
Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1557

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Ahybrid-model optimization algorithm based on the
Gaussian process andparticle swarmoptimization for

mixed-variable CNNhyperparameter automatic search∗

Han YAN, Chongquan ZHONG, Yuhu WU, Liyong ZHANG, Wei LU†‡

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China
†E-mail: luwei@dlut.edu.cn

Received Oct. 27, 2022; Revision accepted Apr. 20, 2023; Crosschecked July 17, 2023; Published online Sept. 7, 2023

Abstract: Convolutional neural networks (CNNs) have been developed quickly in many real-world fields. However,
CNN’s performance depends heavily on its hyperparameters, while finding suitable hyperparameters for CNNs
working in application fields is challenging for three reasons: (1) the problem of mixed-variable encoding for different
types of hyperparameters in CNNs, (2) expensive computational costs in evaluating candidate hyperparameter
configuration, and (3) the problem of ensuring convergence rates and model performance during hyperparameter
search. To overcome these problems and challenges, a hybrid-model optimization algorithm is proposed in this
paper to search suitable hyperparameter configurations automatically based on the Gaussian process and particle
swarm optimization (GPPSO) algorithm. First, a new encoding method is designed to efficiently deal with the
CNN hyperparameter mixed-variable problem. Second, a hybrid-surrogate-assisted model is proposed to reduce the
high cost of evaluating candidate hyperparameter configurations. Third, a novel activation function is suggested to
improve the model performance and ensure the convergence rate. Intensive experiments are performed on image-
classification benchmark datasets to demonstrate the superior performance of GPPSO over state-of-the-art methods.
Moreover, a case study on metal fracture diagnosis is carried out to evaluate the GPPSO algorithm performance
in practical applications. Experimental results demonstrate the effectiveness and efficiency of GPPSO, achieving
accuracy of 95.26% and 76.36% only through 0.04 and 1.70 GPU days on the CIFAR-10 and CIFAR-100 datasets,
respectively.

Key words: Convolutional neural network; Gaussian process; Hybrid model; Hyperparameter optimization;
Mixed-variable; Particle swarm optimization

https://doi.org/10.1631/FITEE.2200515 CLC number: TP181

1 Introduction

In recent years, as one of the most useful
deep learning models, convolutional neural networks
(CNNs) have achieved state-of-the-art results in var-

‡ Corresponding author
* Project supported by the National Natural Science Foun-
dation of China (Nos. 62073056 and 61876029), the Ap-
plied Basic Research Project of Liaoning Province, China
(No. 2023JH2/101300207), and the Key Field Innovation Team
Project of Dalian, China (No. 2021RT14)

ORCID: Han YAN, https://orcid.org/0000-0003-1777-1859;
Wei LU, https://orcid.org/0000-0002-5775-1222
c© Zhejiang University Press 2023

ious artificial intelligence (AI) applications (Jiang
and Luo, 2022; Tulbure et al., 2022). Through convo-
lution operations, meaningful features are extracted
from input data, which have greatly improved model
performance (Sun et al., 2019). Such learning and
expression abilities result in great success in vari-
ous real-world applications, such as face detection
(Li X et al., 2022) and autonomous driving (Grig-
orescu et al., 2020). Although CNNs have achieved
great success, the design of CNN architecture is still
extremely complicated, and obtaining efficient CNN
models for solving specific tasks is still a challenge

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

1558 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

(Fernandes and Yen, 2021; Guo et al., 2022). Fur-
thermore, most efficient CNN models are designed
and optimized by experienced AI algorithm engi-
neers through tedious trial-and-error experiments,
which does not help technicians in other industries
who want to use AI technology.

Therefore, many researchers have started to
consider designing CNN models in a more intelligent,
automatic, and efficient way (Li JY et al., 2022). For
example, to realize automation in the model design
process, researchers regarded the process as an op-
timization problem, and found the optimal solution
using intelligent algorithms (Zhan et al., 2022a). In-
telligent optimization algorithms (OAs) are regarded
as a class of methods of deriving optimal solutions
that have been extensively researched, such as us-
ing Bayesian optimization (BO) (Snoek et al., 2012),
particle swarm optimization (PSO) (Poli et al., 2007;
Li JY et al., 2021), and other evolutionary computa-
tion (EC) approaches (Li JY et al., 2020; Zhan et al.,
2022b; Wu SH et al., 2023). As an application of
the Gaussian process (GP) in optimization problems,
BO has been proposed to optimize search hyper-
parameters in machine learning algorithms. Snoek
et al. (2012) selected expected improvement (EI) as
the acquisition function to optimize three typical ma-
chine learning problems, which reduced training cost
and improved training speed. Jin et al. (2019) used
BO to guide the generation of network morphism
for automatic construction of CNN models, and a
new GP kernel function was designed according to
the characteristics of network morphism exploration
space. Li JY et al. (2023) proposed a surrogate-
assisted hybrid model to optimize CNN’s hyperpa-
rameters, where GP was used as a surrogate model to
estimate the fitness function to save computational
cost. Li JY et al. (2022) and Zhan et al. (2022a)
used BO to search different combinations of hyper-
parameters to construct different architectures. The
unique properties of BO can reduce the number of
trained neural networks, resulting in a more efficient
search process. As a branch of EC, PSO is efficient
to find optimal solutions to high-complexity prob-
lems due to its wide exploration area and fast con-
vergence (Li JY et al., 2022). For instance, Wang
B et al. (2018) proposed a variable-length encod-
ing method for CNNs and searched hyperparameters
through PSO to optimize CNNs, whereas Fielding
et al. (2019) used a PSO algorithm and ensemble

learning to automatically design CNNs. Wu T et al.
(2019) treated model pruning as a multi-objective
problem and solved it by PSO to balance the accu-
racy and complexity, which can reduce weights by
80% without losing significant accuracy. Wang B
et al. (2020) proposed an efficient PSO (EPSOCNN)
method inspired by transfer learning to acceler-
ate search process, which reduced the search space
and demonstrated the transferability of the evolved
block. Wang YQ et al. (2022) designed a novel and
light-weight scale-adaptive fitness evaluation-based
PSO method for reducing search time and provid-
ing search performance. In addition, some other
EC algorithms can achieve better results in coop-
eration with model optimization (Alvarez-Rodriguez
et al., 2021; Chen et al., 2022). Real et al. (2017)
proposed a large-scale neuro-evolutionary method to
discover the best CNN model, and achieved 94.6%
and 77.0% accuracy on CIFAR-10 and CIFAR-100,
respectively. Sun et al. (2020a) used a novel ge-
netic algorithm (GA) called CNN-GA to search CNN
architecture automatically. These algorithms have
achieved promising results in CNN hyperparameter
optimization tasks.

However, there are still some challenges for CNN
hyperparameter optimization tasks due to follow-
ing problems: mixed-value hyperparameter encod-
ing, high computational cost, low convergence rate,
and limited model performance. First, the CNN
hyperparameter types are different (continuous or
discrete) (Darwish et al., 2020), and such mixed-
variable characteristics are proved difficult in effi-
cient search space encoding. Second, for traditional
OAs (BO and PSO), CNNs are evaluated by the fit-
ness function through assessment criteria based on
training, which increases the cost of fitness evalua-
tion (FE) and damages the efficiency of OAs. Third,
considering the large number of CNN hyperparame-
ters, it is still necessary to research how to accelerate
the convergence for FE and ensure model perfor-
mance after search.

Therefore, in this paper we focus on these chal-
lenging tasks in the CNN hyperparameter optimiza-
tion problem and propose a novel Gaussian process
and particle swarm optimization (GPPSO) method
based on GP and PSO, to solve these difficulties. The
major challenges and contributions are summarized
in Fig. 1.

1. A novel encoding strategy is proposed to

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1559

CNN
hyperparameter

optimization

Mixed-variable
encoding

Expensive cost
for evaluation

Ensuring
convergence

rates and model
performance

Mixed encoding
scheme

Hybrid-surrogate-
assisted model

A novel activation
function

Hybrid-model optimization
algorithm based on Gaussian
process and particle swarm

optimization (GPPSO)

Problem Method

Fig. 1 Major challenges and contributions of GPPSO

efficiently deal with the mixed-variable difficulty of
CNN hyperparameters. A unified encoding strat-
egy is designed to encode discrete and continuous
variables in the same form, making the optimization
process more efficient.

2. A hybrid-surrogate-assisted (HSA) model is
proposed to deal with the expensive computational
cost problem in the search process. During the search
process, the GP model serves as a surrogate for the
fitness function, while the PSO algorithm generates
new individuals. To achieve a better balance be-
tween efficiency and performance, a multi-level eval-
uation mechanism is proposed to reduce computa-
tional cost.

3. A novel activation function (AF, Ta-ReLU) is
proposed to accelerate the convergence in the process
of population evolution and to improve the perfor-
mance of the model after training. The improved AF
has a tiny gradient in the region (<0), which not only
enhances the model’s performance, but also ensures
efficient training.

2 Background and related works

The concepts of CNN, Gaussian process regres-
sion (GPR), and PSO as the basic algorithms of
GPPSO are introduced in Sections 2.1, 2.2, and 2.3,
respectively, which are helpful to know the details of
the proposed GPPSO.

2.1 Convolutional neural network (CNN)

CNN is a type of deep feedforward neural net-
work that has the advantages of local links and
weight sharing (Alzubaidi et al., 2021). With the
development of CNNs, the network structures have
gradually become deeper, and VGGNet and ResNet

have emerged as two state-of-the-art CNN structures
in recent years.

VGGNet (Simonyan and Zisserman, 2014) is a
frequently employed CNN for extracting features.
Fig. 2 illustrates a 16-layer version of VGGNet, con-
sisting of 13 Conv layers and three fully connected
(FC) layers. Because smaller 3×3 Conv kernels are
used to simulate 5×5 Conv kernels, VGGNet can
obtain larger receptive fields with fewer parameters,
resulting in effective and efficient feature extraction.

Max pooling

Max pooling

Max pooling

3×3 Conv, 256

3×3 Conv, 256

3×3 Conv, 256

3×3 Conv, 512

3×3 Conv, 512

3×3 Conv, 512

Max pooling

3×3 Conv, 512

3×3 Conv, 512

3×3 Conv, 512

Max pooling

3×3 Conv, 64

3×3 Conv, 64

FC 4096

FC 4096

Soft-max

FC 1000

3×3 Conv, 128

3×3 Conv, 128

Size
224

Size
112

Size
56

Size
28

Size
14

Size
7

Fig. 2 VGG16 model structure

ResNet (He et al., 2016) is another commonly
used residual structure CNN for feature extraction.
ResNet used cross-layer connections to fit residual
items, which extends the depth of CNNs. The
residual block is shown in Fig. 3a, which outputs
y = F (x) + x after the input passes through the
module. The overall structure of ResNet is shown in
Fig. 3b.

Based on their effective characteristics,
VGGNet and ResNet are chosen as basic models for
the proposed algorithm.

1560 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

Input Residual
block 3×3

Residual
block 3×3

FC;
class number

Conv layer
7×7

Pooling
step=2 Average

pooling

Conv layer

Conv layer

x

F(x)

F(x)+x

ReLU

ReLU

(a) (b)

Fig. 3 ResNet model structure: (a) residual block;
(b) ResNet

2.2 Gaussian process regression (GPR)

Gaussian process regression (GPR) is an effi-
cient modeling algorithm based on statistical learn-
ing theory. In contrast to parameterized models in
machine learning (e.g., Bayesian linear regression),
GP is a nonparameterized model that can fit a black
box function and give confidence in the fitting re-
sults. In GPR, it is assumed that an unknown func-
tion f (x) is smooth and follows a GP. When N

points X = [x1,x2, · · · ,xN] are sampled from f (x),
the resulting dataset follows a multivariate normal
distribution as shown in Eq. (1):

[f(x1),f(x2),· · · ,f(xN)]
T∼N (µ(X),K(X,X)) ,

(1)
where µ (X) is the mean vector, K (X,X) =

[k (xi,xj)]N×N is the covariance matrix, and
k(xi,xj) is a kernel function for measuring the simi-
larity between two samples. Eq. (2) is the commonly
used squared exponential kernel function in GP:

k (xi,xj) = exp

(−‖xi − xj‖
2l2

)
, (2)

where l is the hyperparameter used to control the
sensitivity of the kernel function.

In this study, the performance value of the deep
learning model with different hyperparameters is as-
sumed as a group of noisy observations of function
f(x) : {(xn, yn)}Nn=1, where yn ∼ N (

f (xn) , σ
2
)

is
the normally distributed observation of f (xn), and
σ is the noise variance. For the sample point x∗

to be predicted, the corresponding observed value
is y∗. Vector y =

[
y1, y2, · · · , yN]T is the existing

observed value. According to the properties of GP,
[y, y∗] satisfies Eq. (3):[

y

y∗

]
∼N

([
µ (X)

µ (x∗)

]
,

[
K (X,X) + σ2I, (K

(
x∗,X))T

K (x∗,X) ,K (x∗,x∗)

])
,

(3)

where K (x∗,X) = [k (x∗,x1) , k (x
∗,x2) , · · · ,

k (x∗,xn)]. According to the above joint distribu-
tion, the posterior distribution of y∗, mean µ̂, and
variance value σ̂2 are calculated as follows:

p (y∗ | X,y) = N (
µ̂, σ̂2

)
, (4)

µ̂ =K(x∗,X)(K(X,X) + σ2I)−1

· (y − µ(X)) + µ(x∗),
(5)

σ̂2 =k(x∗,x∗)−K(x∗,X)

· (K(X,X) + σ2I)−1(K(x∗,X))
T
.

(6)

Based on the above properties, GPR is employed
as a surrogate-assisted model to predict the perfor-
mance of the model in this study.

2.3 Particle swarm optimization (PSO)

PSO is a type of EC approach based on arti-
ficial life and evolutionary computing theory. The
main procedures of PSO are as follows: first, PSO
initializes a population of individuals with position
X0

i and speed V 0
i , where each individual corresponds

to a random candidate solution to the object func-
tion. Then, based on the fitness value, individual
extremum pbest and global extremum gbest are up-
dated using Eqs. (7) and (8):

vk+1
id =wvkid + c1r1(pbest

k
id − xk

id)

+ c2r2(gbest
k
d − xk

id),
(7)

xk+1
id = xk

id + vk+1
id , (8)

where vid and xid refer to the dth velocity compo-
nent and position component of the ith particle of
the kth generation respectively, and c1 and c2 are
learning rates, which control the amplitude of evo-
lution to the individual best particle and the global
best particle respectively. The above procedures will
be repeated until the expected error value is reached
or the maximum number of iterations is reached.
Finally, the PSO outputs the best position of the
particle, which corresponds to the optimal solution
to the problem. Due to its ease of implementation
and minimal tunable parameters, PSO can be a good
choice for solving complex optimization problems in
CNNs, and is also a basic algorithm of GPPSO.

3 Proposed algorithm

In this section, the framework of the GPPSO
and its main components are discussed in detail.

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1561

First, we present the mixed-variable encoding strat-
egy, which is used to encode different types of CNN
hyperparameters in the same form. Subsequently, we
explain the HSA model used to search CNN hyper-
parameters, which deals with the expensive compu-
tational cost problem. We also detail the novel AF,
which ensures convergence rate and model perfor-
mance. Finally, we present the complete algorithm
for better understanding of the proposed GPPSO.

3.1 Mixed-variable encoding strategy

In GPPSO, each sampled individual represents
a group of CNN hyperparameters, where each di-
mension of the individual corresponds to a CNN hy-
perparameter. Because the CNN hyperparameters
have distinct meanings, each individual has its own
specific types and constraints. For example, some
hyperparameters should be set as integers with a
large range, such as the number of Conv kernels,
whereas some hyperparameters should be discrete,
such as the size of Conv kernels. Most traditional
optimization methods are aimed at a single type of
variable, which is difficult when optimizing mixed-
variable types. Therefore, it is important to design
a mixed-variable encoding scheme for handling the
mixed-variable problem.

Table 1 provides the CNN hyperparameter set-
tings to be optimized in this study. In particular,
the variables with many available choices or a large
search range are encoded as continuous variables,
whereas the variables with several fixed selections are
encoded as discrete variables. Although the variables
of Conv kernels and FC layer neurons are required to
be integers, regarding them as continuous variables
can be more flexible and efficient in the optimiza-
tion process. The reason for processing integers as
continuous variables is that the search space for the
numbers of kernels and neurons is large and does

not have a prior known upper bound (e.g., [1,+∞)),
which is inefficient and complex to encode them as
finite integers. As for the discrete variables with
only a few choices, we encode these discrete vari-
ables in a continuous way. The advantages of encod-
ing discrete variables in this way are as follows: first,
the size of Conv kernels, the types of AFs, and the
types of pooling layers have only three or four avail-
able results. These results correspond to a small
search space (e.g., {0, 1, 2, 3}), which is feasible for
continuous encoding. Second, encoding continuous
variables and discrete variables in the same way is
convenient and efficient, which is conductive to the
GPPSO algorithm.

Based on the above analysis, the mixed-variable
encoding strategy is given as follows: in detail, X

of every particle is a vector with dimension D; each
dimension represents a CNN hyperparameter. As a
result, each vector X represents an architecture of
the candidate CNN structure. Because each dimen-
sion has a different meaning and the range of values
in each dimension is different, the following strategy
is designed for encoding: first, for the integer vari-
able in continuous variables, the encoding strategy
is shown in Eq. (9):

Nk = �Xnk� , Xnk ∈ [1,+∞) , (9)

where Nk denotes the number of kernels in the Conv
layer, Xnk denotes the search result of the number of
kernels by the optimization method, and �·� denotes
taking the largest integer that is no larger than the
search result. Using this method, we translate the
continuous variable in [1, +∞) to an integer variable.
Because the initial learning rate and dropout rate
are consecutive floating-point values in the search
space, the GPPSO’s result can be used as the final
result during search. For discrete variables, each
of their available values corresponds to an integer

Table 1 Settings of mixed-variable encoding for CNN hyperparameters

Type Name Available choice Search space Initialization space

Continuous
variable

Number of kernels in Conv layers {1, 2, · · · ,+∞} [1,+∞) [8, 128]

Number of neurons in FC layers {1, 2, · · · ,+∞} [1,+∞) [64, 512]

Value of the initial learning rate (0, 1) (0, 1)

Value of the dropout rate [0, 1) [0, 1)

Discrete
variable

Kernel size of Conv layers {3× 3, 5× 5, 7× 7} {0, 1, 2} {0, 1, 2}
Type of activation function {ReLU, Sigmoid, Tanh, Ta-ReLU} {0, 1, 2, 3} {0, 1, 2, 3}
Type of pooling layer {Max pooling, average pooling} {0, 1} {0, 1}

CNN: convolutional neural network; Conv: convolutional; FC: fully connected

1562 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

value, and the search range is set according to all
the integer values that can be taken. Taking the
example of discrete variable encoding for AF, the
specific encoding strategy is shown in Eq. (10):

af =

⎧⎪⎪⎨
⎪⎪⎩

ReLU, �Xaf	 ∈ [0, 1),

Sigmoid, �Xaf	 ∈ [1, 2),

Tanh, �Xaf	 ∈ [2, 3),

Ta-ReLU, �Xaf	 ∈ [3, 4),

(10)

where af denotes the final result of AF, Xaf denotes
the GPPSO search result, and �·	 denotes taking the
smallest integer that is no less than the search result.

3.2 HSA model

After encoding the CNN hyperparameters using
a mixed-variable encoding scheme, the GPPSO algo-
rithm starts to search for the optimal hyperparam-
eter combinations by the HSA model. As shown in
Fig. 4, the search process is divided into two parts,
master and slave. In the first part, the candidate
model is evaluated by constructing a GP model at
multiple levels. In the second part, the target model
of the next exploration is generated according to the
previous search results through the PSO algorithm.

Fig. 4 General flowchart of the hybrid surrogate-
assisted model

3.2.1 Multi-level evaluation strategy based on GP

Because of the large size of CNN models and
the large amount of training data, evaluating their
fitness (i.e., classification loss or accuracy) is compu-
tationally expensive. Furthermore, even if there are
enough computational resources and time to train
the model until the accuracy converges, the opti-
mal model obtained cannot guarantee, still having

the best performance on the test set due to the dif-
ference between the validation data and test data.
Therefore, unlike traditional OA, which obtains con-
vergence accuracy through a lot of training as a fit-
ness value, GPPSO is more efficient in evaluating
and comparing different CNN candidate structures
using a multi-level evaluation strategy.

GPPSO improves the computational expensive
problem from two perspectives. First, GPPSO trains
candidate models with few epochs during the search
process to distinguish performance of different indi-
viduals. Second, a multi-level evaluation strategy
based on GP is designed for the computational ex-
pensive problem in the search process. Each candi-
date is preliminarily computed by the GP model, and
then some individuals with better evaluation results
are trained to construct a new GP model. In addi-
tion, to improve the robustness of the algorithm, it
is necessary to ensure that at least one individual of
the group is evaluated by training. The pseudocode
of the multi-level evaluation strategy based on the
GP is given in Algorithm 1.

3.2.2 Individual generation strategy based on PSO

During the search process of GPPSO, it is nec-
essary to evaluate individuals many times by the
multi-level evaluation strategy and cause individuals
to evolve to obtain the best outcome. Every time the
multi-level evaluation strategy in Algorithm 1 is ex-
ecuted, an individual generation strategy is required
to produce new candidates for the next subsequent
generation. Traditional OA based on GP, such as
the BO algorithm, defines an acquisition function to
evaluate whether a sample can provide benefits for
the GP model, and then determines whether it is a
new individual to be explored. However, traditional
acquisition functions generate new individuals based
on existing individuals, which results in an incom-
plete search process, insufficient adaptability, and a
limited exploration area.

Because the exploration performance of the
above acquisition function may be not enough to
generate new individuals accurately, an individual
generation strategy based on PSO is proposed to in-
crease performance in generating candidate individ-
uals. The method is inspired by the PSO algorithm,
candidate structures are treated as a group of par-
ticles, their initial value is treated as the position,
and their velocity is calculated according to the GP

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1563

Algorithm 1 Multi-level evaluation strategy
Input: Dataset of training CNNs, Dtrain;

dataset of evaluating CNNs, Deval;
architecture constructed by individuals, Parch;
fitness of individuals in the architecture, fitarch;
set of individuals to be evaluated, P ;
number of initial individuals, NI;
number of all individuals, NA;
number of training epochs, T

Output: Set of individuals evaluated, Peval;
the fitness set of individuals evaluated, fiteval

1: begin
/* construct the initial GP model */

2: Initialize NI individuals;
3: Obtain Parch and fitarch of the initial individuals by

training;
4: GPI ← build an initial GP model with Parch and

fitarch;
/* first level evaluation by the GP model */

5: gfitness← fitness of P predicted by GPI;
6: afitness← the average fitness of fitarch;
7: Peval ← empty set;
8: fiteval ← empty set;
9: ri← a random integer in {1, 2, · · · , NA};

/* second level evaluation by training */
10: for each individual Pi in P do
11: if gfitness > afitness or ri == i then
12: Net← build a candidate architecture according

to the hyperparameters in Pi;
13: Net← train Net with T epochs on Dtrain;
14: accuracy ← validate Net on Deval;
15: fiteval ← fiteval ∪ {accuracy};
16: Peval ← Peval ∪ Pi;
17: GPI ← evolve GPI through fiteval and Peval;
18: end if
19: end for
20: end

model. After iterating through the PSO, the opti-
mal offspring obtained is the new individual to be
evaluated in Algorithm 1. The specific pseudocode
is shown in Algorithm 2.

3.3 An improved AF

AFs play an essential role in the CNN learn-
ing process by fitting complex functions. AFs can
introduce nonlinearity into CNNs, and provide the
entire model with the ability to solve complex prob-
lems. During the early development stage of neural
networks, traditional AFs are mainly S-type satura-
tion functions, such as Sigmoid and Tanh (Fig. 5),
which tend to cause vanishing gradients, resulting

Algorithm 2 Individual generation strategy
Input: The initial Gaussian process model, GPI;

number of particles, N ;
fitness of individual i, fiti;
dimension of particles, d;
number of generations, n;
number of iterations, T

Output: The generated individual to be evaluated,
Pnew

1: begin:
/* initialize a group of particles with d dimensions
corresponding to hyperparameters in CNNs */

2: Initialize a set of N particles as P ;
3: for each particle Pi in P do
4: for each dimension d of Pi do
5: Randomly initialize the particle position xid

within the given range;
6: Randomly initialize the particle velocity vid

within the given range;
7: end for
8: end for

/* search individuals for multi-level evaluation by
PSO */

9: for k = 1 to T do
10: for each individual Pi in P do
11: fiti←calculated fitness by GPI in Algorithm 1;
12: if the fitness value is larger than pbestid in

history then
13: pbestid ← fiti;
14: end if
15: gbestd ← the particle with the best fitness

value;
16: Calculate velocity vid through Eq. (7);
17: Calculate position xid through Eq. (8);
18: end for
19: end for
20: Pnew ← xid of the last n generations;
21: end

in training difficulties. Moreover, the derivative of
these functions is complicated, and will cause com-
putational expensive problems during the process of
gradient back propagation in training. With the de-
velopment of deep learning, Krizhevsky et al. (2017)
proposed rectified linear units (ReLUs) (Fig. 5) to
solve the problem of vanishing gradients and speed
up network training. However, the ReLU function
has some limitations. Because x value of the neg-
ative half-axis and its gradient value are both zero,
neurons can lose the ability to transmit information
during the training process.

In the automatic search for CNN

1564 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

hyperparameters, fast convergence, low compu-
tational cost, and high accuracy should be achieved
in the network evaluation process. Traditional
AFs are often unable to meet these requirements
simultaneously. Therefore, a new AF has been
designed as follows:

Ta-ReLU =

{
x, x < 0,

α exp(x)−exp(−x)
exp(x)+exp(−x) , x ≥ 0.

(11)

Ta-ReLU is a nonlinear and differentiable func-
tion with a sensitivity factor α that controls the
function’s negative semi-axis activity to the inputs.
When α = 0, Ta-ReLU reduces to ReLU. The func-
tion is discontinuous at x = 0 and is sensitive to
inputs on the positive semi-axes and to the inputs
close to 0 on the negative semi-axes. When the input
changes, the output also changes significantly. How-
ever, Ta-ReLU is insensitive to other inputs; that is,
the output does not change in correspondence with
the input or produces only a small change. Given
these properties, Ta-ReLU meets the required condi-
tions of an AF. A comparison between Ta-ReLU and
traditional AFs is shown in Fig. 5.

x
0 0.5 1.0 1.5 2.0−2.0 −1.5 −1.0 −0.5

y 0

0.5

1.0

1.5

2.0

−0.5

−1.0

−1.5

−2.0

Ta-ReLU
Tanh
ReLU
Sigmoid

Fig. 5 Comparison of different activation functions

Fig. 5 shows that Ta-ReLU has several advan-
tages compared to traditional AFs. First, it requires
less computation and has a simpler derivative, mak-
ing it more efficient and easier to implement. Addi-
tionally, Ta-ReLU has a larger gradient than ReLU
at the x-negative half-axis near zero, ensuring that
negative output values are not ignored in the net-
work. This leads to higher search speeds during
training and results in better performance in the
trained model. These advantages will be further ver-
ified in Section 4.

3.4 Complete algorithm

The complete pseudocode of GPPSO is shown
in Algorithm 3 and is detailed as follows:

Step 1: GPPSO initializes a set of individ-
uals through a mixed-variable encoding scheme
(Section 3.1) and evaluates these initial points (IPs)
using training to determine their accuracy. Then,
according to the accuracy, the best individuals and
their fitness values will be evaluated and stored.

Step 2: for the first loop, setting
search_iteration to zero. According to the
evaluated points in step 1, the initial GP model
is constructed. It should be noted that the GP
model is dynamically updated during the cycle, and

Algorithm 3 Complete algorithm
Input: Input dataset, DI;

number of initial individuals, NI;
number of sampling individuals, NS;
the initial Gaussian process model, GPI;
the initialized continuous variables, cx;
the initialized discrete variables, dx;
number of iterations, T

Output: The architecture searched by GPPSO, Net

1: begin:
2: Dtrain, Dvalid ← split DI by 5 : 1;
3: cx, dx←perform mixed-variable encoding strategy;
4: P ← combine cx and dx;
5: fitness← ∅;
6: for each particle Pi in P do
7: Net← build a CNN according to Pi;
8: Net← train Net with S epochs on Dtrain;
9: accuracy ← test Net on Dvalid;

10: fitness← fitness ∪ {accuracy};
11: end for
12: Pbest,fitbest ← the best individual and fitness,

respectively;
13: Parch ← P , fitarch ← fitness;
14: search_iteration ← 0;
15: while search_iteration < T do
16: GPI ← construct the initial GP according to NI;
17: P ← sample NS new individuals as candidate

points through Algorithm 2;
18: Peval,fiteval ← perform Algorithm 1 on P ;
19: Parch ← Parch ∪ Peval, fitarch ← fitarch ∪ fiteval;
20: Pbest,fitbest ← the best individual and its fitness,

respectively;
21: search_iteration ← search_iteration + 1;
22: end while
23: Net← train the best CNN on DI;
24: end

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1565

the GP model will evolve each time based on the
evaluation results of candidate points unless the
iterations are reached. In the process of candidate
point evaluations, a multi-level evaluation strategy
(Algorithm 1) is adopted to solve the computational
expensive problem and improve the search efficiency.

Step 3: during the cycle, new candidate
points need to be generated for evaluation through
an individual generation strategy based on PSO
(Algorithm 2). First, the boundaries, numbers, and
dimensions of particles are set to generate particles
through a star topology, and then the fitness of the
particles is evaluated using the GP model. After sev-
eral evolutionary iterations, the optimal particles are
obtained for multiple evaluations.

Step 4: if the stop iterations are not met, the
algorithm goes back to step 2 and the procedure is re-
peated; otherwise, the CNN constructed by the cor-
responding optimal hyperparameters is trained on
the entire dataset for the best performance and out-
puts the CNN model as the final output. It should
be noted that the Ta-ReLU designed in Section 3.3
is used as the AF of the Conv layer in the GPPSO
algorithm. This choice aims to accelerate the con-
vergence and ensure the model performance.

4 Experimental results

To verify the effectiveness and efficiency of the
proposed GPPSO, a series of experiments were de-
signed and conducted. First, the relevant settings
of the experiments are introduced in Sections 4.1–
4.3, including the datasets and evaluation metrics,
the compared state-of-the-art methods, and the pa-
rameter settings of the proposed algorithm. Next,
the proposed GPPSO is compared with advanced al-
gorithms on the CIFAR datasets to investigate its
theoretical effectiveness. Finally, a metal fracture
(MF) diagnosis case in a real-world industrial sce-
nario is presented to prove the feasibility of GPPSO
in practical industrial applications.

4.1 Datasets and metrics

To evaluate the performance of the proposed
GPPSO, three datasets were used for experimen-
tation in this subsection: CIFAR-10, CIFAR-100,
and the MF dataset. Two different CIFAR datasets
(Fig. 6) were used to verify the theoretical effec-
tiveness of the proposed algorithm, because they

provided varying difficulties for image classification
tasks. Both CIFAR datasets contained 50 000 train-
ing images and 10 000 test images, where each im-
age has 32×32 pixels and three channels. The MF
dataset was used in the experiments to demonstrate
the effectiveness of GPPSO in practical applications.
The MF dataset consisted of 1500 scanning electron
microscopy images of three MF categories, with the
resolution of 512×512. The initial dataset was ex-
panded from 1500 to 7500 by random angle rotation,
proportional scaling, horizontal and vertical flipping,
and a training-to-test set ratio of 4:1. Fig. 7 shows
the examples of the MF dataset.

Airplane

Cat

Ship

Dog

Fig. 6 Examples of the CIFAR datasets

 (a) (b) (c)

Fig. 7 Examples of the metal fracture dataset: (a)
cleavage fracture; (b) intergranular fracture; (c) dim-
ple fracture

During the experiments, three aspects were con-
sidered to compare the algorithm’s strength: model
performance, model size, and model training time.
In terms of these aspects, three popular metrics
were adopted: the classification accuracy on the test
dataset, the number of parameters in the model, and
the time consumed. It should be noted that the
time required for training is different for each com-
puter due to the different hardware configurations
even with the same graphics processing unit (GPU).
Therefore, GPU days were used only as a reference
index of other methods; the training time in our
experimental environment was used as a horizontal
comparison index.

1566 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

4.2 Compared methods

To demonstrate the effectiveness of the pro-
posed GPPSO, a series of state-of-the-art algorithms
were used for comparison based on the evaluation
metrics in Section 4.1. The compared algorithms
can be divided into three categories: manually de-
signed CNNs, non-OA-based methods, and OA-
based methods.

Specifically, the manually designed CNNs in-
clude the famous architectures maxout (Goodfellow
et al., 2013), network in network (Lin et al., 2013),
ALL-CNN (Springenberg et al., 2014), VGGNet (Si-
monyan and Zisserman, 2014), highway network (Sri-
vastava et al., 2015), FractalNet (Larsson et al.,
2016), ResNet (He et al., 2016), and DenseNet
(Huang et al., 2017), which have shown state-of-
the-art results in image classification tasks. For the
non-OA-based methods, some representative algo-
rithms are adopted, such as BO (Snoek et al., 2012),
Auto-Keras (AK) (Jin et al., 2019), NAS (Zoph and
Le, 2017), MetaQNN (Baker et al., 2017), EAS (Cai
et al., 2018), and Block-QNN-S (Zhong et al., 2018).
As for the OA-based algorithms, PSO, hierarchi-
cal evolution (Liu et al., 2017), large-scale evolution
(Real et al., 2017), genetic CNN (Xie and Yuille,
2017), CGP-CNN (Suganuma et al., 2017), CNN-
GA (Sun et al., 2020a), AE-CNN (Sun et al., 2020b),
AE-CNN+E2EPP (Sun et al., 2020c), and SHEDA-
CNN (Li JY et al., 2023) are selected to compare
with GPPSO. Because of the better performance of
OA-based methods in automatic search algorithms,
these methods are ideal for comparison with GPPSO.
Due to the expensive computational cost and dif-
ferent experiment environments, some final results
of the literature were cited directly for comparison,
which is also a convention in the deep learning study.
In addition, to ensure the effectiveness of the com-
parisons, the classical algorithms in each category,
such as ResNet50, BO algorithm, and PSO algo-
rithm, were implemented in the experimental con-
figuration of this study to make a direct comparison
with various indicators of GPPSO.

4.3 Algorithm settings

A 20-depth version of ResNet was used as the
basic model of GPPSO in the experiments on the
CIFAR datasets. There were 19 Conv layers and one
pooling layer in ResNet20 for feature extraction, and

one FC layer and a final softmax layer for image clas-
sification. According to the ResNet20 structure and
mixed-variable encoding strategy (Section 3.1), the
model was encoded using 22-dimensional continuous
variables and 32-dimensional discrete variables. The
specific setting is shown in Table 1.

The GPPSO parameters were set as follows:
first, considering the balance between the compu-
tational cost and model performance, the number of
IPs selected to build the GP model was 20. Second,
the minimum number of iterations was set to 30, af-
ter that the search will finish when a better CNN can-
not be found in three generations. In addition, the
candidate model obtained through the search pro-
cess will be trained for two epochs as a preliminary
evaluation of performance. As for the individual gen-
eration category, the parameters were configured ac-
cording to the default values in PySwarms (Miranda,
2018): c1 = 0.5, c2 = 0.3, and w = 0.9. Finally, for
the CNN training category, the optimizer was set
as Adam, and the initial learning rate was set to
1× 10−3.

In addition, data augmentation was applied be-
fore training using the conventional method through
Keras. The experiments were conducted and evalu-
ated using the Python programming language with
the TensorFlow (Abadi et al., 2016) deep learning li-
brary on a 2.30 GHz Intel Core i7-12700H CPU and
16 GB memory NVIDIA RTX 3080Ti graphics card.

4.4 Comparisons with state-of-the-art
methods

The effectiveness of the GPPSO algorithm
was evaluated using two comparisons, as shown in
Tables 2 and 3. The first part represents the com-
parison between GPPSO and state-of-the-art algo-
rithms. Then in the second part, a comparison be-
tween GPPSO and the basic algorithms (BO and
PSO) is presented.

As shown in Table 2, the GPPSO required 0.04
GPU days to achieve 95.26% classification accu-
racy with 5.26 × 106 parameters on the CIFAR-10
dataset and to achieve 76.36% classification accu-
racy with 4.44 × 106 parameters on the CIFAR-
100 dataset. Compared with state-of-the-art al-
gorithms, GPPSO shows the great performance in
both classification accuracy and search time. First,
when compared with the manually designed mod-
els, GPPSO achieves at least 0.53% and at most

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1567

Table 2 Comparisons with the manually designed CNNs, non-OA-based methods, and OA-based methods on
CIFAR-10 and CIFAR-100 datasets

Method
Peer Accuracy (%) Number of parameters Search time

competitor CIFAR-10 CIFAR-100 (×106) (GPU days)

Manually designed
CNN

VGGNet 93.34 71.95 20.04
ResNet 93.57 78.84 1.7
DenseNet 94.76 75.58 0.8
Maxout 90.70 61.40
Network in network 91.19 64.32
Highway network 92.40 67.66
ALL-CNN 92.75 66.29 1.3
FractalNet 94.76 77.51 22.9

Non-OA-based
method

BO 92.91 66.47 4.70 0.02
AK 88.56 1.7
NAS 93.99 0.8 22 400
MetaQNN 93.08 72.86 100
EAS 95.77 23.4 10
Block-QNN-S 95.62 79.35 6.1 90

OA-based method

PSO 84.17 54.25 4.65/4.70 0.05/0.19
Large-scale evolution 94.60 77.00 5.4/40.4 2750
Hierarchical evolution 96.37 300
CGP-CNN 94.02 1.68 27
CNN-GA 96.78 79.47 2.9/4.1 35/40
AE-CNN 95.70 79.15 27/36
AE-CNN+E2EPP 94.70 77.98 8.5
SHEDA-CNN 96.36 78.84 10.88/18.64 0.58/0.97
Genetic CNN 92.90 70.97 817

Our method GPPSO 95.26 76.36 5.26/4.44 0.04

The results before and after “/” are based on the CIFAR-10 and CIFAR-100 datasets, respectively

5.03% classification accuracy improvement on the
CIFAR-10 dataset. As for the CIFAR-100 dataset,
GPPSO achieves at most 24.36% accuracy improve-
ment over maxout, and just 3.15% lower than that
of the 20-layer version of ResNet, proving that in-
stead of trying deeper and more complex network
models, optimizing the hyperparameters of exist-
ing well-performing CNN models using GPPSO can
obtain outstanding results. As for the number of
parameters, the model searched by GPPSO gen-
erally has fewer parameters than the directly con-
nected networks such as VGGNet, but more than
cross-layer connection models such as ResNet due
to the concatenate and other operations. Second,
compared with the non-OA-based methods, GPPSO
still achieves better performance. On the CIFAR-10
dataset, GPPSO achieves better classification accu-
racy, and is better than BO, AK, MetaQNN, and
NAS by 2.53%, 7.56%, 2.34%, and 1.35%, respec-
tively. As for EAS and Block-QNN-S, GPPSO can
achieve similar classification accuracy, but greatly
reduces the search time. This means that GPPSO
needs less time and computational cost to search

for better CNN models. For example, for the non-
OA-based methods, NAS needs 22 400 GPU days to
find a good CNN model and EAS requires at least
10 GPU days, but GPPSO needs only 0.04 GPU
days. On the CIFAR-100 dataset, the accuracy of
GPPSO is a little worse than that of Block-QNN-
S, but still achieves good performance of 76.36%.
GPPSO has more model parameters than the NAS
and AK methods, but fewer than the other algo-
rithms. Finally, compared with the OA-based meth-
ods, GPPSO still obtains competitive results. As
shown in Table 2, for classification accuracy, GPPSO
ranks the fifth among the 10 algorithms based on
the CIFAR-10 dataset, with up to 13.18% higher
accuracy than that of PSO and 1.57% lower accu-
racy than that of the first algorithm (CNN-GA).
As for CIFAR-100, GPPSO achieves good perfor-
mance and ranks the sixth among the eight algo-
rithms, 40.76% better than that of the last and
only 3.91% lower than the first. However, compared
with CNN-GA, GPPSO cost only about 0.11% and
0.10% GPU days on CIFAR-10 and CIFAR-100, re-
spectively. When compared with the SHEDA-CNN

1568 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

method, GPPSO not only reduces the search time by
93.10% and 95.88%, but also reduces the model size
by 51.65% and 76.18%, on CIFAR-10 and CIFAR-
100 datasets respectively. This means that GPPSO
not only achieves good recognition performance, but
also greatly reduces the search time and model size.
These advantages provide strong feasibility for the
practical applications of deep learning. The above
comparison results show the effectiveness and effi-
ciency of GPPSO.

Table 3 presents a set of comparisons between
GPPSO, ResNet20, BO algorithm, and the PSO al-
gorithm to show the outstanding performance. It
should be noted that all the results in Table 3 were
generated in the experimental environment of this
study, and algorithm_ac denotes that Ta-ReLU in
Section 3.3 is in the search space. Because the ex-
periments were carried out under the same hardware
conditions, minute is used as the benchmark index
for efficiency comparisons instead of GPU days. It
can be seen in Table 3 that GPPSO_ac achieves
the best test accuracy on CIFAR-10 and CIFAR-100,
where it is 3.26% and 10.73% better than that of the
basic model ResNet20 on CIFAR-10 and CIFAR-100,
respectively. By using the automatic search method
for manually designed CNN ResNet20, the accuracy
will be improved by the BO algorithm and reduced
by the PSO algorithm, whose test accuracy is lower
than that of GPPSO. The number of parameters of
the manually designed CNN is significantly smaller
compared to those of the automatically searched
models. Furthermore, the numbers of parameters
in the automatically searched CNNs are in a simi-
lar order of magnitude (106). We think that this is
due to the concatenate layer and other structures in
the automatic search networks. As for the search
time, the BO algorithm needs least 17 min to search
CNNs, GPPSO takes longer time than BO, 42 min
on average, and PSO takes the longest time at an
average of 100 min on CIFAR-10 and 202 min on
CIFAR-100. After searching for the CNNs, we train
them for 200 epochs to obtain the final models. The
accuracy-loss curves of training are shown in Fig. 8.
It can be seen that the convergence speed of the
model on the CIFAR-100 dataset is lower than that
on CIFAR-10, and the error value is higher than that
of CFIAR-10, which indicates that the 20-layer basic
model has limited capability for large-scale output
categories. For the model with Ta-ReLU function,

the convergence rate is higher in the first 20 epochs
(e.g., Figs. 8m and 8k), and GPPSO_ac has the best
recognition accuracy on CIFAR-10 and CIFAR-100,
which proves the effectiveness of the designed AF.

In conclusion, the comparisons with the basic al-
gorithms of GPPSO and state-of-the-art algorithms
prove the effectiveness and efficiency of GPPSO.

4.5 Ablation experiments

In the GPPSO algorithm, the initial GP model
will be constructed from a set of individuals, so the
number of individuals may affect the GPPSO perfor-
mance. To verify the influence of the number of IPs,
GPPSO is compared with variants using different
numbers of IPs on CIFAR-10. During the experi-
ments, the range of the number of IPs was set from
10 to 50, and the sampling interval was set as 10; the
experimental results are shown in Table 4. It can be
seen that with different numbers of IPs, the classifi-
cation accuracy of all searched models is >92.50%,
and the search time increased almost linearly, with
an additional 5 min required for each sampling in-
terval increase. Furthermore, the classification accu-
racy initially increased and then decreased with an
increase in the number of IPs, with peak performance
achieved when the number of IPs was 20. This indi-
cates that the model searched by GPPSO does not
achieve higher performance with an increased num-
ber of IPs. We think the reason is that the random
IPs cannot precisely describe the trends of Gaus-
sian regression model, and the points obtained by
acquisition function in the search process are more
meaningful. In conclusion, the number of IPs can
influence the search effectiveness of GPPSO, but the
GPPSO is not that sensitive with the increase of the
number of IPs, and the performance is not always
improved with an increased number of IPs.

Another important parameter in GPPSO is the
particle number (PN) in PSO. To investigate the
influence of PN, a set of comparisons are given in
Table 5. It can be seen that GPPSO is compared
with its variants using PNs from 10 to 100; with
the PNs increase, the classification accuracy exhibits
similarity, when PN=30, 70, and 100, the accuracy
can achieve >93%, and when PN=50, the perfor-
mance of GPPSO is at its best (>95%). That is
because GPPSO is not sensitive to the PN. In ad-
dition, with an increase in the PN, the GPPSO’s
search time increases as well. Therefore, considering

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1569

Table 3 Comparisons with the basic algorithms of GPPSO on CIFAR-10 and CIFAR-100 datasets

Method

CIFAR-10 CIFAR-100

Test
accuracy

(%)

Training
accuracy

(%)

Number of
parameters

(×106)

Search
time
(min)

Training
time
(min)

Test
accuracy

(%)

Training
accuracy

(%)

Number of
parameters

(×106)

Search
time
(min)

Training
time
(min)

Manual 92.25 98.71 0.38 116 68.96 90.78 0.40 111
(ResNet20)

BO 92.91 99.92 4.70 20 274 66.47 90.62 4.70 20 279
BO_ac 92.26 99.96 5.26 17 367 65.64 75.60 3.57 23 326
PSO 84.17 86.09 4.65 50 258 54.25 28.20 4.70 192 265
PSO_ac 74.57 74.75 6.17 150 361 51.77 54.77 4.74 212 296
GPPSO 91.85 99.95 4.77 45 270 65.91 94.00 4.74 33 330
GPPSO_ac 95.26 99.96 5.26 39 261 76.36 97.65 4.44 39 304

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

Epoch
0 25 50 125 150 175 20075 100

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

A
cc

-lo
ss

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

2.5

A
cc

-lo
ss

0

1.0

2.0

3.0

5.0

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

Acc
Val-acc
Loss
Val-loss

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (h) (l)

(m) (n)

Fig. 8 Accuracy-loss curves of training and validation on the CIFAR-10 and CIFAR-100 datasets: (a) ResNet20-
10; (b) ResNet20-100; (c) BO-10; (d) BO-100; (e) BO-ac-10; (f) BO-ac-100; (g) PSO-10; (h) PSO-100; (i)
PSO-ac-10; (j) PSO-ac-100; (k) GPPSO-10; (l) GPPSO-100; (m) GPPSO-ac-10; (n) GPPSO-ac-100

the performance and the computation costs, PN=50
is suitable and is recommended for GPPSO.

In the GPPSO process, after evaluating by the
surrogate-assisted model, qualified models will be
evaluated based on training. Hence, to reduce the
time consumption and the computational cost, only

epoch T will be selected for training, which will be a
key issue for the effectiveness of the GPPSO. There-
fore, an experiment between different epoch T val-
ues was carried out to study the influence on per-
formance. Considering the hardware performance
of the experiments and the time complexity of the

1570 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

Table 4 Comparion with different numbers of initial
points on CIFAR-10

Number of initial points Accuracy (%) Search time (min)

10 93.68 33
20 95.26 39
30 93.76 44
40 93.04 49
50 92.75 55

Table 5 Comparison with different particle numbers
(PNs) on CIFAR-10

PN Accuracy (%) Search time (min)

10 94.12 16
30 93.57 28
50 95.26 39
70 93.76 51
100 93.64 65

practical applications, GPPSO was used to search
for optimal CNNs by training epoch T from 1 to 5
in the experiments. Table 6 shows the experimental
results of different epoch T values on CIFAR-10. To
intuitively compare the impact of epoch T on model
performance, as shown in Eq. (12), a comparison
method is designed to measure it:

CET =
acci+1 − acci

timei+1 − timei
, (12)

where CET denotes the ratio between the accuracy
(acc) difference and the search time difference. It
can be seen that when the epochs increase from 1 to
2, the classification accuracy is improved by 2.75%,
and CET is 0.17 when T=2. Then, as the number
of epochs changes from 2 to 5, the value of CET

changes from 0.03 to 0.01, and approximately equals
0 when T=4. This means that continuing to in-
crease the epochs will not improve the performance
obviously and will consume a lot of computational
resources. In conclusion, the epoch T=2 of train-
ing in the search process will result in the maximum
GPPSO efficiency.

Table 6 Comparison with different epochs on
CIFAR-10

Epoch Accuracy (%) Search time (min) CET

1 92.71 24
2 95.26 39 0.17
3 95.67 52 0.03
4 95.68 67 ≈ 0

5 95.87 81 0.01

4.6 Application on MF diagnosis

To prove the effectiveness of GPPSO in real-
world problems, an application concerning MF di-
agnosis in industrial scenarios is presented in this
subsection. Metal materials are essential in modern
industrial fields such as aerospace, transportation,
and metallurgical manufacturing. In a complex en-
vironment, metal materials in service cause failure
accidents such as fracture, corrosion, and fatigue,
which cause heavy economic losses and casualties.
Therefore, to achieve accurate MF recognition auto-
matically and efficiently, AI methods such as CNNs
will be used, which are suitable for testing the per-
formance of GPPSO.

In the experiments, a deep learning metal frac-
ture classification (DMFC) model is designed to rec-
ognize MFs. The model structure is shown in Fig. 9.

Input

3×3 Conv, 32

3×3 Conv, 32

3×3 Conv, 64

3×3 Conv, 64

3×3 Conv, 128

3×3 Conv, 128

Flatten

FC1, 128

Dropout, 0.5

FC2, 3

Max pooling

Average pooling

Average
pooling

BN

Fig. 9 DMFC model structure (FC: fully connected;
BN: batch normalization)

The Conv kernels in the DMFC model are all
3 × 3, and three pooling layers are constructed us-
ing one max pooling layer and two average pooling
layers. A flatten layer is added to reduce the di-
mension of the output feature maps produced by the
last Conv layer. This serves as a transition between
the Conv layer and the FC layer. The first FC layer
has 128 neurons, followed by a batch normalization
(BN) layer and a dropout layer. The output layer
has three neurons, corresponding to three types of
MFs. DMFC is the basic model of MF recognition
task. The GPPSO algorithm searches the Conv ker-
nel size, Conv kernel number, pooling layer type, AF
type, and other hyperparameters in the DFMC to
obtain the GPPSO-DMFC.

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1571

To test the effectiveness, comparisons among
VGG, ResNet, DenseNet, DMFC, and GPPSO-
DMFC are given in Table 7. The effectiveness and
efficiency of the algorithms are measured by accuracy
and training time, respectively. As shown in Table 7,
the proposed DMFC model achieved an accuracy of
94.94% and a training time of 11 s/epoch. When
using state-of-the-art methods, the recognition accu-
racy of MF is significantly improved. However, the
training time is increased. For example, DenseNet
achieved an accuracy of 98.03%, but required train-
ing time of 93 s/epoch. After using the GPPSO
algorithm to search hyperparameters for the DMFC
model, the result achieved the highest accuracy of
98.16% and the shortest training time of 9 s/epoch,
indicating the effectiveness and efficiency of GPPSO.
Therefore, this application shows that the GPPSO
has potential for solving real-world tasks.

Table 7 Results of the metal fracture diagnosis

Method Accuracy (%) Time (s/epoch)

DMFC 94.94 11
VGG16 98.02 25
VGG19 97.72 29
ResNet50 96.97 24
DenseNet110 98.03 93
GPPSO-DMFC 98.16 9

5 Conclusions

In this paper, a novel method, GPPSO, was
proposed for efficient optimization of CNN hyperpa-
rameters. First, the GPPSO encoded different types
of hyperparameters in CNNs using a mixed-variable
encoding strategy to deal with the mixed-variable
problem. Then, the HSA model based on the GP
and PSO was designed to save computational costs.
Finally, a novel AF, Ta-ReLU, was suggested to im-
prove the model performance and ensure convergence
rate. Experiments on two benchmark datasets have
proven the efficiency of GPPSO. Furthermore, a se-
ries of ablation experiments have been used to inves-
tigate the parameter sensitivity. We also presented a
case study of industrial scenarios to demonstrate the
effectiveness of GPPSO in real-world tasks. For fur-
ther work, we plan to (1) search for the CNN hyper-
parameters and architectures jointly and (2) design
a more efficient OA for obtaining CNNs to handle
engineering problems with practical applications.

Contributors
Han YAN designed the research and performed the ex-

periments. Han YAN and Chongquan ZHONG implemented

the software and drafted the paper. Yuhu WU, Liyong

ZHANG, and Wei LU revised and finalized the paper.

Compliance with ethics guidelines
Han YAN, Chongquan ZHONG, Yuhu WU, Liyong

ZHANG, and Wei LU declare that they have no conflict

of interest.

Data availability
Due to the nature of this research, all authors of this

paper did not agree for their data to be shared publicly, so

supporting data are not available.

References
Abadi M, Agarwal A, Barham P, et al., 2016. Tensor-

Flow: large-scale machine learning on heterogeneous
distributed systems.
https://arxiv.org/abs/1603.04467

Alvarez-Rodriguez U, Battiston F, de Arruda GF, et al., 2021.
Evolutionary dynamics of higher-order interactions in
social networks. Nat Hum Behav, 5(5):586-595.
https://doi.org/10.1038/s41562-020-01024-1

Alzubaidi L, Zhang JL, Humaidi AJ, et al., 2021. Review of
deep learning: concepts, CNN architectures, challenges,
applications, future directions. J Big Data, 8(1):53.
https://doi.org/10.1186/s40537-021-00444-8

Baker B, Gupta O, Naik N, et al., 2017. Designing neu-
ral network architectures using reinforcement learning.
https://arxiv.org/abs/1611.02167

Cai H, Chen TY, Zhang WN, et al., 2018. Efficient archi-
tecture search by network transformation. Proc 32nd

AAAI Conf on Artificial Intelligence, p.2787-2794.
https://doi.org/10.1609/aaai.v32i1.11709

Chen ZG, Zhan ZH, Kwong S, et al., 2022. Evolutionary com-
putation for intelligent transportation in smart cities: a
survey. IEEE Comput Intell Mag, 17(2):83-102.
https://doi.org/10.1109/MCI.2022.3155330

Darwish A, Hassanien AE, Das S, 2020. A survey of swarm
and evolutionary computing approaches for deep learn-
ing. Artif Intell Rev, 53(3):1767-1812.
https://doi.org/10.1007/s10462-019-09719-2

Fernandes FE, Yen GG, 2021. Automatic searching and
pruning of deep neural networks for medical imag-
ing diagnostic. IEEE Trans Neur Netw Learn Syst,
32(12):5664-5674.
https://doi.org/10.1109/TNNLS.2020.3027308

Fielding B, Lawrence T, Zhang L, 2019. Evolving and ensem-
bling deep CNN architectures for image classification.
Int Joint Conf on Neural Networks, p.1-8.
https://doi.org/10.1109/IJCNN.2019.8852369

Goodfellow IJ, Warde-Farley D, Mirza M, et al., 2013. Max-
out networks. Proc 30th Int Conf on Machine Learning,
p.1319-1327.

1572 Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573

Grigorescu S, Trasnea B, Cocias T, et al., 2020. A survey
of deep learning techniques for autonomous driving. J
Field Robot, 37(3):362-386.
https://doi.org/10.1002/rob.21918

Guo H, Zhang W, Nie XY, et al., 2022. High-speed planar
imaging of OH radicals in turbulent flames assisted by
deep learning. Appl Phys B, 128(3):52.
https://doi.org/10.1007/s00340-021-07742-2

He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual
learning for image recognition. IEEE Conf on Computer
Vision and Pattern Recognition, p.770-778.
https://doi.org/10.1109/CVPR.2016.90

Huang G, Liu Z, van der Maaten L, et al., 2017. Densely
connected convolutional networks. 30th IEEE Conf on
Computer Vision and Pattern Recognition, p.2261-2269.
https://doi.org/10.1109/CVPR.2017.243

Jiang WW, Luo JY, 2022. Graph neural network for traffic
forecasting: a survey. Expert Syst Appl, 207:117921.
https://doi.org/10.1016/j.eswa.2022.117921

Jin HF, Song QQ, Hu X, 2019. Auto-Keras: an efficient
neural architecture search system. Proc 25th ACM
SIGKDD Int Conf on Knowledge Discovery & Data
Mining, p.1946-1956.
https://doi.org/10.1145/3292500.3330648

Krizhevsky A, Sutskever I, Hinton GE, 2017. ImageNet
classification with deep convolutional neural networks.
Commun ACM, 60(6):84-90.
https://doi.org/10.1145/3065386

Larsson G, Maire M, Shakhnarovich G, 2016. FractalNet:
ultra-deep neural networks without residuals.
https://arxiv.org/abs/1605.07648

Li JY, Zhan ZH, Wang C, et al., 2020. Boosting data-driven
evolutionary algorithm with localized data generation.
IEEE Trans Evol Comput, 24(5):923-937.
https://doi.org/10.1109/TEVC.2020.2979740

Li JY, Zhan ZH, Liu RD, et al., 2021. Generation-level par-
allelism for evolutionary computation: a pipeline-based
parallel particle swarm optimization. IEEE Trans Cy-
bern, 51(10):4848-4859.
https://doi.org/10.1109/TCYB.2020.3028070

Li JY, Zhan ZH, Zhang J, 2022. Evolutionary computation
for expensive optimization: a survey. Mach Intell Res,
19(1):3-23. https://doi.org/10.1007/s11633-022-1317-4

Li JY, Zhan ZH, Xu J, et al., 2023. Surrogate-assisted hybrid-
model estimation of distribution algorithm for mixed-
variable hyperparameters optimization in convolutional
neural networks. IEEE Trans Neur Netw Learn Syst,
34(5):2338-2352.
https://doi.org/10.1109/TNNLS.2021.3106399

Li X, Lai SQ, Qian XM, 2022. DBCFace: towards pure con-
volutional neural network face detection. IEEE Trans
Circ Syst Video Technol, 32(4):1792-1804.
https://doi.org/10.1109/TCSVT.2021.3082635

Lin M, Chen Q, Yan SC, 2013. Network in network.
https://arxiv.org/abs/1312.4400

Liu HX, Simonyan K, Vinyals O, et al., 2017. Hierarchical
representations for efficient architecture search.
https://arxiv.org/abs/1711.00436

Miranda LJV, 2018. PySwarms: a research toolkit for par-
ticle swarm optimization in Python. J Open Source
Softw, 3(21):433.
https://doi.org/10.21105/joss.00433

Poli R, Kennedy J, Blackwell T, 2007. Particle swarm opti-
mization. Swarm Intell, 1(1):33-57.
https://doi.org/10.1007/s11721-007-0002-0

Real E, Moore S, Selle A, et al., 2017. Large-scale evolution of
image classifiers. https://arxiv.org/abs/1703.01041v2

Simonyan K, Zisserman A, 2014. Very deep convolutional
networks for large-scale image recognition.
https://arxiv.org/abs/1409.1556

Snoek J, Larochelle H, Adams RP, 2012. Practical Bayesian
optimization of machine learning algorithms.
https://arxiv.org/abs/1206.2944

Springenberg JT, Dosovitskiy A, Brox T, et al., 2014. Striv-
ing for simplicity: the all convolutional net.
https://arxiv.org/abs/1412.6806v3

Srivastava RK, Greff K, Schmidhuber J, 2015. Highway net-
works. https://arxiv.org/abs/1505.00387

Suganuma M, Shirakawa S, Nagao T, 2017. A genetic pro-
gramming approach to designing convolutional neural
network architectures. Proc Genetic and Evolutionary
Computation Conf, p.497-504.
https://doi.org/10.1145/3071178.3071229

Sun YN, Xue B, Zhang MJ, et al., 2019. A particle swarm
optimization-based flexible convolutional autoencoder
for image classification. IEEE Trans Neur Netw Learn
Syst, 30(8):2295-2309.
https://doi.org/10.1109/TNNLS.2018.2881143

Sun YN, Xue B, Zhang MJ, et al., 2020a. Automatically
designing CNN architectures using the genetic algo-
rithm for image classification. IEEE Trans Cybern,
50(9):3840-3854.
https://doi.org/10.1109/TCYB.2020.2983860

Sun YN, Xue B, Zhang M, et al., 2020b. Completely auto-
mated CNN architecture design based on blocks. IEEE
Trans Neur Netw Learn Syst, 31(4):1242-1254.
https://doi.org/10.1109/TNNLS.2019.2919608

Sun YN, Wang HD, Xue B, et al., 2020c. Surrogate-assisted
evolutionary deep learning using an end-to-end random
forest-based performance predictor. IEEE Trans Evol
Comput, 24(2):350-364.
https://doi.org/10.1109/TEVC.2019.2924461

Tulbure AA, Tulbure AA, Dulf EH, 2022. A review on mod-
ern defect detection models using DCNNs-deep convo-
lutional neural networks. J Adv Res, 35:33-48.
https://doi.org/10.1016/j.jare.2021.03.015

Wang B, Sun YN, Xue B, et al., 2018. Evolving deep
convolutional neural networks by variable-length parti-
cle swarm optimization for image classification. IEEE
Congress on Evolutionary Computation, p.1-8.
https://doi.org/10.1109/CEC.2018.8477735

Wang B, Xue B, Zhang MJ, 2020. Particle swarm optimisa-
tion for evolving deep neural networks for image clas-
sification by evolving and stacking transferable blocks.
IEEE Congress on Evolutionary Computation, p.1-8.
https://doi.org/10.1109/CEC48606.2020.9185541

Wang YQ, Li JY, Chen CH, et al., 2022. Scale adaptive fit-
ness evaluation-based particle swarm optimisation for
hyperparameter and architecture optimisation in neural
networks and deep learning. CAAI Trans Intell Tech-
nol, early access.
https://doi.org/10.1049/cit2.12106

Yan et al. / Front Inform Technol Electron Eng 2023 24(11):1557-1573 1573

Wu SH, Zhan ZH, Tan KC, et al., 2023. Orthogonal transfer
for multitask optimization. IEEE Trans Evol Comput,
27(1):185-200.
https://doi.org/10.1109/TEVC.2022.3160196

Wu T, Shi J, Zhou DY, et al., 2019. A multi-objective particle
swarm optimization for neural networks pruning. IEEE
Congress on Evolutionary Computation, p.570-577.
https://doi.org/10.1109/CEC.2019.8790145

Xie LX, Yuille A, 2017. Genetic CNN. IEEE Int Conf on
Computer Vision, p.1388-1397.
https://doi.org/10.1109/ICCV.2017.154

Zhan ZH, Li JY, Zhang J, 2022a. Evolutionary deep learning:
a survey. Neurocomputing, 483:42-58.
https://doi.org/10.1016/j.neucom.2022.01.099

Zhan ZH, Zhang J, Lin Y, et al., 2022b. Matrix-based evolu-
tionary computation. IEEE Trans Emerg Top Comput
Intell, 6(2):315-328.
https://doi.org/10.1109/TETCI.2020.3047410

Zhong Z, Yan JJ, Wu W, et al., 2018. Practical block-wise
neural network architecture generation. IEEE/CVF
Conf on Computer Vision and Pattern Recognition,
p.2423-2432.
https://doi.org/10.1109/CVPR.2018.00257

Zoph B, Le QV, 2017. Neural architecture search with rein-
forcement learning. https://arxiv.org/abs/1611.01578

	Introduction
	Background and related works
	Convolutional neural network (CNN)
	Gaussian process regression (GPR)
	Particle swarm optimization (PSO)

	Proposed algorithm
	Mixed-variable encoding strategy
	HSA model
	Multi-level evaluation strategy based on GP
	Individual generation strategy based on PSO

	An improved AF
	Complete algorithm

	Experimental results
	Datasets and metrics
	Compared methods
	Algorithm settings
	Comparisons with state-of-the-art methods
	Ablation experiments
	Application on MF diagnosis

	Conclusions

