN, itera-
tive matching with recurrent attention memory (IM-
RAM), and SGRAF. These methods represent four
distinct technical paths: (1) global-feature-based
methods: VSE, VSE++; (2) transformer-based
model: TERAN; (3) local-feature-based methods
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without inter-modal attention: VSRN; (4) local-
feature-based methods with inter-modal attention:
SCAN, IMRAM, and SGRAF. Tables 1 and 2 present
the quantitative results of comparison between these
methods on two datasets with different ratios of
noise-alignment data.

Table 1 Comparison of performance of RCAR with
state-of-the-art methods in the context of partial
noise-alignment data (part) on the MS-COCO dataset

Noise Method
Image2Text Text2Image

R@1 R@5 R@10 R@1 R@5 R@10

0%

VSE 42.0 76.3 86.3 32.0 67.3 80.4
VSE++ 64.6 90.0 95.7 52.0 84.3 92.0
VSRN 76.2 94.8 98.2 62.8 89.7 95.1
TERAN 77.7 95.9 98.6 65.0 91.2 96.4
SCAN 70.4 94.1 98.9 56.8 87.5 94.0
IMRAM 72.3 94.6 98.3 60.6 88.8 95.0
SGRAF 78.3 96.2 98.7 62.8 90.3 95.7
RCAR 74.3 95.8 98.3 61.7 91.4 96.8

20%

VSE 34.5 70.1 83.0 27.4 62.1 76.8
VSE++ 33.2 68.4 81.0 27.2 61.9 76.7
VSRN 66.1 90.9 96.1 55.7 86.0 92.7
TERAN 69.1 91.9 96.5 58.2 85.8 89.1
SCAN 66.4 91.1 95.8 51.6 83.9 82.2
IMRAM 69.1 93.2 97.1 56.1 86.0 93.2
SGRAF 68.3 93.1 96.0 56.1 86.5 92.9
RCAR 71.0 93.7 97.2 58.6 88.4 95.6

40%

VSE 31.6 64.9 79.0 24.5 57.7 72.6
VSE++ 33.3 62.8 77.0 24.1 56.8 71.3
VSRN 58.2 86.3 93.0 45.6 77.6 86.5
TERAN 17.2 65.9 73.1 14.9 33.1 43.5
SCAN 62.6 91.5 96.6 49.2 82.0 90.6
IMRAM 66.2 91.1 96.7 51.9 84.7 92.1
SGRAF 67.8 92.4 96.4 52.7 80.5 83.5
RCAR 68.5 93.2 96.9 55.6 85.9 94.6

60%

VSE 24.5 57.5 73.9 19.2 51.5 68.1
VSE++ 22.9 49.7 65.4 18.9 49.4 64.8
VSRN 32.6 59.3 68.5 23.3 48.2 60.1
TERAN 0.1 0.5 1.0 0.1 0.5 1.0
SCAN 35.2 61.4 72.7 25.9 49.6 59.6
IMRAM 42.3 78.5 89.6 40.2 73.4 86.3
SGRAF 42.9 69.7 85.1 37.8 63.4 71.8
RCAR 49.5 82.3 90.7 42.8 78.9 88.3

Evaluation criterion is R@K. The best results are in bold

The experiments reveal the following: (1) Com-
plete noise alignment is more harmful for models
to learn cross-modal consistency than partial noise
alignment because models can still learn the object
information in partially noisy data. (2) Hard nega-
tive mining (VSE++) has poor robustness compared
with the traditional loss function (VSE) model be-
cause the hardest negative is likely to be a positive in-
stance for noise-aligned data. (3) Using intra-modal
attention to optimize modal features, i.e., VSRN,
has little effect on robustness improvement because
the cross-modal attention mechanism is not opti-
mized. On the contrary, using cross-modal attention
to compute image–text similarity, i.e., SCAN and

SGRAF, can increase model robustness. The reason
is that the model focuses attention on the aligned
regions and reduces the learning of non-aligned re-
gions. However, performance drops significantly on
60% complete noise. (4) Transformer-based model,
i.e., TERAN, has bad performance because it over-
fits the noise alignment easily due to its excellent
fitting ability. (5) Traditional methods have some
robustness because some of them still have a good
performance in the context of 20% complete noise
and all of them suffer from a “cliff-like drop” in the
context of 60% complete noise. The reason is that
these methods cannot learn a good semantic com-
mon space of those two modals on high-ratio noise.
(6) RCAR is more robust because it reduces overfit-
ting to the noise alignment and can still learn correct
knowledge from the refurbished noisy instances.

4.3 Ablation study

Table 3 provides the results of ablation stud-
ies. To explore the effect of MTL and the refur-
bisher, we validate our approach by revisiting each
term in Flickr30K with 40% complete noise align-
ment. The results reveal the following: (1) Baseline,
i.e., single-stream transformer with ITM, has a little
worse performance than SCAN. (2) Both MTL and
the refurbisher contribute to model robustness, and
RCAR acquires better improvements by considering
both of them. For example, the improvements of
Image2Text and Text2Image are 21.9 and 13.6 re-
spectively in terms of the R@1 score.

4.4 Sensitivity to parameters

To explore the influence of the warm-up epochs
after which the refurbisher begins to work, i.e., the
parameter m, we tune m in {6, 7, 8, 9, 10, 11} and
show their performance in Fig. 3. We find that the
retrieval results are the best when m = 7, because
the model is affected by the noisy sample when m is
large, while the losses are not separated because of
the underfitting of the clean sample when m is small.

4.5 Computation time

We record the computation time of repre-
sentative methods (i.e., VSE++, VSRN, SCAN,
TERAN, SCAN, IMRAM, SGRAF, and RCAR).
The results in Table 4 reveal the following: (1)
The global-feature-based model, i.e., VSE++, has
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Table 2 Comparison of performance of RCAR with state-of-the-art methods in the context of complete
noise-alignment data (cmp) on the Flickr30K and MS-COCO datasets

Noise Method

Flickr30K MS-COCO∗

Image2Text Text2Image Image2Text Text2Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0%

VSE 27.8 56.9 68.9 20.1 45.8 57.1 42.0 76.3 86.3 32.0 67.3 80.4
VSE++ 52.9 80.5 87.2 39.6 70.1 79.5 64.6 90.0 95.7 52.0 84.3 92.0
VSRN 71.3 90.6 96.0 54.7 81.8 88.2 76.2 94.8 98.2 62.8 89.7 95.1
TERAN 71.8 90.5 94.7 55.7 83.1 89.3 77.7 95.9 98.6 65.0 91.2 96.4
SCAN 67.4 90.3 95.8 48.6 77.7 85.2 70.4 94.1 98.9 56.8 87.5 94.0
IMRAM 72.0 92.1 96.8 53.5 80.4 87.4 72.3 94.6 98.3 60.6 88.8 95.0
SGRAF 76.2 93.4 97.3 57.5 82.4 88.8 78.3 96.2 98.7 62.8 90.3 95.7
RCAR 71.3 90.5 95.3 54.6 83.7 89.5 74.3 95.8 98.3 61.7 91.4 96.8

20%

VSE 16.1 34.2 43.3 10.6 27.6 36.2 31.1 64.7 78.4 23.3 56.4 69.6
VSE++ 15.3 34.5 43.0 9.8 27.5 36.3 25.1 51.0 60.4 20.1 45.2 54.5
VSRN 50.0 76.4 84.0 33.9 62.0 71.8 50.3 80.5 90.4 42.0 77.9 87.7
TERAN 35.1 51.1 54.8 27.4 43.9 46.8 69.8 92.1 94.8 55.5 86.1 91.9
SCAN 57.5 84.3 91.4 39.8 67.7 76.6 65.1 90.5 95.3 47.4 80.5 90.3
IMRAM 56.0 85.3 92.1 40.1 68.7 76.3 68.9 92.5 96.5 56.6 86.0 92.0
SGRAF 52.8 84.7 92.1 42.9 70.4 76.7 67.4 92.8 95.3 54.4 86.2 92.8
RCAR 66.5 88.2 92.4 50.6 79.9 87.6 70.4 93.1 97.5 57.8 88.8 95.5

40%

VSE 8.2 19.3 25.6 6.1 14.9 20.3 19.0 48.1 61.5 15.0 43.1 58.4
VSE++ 7.9 26.4 39.5 6.7 16.5 21.4 15.8 29.4 35.3 14.6 44.8 56.7
VSRN 31.8 58.0 69.0 21.9 44.1 54.8 28.3 59.2 71.0 26.2 58.2 71.3
TERAN 0.4 3.2 4.9 2.0 7.6 13.2 37.7 63.4 70.9 30.3 58.3 70.2
SCAN 37.7 65.8 74.9 24.7 50.0 60.0 59.2 89.4 94.8 48.8 78.9 86.0
IMRAM 36.8 62.4 73.6 23.4 46.0 52.0 57.7 89.2 94.4 42.6 76.0 81.7
SGRAF 26.1 56.5 68.9 20.9 46.2 58.0 38.1 72.0 83.5 28.5 61.0 74.8
RCAR 61.0 85.0 90.6 44.5 75.2 83.6 64.7 90.9 95.8 52.9 85.8 93.8

60%

VSE 3.5 9.3 12.3 2.3 7.1 10.4 7.0 18.3 23.5 5.9 16.1 20.5
VSE++ 2.7 8.9 12.6 1.3 3.8 5.7 6.5 15.8 21.3 5.2 15.2 20.9
VSRN 11.1 27.3 37.9 7.7 20.1 26.6 9.1 25.6 36.7 8.7 26.8 37.7
TERAN 0.1 0.6 1.0 0.1 0.6 1.1 7.6 11.4 13.0 6.3 11.7 14.5
SCAN 21.1 58.2 66.9 10.1 26.1 33.4 28.7 59.3 72.6 15.4 34.2 46.5
IMRAM 7.0 22.0 31.1 5.0 14.2 20.5 30.0 63.6 74.4 23.0 46.8 51.7
SGRAF 20.1 54.2 65.1 13.6 32.2 45.5 23.4 53.6 66.2 17.1 44.7 58.6
RCAR 51.2 81.0 89.9 38.7 69.8 78.9 55.3 83.9 91.6 44.3 79.7 90.5

∗ MS-COCO’s 1k testing set is used. Evaluation criterion is R@K. The best results are in bold

fewer parameters and shorter computation time
compared with local-feature-based and transformer-
based models, i.e., VSRN, SCAN, TERAN, SCAN,
IMRAM, SGRAF, and RCAR. The global-feature-
based method cannot fit the training data well, which
leads to the fact that the model does not achieve the
best performance on clean data and also does not
achieve the worst performance on data with high
percentage of noise. (2) RCAR has more param-
eters because RCAR uses the BERT-based model
as the text feature extractor, which has 109M pa-
rameters. (3) RCAR has the longest inference time,
because RCAR uses the pre-interaction method and
needs to concatenate different image–text pairs and
input them into the transformer layer when calculat-
ing the similarity, which increases the inference time.

However, the training time of RCAR is the short-
est among the local-feature-based methods. Because
RCAR uses the pre-trained BERT-based model for
parameter initialization and a robust strategy for la-
bel correction, the training time is significantly re-
duced. For example, VSRN and RCAR have a sim-
ilar size of parameters, but the training of VSRN
takes 25.40 h, while RCAR takes only 7.50 h, which
indicates that RCAR can converge faster.

4.6 Visualization and analysis

To illustrate the effect of MTL, we draw the box-
plots shown in Fig. 4, which demonstrates the distri-
bution of 90% ITM loss of clean and noisy instances
over the first 15 epochs. The remaining 10% loss
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Table 3 Ablation study in the context of 40% com-
plete noise-alignment data on the Flickr30K dataset

Method
Image2Text Text2Image

R@1 R@5 R@10 R@1 R@5 R@10

SCAN 43.3 72.8 80.9 33.0 59.7 69.2
Baseline 39.1 69.7 79.3 30.9 62.4 73.0
w/o MTL 46.1 75.0 84.8 36.0 67.2 78.4
w/o ref 46.3 74.3 83.4 34.9 64.1 73.1
RCAR 61.0 85.0 90.6 44.5 75.2 83.6
Evaluation criterion is R@K. w/o: without. MTL: multi-task
learning. The best results are in bold

Table 4 Comparison of methods in the context of
model size and computation time for 40% complete
noise-alignment data on the Flickr30K dataset

Method
Model Training Inference Total
size time (h) time (h) time (h)

VSE++ 10.8M 2.40 0.03 2.43
VSRN 137.6M 25.40 0.08 25.48
TERAN 215.4M 18.60 0.10 18.70
SCAN 12.7M 8.20 0.06 8.26
IMRAM 17.1M 9.00 0.13 9.13
SGRAF 18.1M 10.30 0.15 10.45
RCAR 136.3M 7.50 0.40 7.90

data that are too large or too small are regarded as
outliers. When the two distributions do not overlap,
the data become more divisible. From observation,
MTL creates a larger time window (4–14 epochs) for
data separation.

Meanwhile, as shown in Fig. 5a, we visualize
the effect of the refurbisher. By fitting the sample
losses to a beta mixture distribution, we can find
the following: (1) The loss of most noisy instances is
larger than the loss of the clean instances. (2) The

sample losses are clustered into two classes, with the
small mean value being the clean cluster (blue curve)
and the larger mean value being the noisy cluster
(gray curve).

A t -distributed stochastic neighbor embedding
(t-SNE) figure is often used to visualize the data
distribution by the downscaling technique (van der
Maaten and Hinton, 2008), and we demonstrate the
distribution of training data, as shown in Fig. 5b.
Note that to use the large amount of image–text
multi-modal data with noise (i.e., data from the
Web), the influence of noise-aligned image–text pairs
must be reduced. In other words, in the noise cross-
modal retrieval task, the term “noisy data” refers to
negative samples that are incorrectly marked as pos-
itive. We construct these data by randomly replac-
ing the aligned text (or image) with an incorrectly
aligned text (or image). Therefore, noisy data are
negative samples in fact. Figs. 5b and 5c demon-
strate the data distribution after dimensionality re-
duction by the t-SNE method, revealing the follow-
ing: (1) For the SCAN method, most of the noisy
samples and positive samples are clustered into one
class, which shows that SCAN overfits the noisy data
and has poor robustness. (2) For our RCAR method,
a large amount of noisy data and a large number of
negative samples are clustered into one class, which
illustrates that our model does not overfit the noisy
data in the end, demonstrating the robustness of our
model.

Fig. 6 illustrates the qualitative results of text
retrieval for the given image queries. Most of the

(a)

R

(b)

Fig. 3 Parameter sensitivity of m in Image2Text (a) and Text2Image (b)
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(a) (b)

Fig. 4 Visualization of the effect of multi-task learning (MTL): (a) without MTL; (b) with MTL (the refurbisher
is not involved)

)

(a)

Negative
Positive
Noise

(b) (c)

Fig. 5 Visualization of the refurbisher’s effect (a), t-SNE result of RCAR (b), and t-SNE result of SCAN (c).
In (a), the x -axis is the normalized loss values. The left scale of the y-axis is the sample number of the loss
values in different intervals corresponding to the histogram and the right scale is the probability density for
the given loss values corresponding to the three curves. In (b), most of the noise-alignment data are clustered
into the negative category. In (c), SCAN overfits the noise, and most of the noise-alignment data are clustered
into the positive category. References to color refer to the online version of this figure

1. t  
�

2.  
�

3.  
�

4.  

5. � 

Fig. 6 Qualitative results of text retrieval for the given image queries. For each image query, we show the
top-five ranked sentences (or expressions) in (a)–(d). We observe that our RCAR retrieves the correct results
in the top-ranked sentences. References to color refer to the online version of this figure
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retrieved sentences are correct (shown as tick). Some
outputs are mismatched (shown as fork), but rea-
sonable, for example, 4 in Fig. 6b and 4 in Fig. 6c
contain similar semantic meaning to the image. On
the other hand, there are semantically incorrect out-
puts such as 5 in Fig. 6a, possibly due to the in-
fluence of noise-alignment data. Fig. 7 shows the
qualitative results of image retrieval for the given
sentence queries. Each sentence corresponds to a
ground-truth image. For each sentence query, we
display the top-three retrieved images, ranking from
left to right. As indicated in these examples, our
model retrieves the ground-truth image successfully
and other top-ranking results are also reasonable.

5 Conclusions

This paper presented the RCAR method for ro-
bust cross-modal retrieval with noise alignment. It
combines the noise classification theory with MTL,
increasing the model’s robustness by adaptively re-
furbishing the label of the noise-alignment data in
cross-modal learning. Experimental results showed
that RCAR has better performance than the current
popular methods on two types of noise-alignment
data.
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