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Abstract: For complex functions to emerge in artificial systems, it is important to understand the intrinsic mecha-
nisms of biological swarm behaviors in nature. In this paper, we present a comprehensive survey of pursuit–evasion,
which is a critical problem in biological groups. First, we review the problem of pursuit–evasion from three different
perspectives: game theory, control theory and artificial intelligence, and bio-inspired perspectives. Then we provide
an overview of the research on pursuit–evasion problems in biological systems and artificial systems. We summarize
predator pursuit behavior and prey evasion behavior as predator–prey behavior. Next, we analyze the application of
pursuit–evasion in artificial systems from three perspectives, i.e., strong pursuer group vs. weak evader group, weak
pursuer group vs. strong evader group, and equal-ability group. Finally, relevant prospects for future pursuit–evasion
challenges are discussed. This survey provides new insights into the design of multi-agent and multi-robot systems
to complete complex hunting tasks in uncertain dynamic scenarios.
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1 Introduction

In recent years, swarm intelligence has ad-
vanced significantly as artificial intelligence technol-
ogy has developed (Gao et al., 2019; Cichos et al.,
2020; Rosenberg and Willcox, 2020; Beaver and Ma-
likopoulos, 2021). One of the primary research di-
rections is based on bio-inspired research, in which
biological swarm behavior models are used to re-
produce complex behavior observed in groups. The
phenomenon, in which individual entities with sim-
ple behaviors and intelligence interact to form a
swarm, more complex group functions emerge, and
more difficult tasks are accomplished, is called “emer-
gence” (Blanchard et al., 1990; Zhou ZY et al., 2022).
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The complex behaviors that emerge from biological
groups have provided valuable decision support for
research in the fields of multi-agent system (MAS)
and multi-robot system (MRS). Therefore, the study
of biological swarm behavior is critical in solving col-
laboration problem in MAS or MRS.

Swarm intelligence has evolved from the study of
biological swarm behavior to the distributed intelli-
gence applied to MAS and MRS, in which the notions
of emergence, self-organization, and cooperation are
often mentioned. Through simple information in-
teraction, biological groups in nature emerge with
their simple behavior, which includes self-organized,
cooperative, and adaptive behaviors of the environ-
ment. Biological swarm behavior includes mainly
the flocking behavior of birds (Sainz-Borgo et al.,
2018), the aggregation and dispersion of fish (Ne-
shat et al., 2014), ant colony foraging (van Ouden-
hove et al., 2011; Durgut, 2021), and cooperative
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transportation (Harras et al., 2012; Takahashi et al.,
2015; Barawkar and Kumar, 2021). To reproduce
these satisfactory behaviors in the artificial system,
especially the cooperative behavior in the pursuit–
evasion problem in the biological system, a deep un-
derstanding of the internal mechanism of these bio-
logical group behaviors is important.

The pursuit–evasion problem originated from
collective behavior research (Wang JN et al., 2021).
Benda et al. (1986) conducted the research on the
pursuit–evasion problem, and studied how multiple
agents can surround and capture prey in a short
time in a two-dimensional lattice network. This
is the early origin of the pursuit–evasion problem.
Isaacs (1999) proposed the differential game when
the mathematical problems in dynamic systems are
studied, which extended game theory to the research
of pursuit–evasion problems. The goal of pursuit–
evasion problems is to model and solve the confronta-
tion between pursuers and evaders, which focuses on
the strategies of two groups: pursuers who try to cap-
ture evaders and evaders who try to escape from the
pursuers. The pursuit–evasion problem as a general
framework is widely applied in different scenarios,
such as confrontation in the military field, surveil-
lance, and analysis of biological behaviors (Wein-
traub et al., 2020).

Specifically, in MAS and MRS, the pursuit–
evasion problem can be extended and applied
to game-theoretic confrontation among multiple
agents, which includes both cooperative and an-
tagonistic characteristics. In the future, agents
and robots will develop intelligence, and will use
the swarm system to make autonomous decisions
and autonomously perform tasks. In practice, in
the military confrontation field, satellites or drones
need to autonomously formulate evasion routes and
strategies when facing pursuit by enemy targets.
When performing security work, robots need to au-
tonomously pursue and track dangerous criminal tar-
gets. These are all pursuit–evasion problems that
need to be addressed in real-life scenarios.

The need to address such real-life scenarios
makes the pursuit–evasion problem an important re-
search topic. Moreover, the pursuit–evasion prob-
lem involves complex interactions such as game the-
ory, cooperation, and confrontation among agents.
It deepens our understanding of swarm intelligence
systems and provides some new theoretical methods

and techniques, which have made important contri-
butions to promoting the development and innova-
tion of future artificial intelligence and swarm intel-
ligence systems.

In researching biological swarm behavior, there
are two main guidelines:

1. Biological swarm behavior in nature is an ef-
fective swarm model (Kawabayashi and Chen, 2008;
Zhu and Tang, 2010). The designed agent can inter-
act with the environment biologically and perceive
similar environmental information to which the bio-
logical swarm is sensitive (Zlatev, 2001).

2. The design of multi-agent behavior must be
convenient to check, evaluate, and improve. Re-
searchers develop swarm models inspired by bio-
logical swarm behavior to reveal the mechanisms
and principles of emergent behavior. They study
biological swarm behavior by hypothesizing that
some mechanisms lead to some behaviors and verify
those hypotheses through artificial implementation
(Nitschke, 2005).

The biological swarm behavior model is ex-
plained primarily from the perspective of statisti-
cal physics. This is based on the observation of
biological swarm behaviors in nature. Researchers
found that their collective motions are more consis-
tent with the relevant motion models in statistical
mechanics or statistical physics, which can be ex-
pressed by some specific rule description. Therefore,
they regarded the individuals in the group as small
molecules and proposed relevant notions and models
from the fields of statistical mechanics and statisti-
cal physics to precisely define the motion relationship
between molecules (Vicsek and Zafeiris, 2012).

In addition, the pursuit–evasion behavior be-
tween predator and prey reflects the biological
group’s intrinsic emergent properties and the ex-
ternal collaborative strategy’s application effects.
Swarm intelligence includes studying basic motion
models, emergence mechanisms, behavioral coopera-
tion strategies, and so on, among which the pursuit–
evasion problem is a specific collective behavior in bi-
ological swarm intelligence. As illustrated in Fig. 1,
self-organization behavior and emergent properties
are used to study the biological intelligence be-
hind swarm intelligence, based mainly on the in-
ternal mechanisms for studying the motion model
and specific mechanism of emergence of the group.
Meanwhile, the research on pursuit–evasion behavior
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Fig. 1 The taxonomy based on the swarm intelligence
research level

focuses mainly on cooperation strategies, which are
essentially an external strategy design and applica-
tion to complete a specific task in a particular sce-
nario. For the design of artificial systems, the pursuit
and evasion strategies used by biological groups have
significant inspiration. However, there is no review
of the pursuit–evasion problem in swarm intelligence.

Therefore, we propose a novel taxonomy and
comprehensive survey of swarm intelligence from the
perspective of pursuit–evasion. Groups are divided
into strong and weak groups based on individual’s
abilities, including speed, maneuverability, and other
attributes, although the relationship between pur-
suers and evaders includes strong vs. weak, weak vs.
strong, and equal ability. We establish a link between
the pursuit–evasion problem and collective motion.
Also, comparison and discussion are presented in re-
lation to the phenomenon of group chase in nature.
Therefore, based on a novel taxonomy, a complete
framework for the pursuit–evasion problem is illus-
trated in Fig. 2. The motivation is to provide re-
searchers with a new perspective on decision-making
in pursuit–evasion.

2 Overview of the pursuit–evasion
problem

Pursuit–evasion problems are divided mainly
into three categories according to the solution strate-
gies: game theory, control theory and artificial in-

telligence, and bio-inspired theory. With research
into swarm intelligence, the bio-inspired strategy
of swarm intelligence is gradually applied to the
pursuit–evasion problem. The traditional strategies
for the pursuit–evasion problem are introduced in
this section, along with the realization of pursuit
and evasion behavior in artificial systems from the
perspective of biological inspiration. Additionally,
with the advancement of artificial intelligence tech-
nology, new research questions and solutions to the
pursuit–evasion problem are proposed.

2.1 Game theory

The pursuit–evasion problem is frequently mod-
eled for game theory based methods as a differential
game (Vamvoudakis et al., 2022), with strategies di-
vided typically into two types: quantitative differen-
tial strategies and qualitative differential strategies.
The differential game is essentially a combination of
an optimal control problem and game theory, and be-
cause the goals of the pursuer and the evader are con-
tradictory, the strategy design is typically treated as
a zero-sum game for both parties. Thus, the saddle
point of differential strategies in bilateral confronta-
tion is the Nash equilibrium in a zero-sum game (i.e.,
the point at which the strategy for both parties is
optimal).

The quantitative differential strategy is the op-
timal strategy solved in the pursuit game problem
with a specific performance index function, bound-
ary conditions, and target set. In the pursuit–evasion
problem, most of the quantitative measurements are
chosen with respect to distance and time. However,
the precise quantitative metrics are decided by the
specific application scenario.

The state equation of the given system can be
expressed as follows:{

ẋ = f(t, x(t), u(t), v(t)),

x(t0) = x0,
(1)

where x(t) denotes the state of the system at time
t, and u(t) and v(t) stand for the control strategies
of the pursuers and evaders, respectively. Also, the
performance index function with respect to particu-
lar scenarios is

J = ϕ(x(tf ), tf ) +

∫ tf

t0

L[t, x(t), u(t), v(t)]dt. (2)

In the pursuit–evasion problem, the pursuer
uses strategy u to try to reduce the performance
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Fig. 2 Framework of the pursuit–evasion problem

function J , while the evader uses strategy v to in-
crease J , if the following inequality holds:

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗). (3)

This pair of strategies (u, v) is a saddle point of
performance index function J and a Nash equilib-
rium strategy for the pursuit–evasion game. Next,
dynamic programming or Pontryagin’s minimum
principle in the optimal control theory is typi-
cally employed to solve the above optimal differ-
ential game. The corresponding equations are the
Hamilton–Jacobi–Isaacs (HJI) equation (Weintraub
et al., 2020) and the Hamilton function (Li ZY
et al., 2020, 2021), which are solved for the optimal
strategies.

The qualitative differential strategy ignores per-
formance index function and concentrates only on
the game’s end result. The game’s strategy area
is divided into two zones: the capture zone (where
the pursuer can always catch the evader by employ-
ing the appropriate strategies) and the escape zone
(where the evaders can always escape safely by ap-
plying the appropriate strategies). The barrier is
a semipermeable surface that separates these two
zones. Thus, the design of the barrier and the strate-
gies used there will be critical factors in the game
results. The capture zone is bounded by the points

on the boundary of the target set. The usable part
(UP) and the non-usable part (NUP) of the points on
the target are separated by the boundary usable part
(BUP). Therefore, the intersection of the barrier and
the target set boundary is the BUP.

Many classical and attractive problems have
been derived from the pursuit–evasion game, with
these variations studied from various perspectives.
Those variations of pursuit–evasion games have high-
lighted the insight of the optimal strategy solution
and expanded their application scenarios, as shown
in Table 1.

2.2 Multi-agent system control theory and ar-
tificial intelligence

The principles and techniques of the control the-
ory and artificial intelligence approaches are impor-
tant in solving the pursuit–evasion problem. They
are used to design and analyze MAS and MRS. Con-
trol theory is a mathematical theory that designs and
analyzes MAS, focusing mainly on distributed coop-
erative control theory, which uses appropriate con-
trol algorithms to make the behavior of the swarm
system consistent or create specific formations. Arti-
ficial intelligence is the use of computers to simulate
human thinking processes and intelligent behaviors,
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Table 1 Variations of the pursuit–evasion game

Variation Characteristic Application scenario

Homicidal chauffeur Pursuer is faster than evader; the turning This reflects the animal predation process in
problem radius of the pursuer is limited, while reality, where a fast but inflexible predator
(Isaacs, 1999) that of the evader is unlimited chases slow but agile prey. It is also applied to

military scenarios such as missile interception,
missile defense, and anti-terrorism

Game of two cars Pursuer and evader have the same Because both the pursuer and the evader have
(Merz, 1972) speed and turning radius exactly the same attributes, there are some

prerequisites for their initial positions and
distances. This scenario is rarely encountered
in real applications

Two cutters and Two pursuers are faster than one As described in the game, two patrol ships
fugitive ship game evader. Two cooperative pursuers cooperate to intercept escaping enemy ships
(Garcia et al., 2017) attempt to capture the slower

evader in the minimum time
Guarding a territory The invader aims to avoid capture In military applications, the guard protects

(Analikwu and and tries to reach the territory, while the territory’s critical infrastructure from
Schwartz, 2017) the guard attempts to intercept the physical attacks. The application in policing

invader far away from the territory is protecting borders against illegal entries
and other dangerous activities

Active target defense The defender and target cooperate in In military confrontation applications,
differential game an effort to protect the actively intercepting offensive missiles by launching
(Garcia et al., 2018) maneuvering target from the attacker’s defensive missiles protects the target

capture, while the defender aims to aircraft from threats and attacks
intercept the attacker

Fish game The faster evader attempts to pass the The robot passes through the gap between
(Zha et al., 2017) gap between two pursuers while avoiding two moving obstacles and avoids collisions.

the pursuit of the two pursuers, with In military confrontation, two missiles
a capture radius of zero attempt to intercept an enemy target

Reach-avoid game Two defenders try to intercept an This application scenario has an additional
(Yan R et al., 2019) attacker before the attacker reaches goal line compared to the fish game. In

the target line military confrontation, two frigates guard
the coastline against enemy ships

mainly by applying bionic algorithms or other ma-
chine learning algorithms in swarm systems.

Each method, control theory or artificial intel-
ligence has its own strengths and limitations. Con-
trol theory can provide rigorous mathematical anal-
ysis and computation but requires more accurate in-
formation from dynamic models, which may result
in difficulties in dealing with complex environments
and uncertainties. Although artificial intelligence
can use data-driven approaches to adapt to differ-
ent scenarios, this requires large amounts of data
and resources, and may lack interpretability and ro-
bustness (Ma et al., 2022). By combining the ad-
vantages of classical control theory and artificial in-
telligence, researchers have developed methods and
techniques such as adaptive control, fuzzy control,
artificial neural network control, expert systems, and
genetic algorithms. These methods can better han-
dle high-dimensional, nonlinear, and complex swarm

systems, which fully consider the interaction, coop-
eration, and confrontation among the agents in the
system (Dong Q et al., 2022).

There has been extensive research with numer-
ous effective algorithms on the challenge of pursuit–
evasion in MAS. In contrast to the study of the
pursuit–evasion problem from the game theory per-
spective, which focuses mainly on the design at the
strategy level, MAS research primarily focuses on the
realization and optimization of control algorithms.

In fact, the progress of designing the opti-
mal control algorithms in distributed cooperative
MAS control employs individual local information
rather than global information (Liu et al., 2022).
The most common MAS application scenario for
the pursuit–evasion problem is collective hunting, in
which multiple robots collaborate to pursue one or
more targets until the hunt is successful and the tar-
gets are surrounded in a specific formation.
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Because the research on distributed cooperative
control uses the local information of individuals, the
design of pursuit strategies under the assumption of
the local perception range is relatively critical. There
is a link between the local information perceived by
the individual and the success of the pursuit or eva-
sion. For example, Isler et al. (2006) studied the re-
lationship between the information available to the
evader and the conditions of the capture, and then
associated the information with its visibility. In this
research, the local visibility of evaders was exploited
in the pursuit strategy, and an algorithm was pro-
vided allowing two pursuers to successfully capture
an evader with high probability using a randomized
strategy. Katsev et al. (2011) studied types of global
information that needs to be learned for simple wall-
following robots to follow motions on walls, and tasks
that can be completed with as little perception and
actuation as possible. They also studied relevant
strategies for the pursuit–evasion problem by using
different sensors that acquire different types of envi-
ronmental information.

Similarly, one of the methods for researching the
pursuit–evasion problem is expanding the global per-
ception range to increase the information obtained.
Fregene et al. (2003) proposed the hybrid intelli-
gent control agent (HICA) scheme, in which multi-
ple agents were organized into air and ground teams.
Specifically, the air team accurately located the tar-
get position through a radar, while the ground team
implemented the task of hunting the target. The
presence of the air team significantly expanded the
perception range, and the ability to share global
information was increased by real-time monitoring
of teams in the air. Battistini (2020) proposed a
method for characterizing the capture zone based on
confidence in the estimation of the zero effort miss,
which has good performance for the estimation of
variables in the guidance formula, especially in sce-
narios where some sensors are limited. However, it
considered only a simplified scenario with a small
line-of-sight angle and small flight path angles.

For collective hunting, the collaboration strate-
gies of agents have a crucial impact on the final out-
come, and various issues have been covered, includ-
ing path planning, search strategies, obstacle avoid-
ance, and collision avoidance. Schwarting et al.
(2021) proposed a method that combines game-
theoretical planning with belief space planning to

generate linear feedback policies and predictive feed-
back policies for robots under perceptual and mo-
tion uncertainty. Dong J et al. (2012) proposed a
hybrid algorithm based on an improved dynamic ar-
tificial potential field and differential game for mo-
bile robots, which can plan the pursuit path and
avoid obstacles. For the pursuit–evasion problem of
heterogeneous teams, Zhang LM et al. (2021) devel-
oped a redundant allocation algorithm to distribute
pursuers and minimize the capture time. In addi-
tion, with the increase of individuals in the group,
the burden of communication between individuals
was increased. Therefore, energy-efficient and se-
cure communication within the group is essential for
the consistency and robustness of swarm behavior.

The development of artificial intelligence has
also created novel approaches to the problem of
pursuit–evasion. For the MAS pursuit–evasion prob-
lem, Wan et al. (2021) proposed an online decision-
making and control-oriented framework that devel-
oped from a multi-agent deep deterministic policy
gradient (MADDPG) framework. In addition, an al-
gorithm termed the adversarial attack trick and ad-
versarial learning MADDPG (A2-MADDPG), which
trains the policy to make the decision more robust,
was designed. This algorithm introduces the tech-
nology of antagonistic learning and improves adapt-
ability to the response induced by other individ-
ual changes. In Zhou ZJ and Xu (2020), a novel
decentralized intelligent adaptive strategy was pro-
posed for massive MASs, which uses a combination of
mean-field game theory and reinforcement learning
(RL). This method can obtain a satisfactory pur-
suit and escape strategy, especially for situations in
uncertain environments.

Deep reinforcement learning (DRL) provides a
new scheme for the design of control strategies for
swarm systems (Shi et al., 2022). Hüttenrauch et al.
(2019) proposed a state representation based on
mean feature embeddings, which can handle high-
dimensional and size-changing information sets in
swarm systems. They evaluated the representation
method on two typical swarm tasks—rendezvous
and the pursuit–evasion problem—and revealed that
neural network mean embeddings can capture more
evader information with less capture time. However,
this study did not compare with other swarm system
control methods based on deep multi-agent reinforce-
ment learning (MARL) and did not experimentally
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verify the effectiveness of the method in practice.
de Souza et al. (2021) proposed a DRL approach
to decentralized multi-agent pursuit with multiple
non-holonomic pursuers with local information and
an omnidirectional target evader. The method has
been validated in a real unmanned aircraft system,
but the presence of obstacles or more complex envi-
ronments was not considered in this method.

Bio-inspired algorithms combined with swarm
intelligence are applied to the pursuit–evasion prob-
lem. Hu et al. (2021) imitated the behavior of wolves
pursuing prey and proposed a cooperative hunting
scheme based on the multi-objective k -winner-take-
all (k -WTA) algorithm and wolf particle model. The
method improves the task assignment efficiency for
cooperative hunting and has satisfactory adaptabil-
ity to dynamic environments. However, the effec-
tiveness of this method has not been examined in
practice. Heras et al. (2019) used deep attention net-
works to obtain a collective behavior model that is
accurate and insightful, and trained and tested the
model with high-quality zebrafish trajectory data,
but they did not explain the applicability of deep
attention networks to other species or collective be-
haviors. Considering the homogeneity and locality
of biological systems, Yu X et al. (2021) proposed
a parameter-sharing adversarial inverse RL method
that can reconstruct the reward function from biolog-
ical collective behavior demonstrations, effectively
solving the high-dimensional problem. This study
considered only biological systems with strong ho-
mogeneity and locality, and did not involve more
complex situations such as heterogeneity or global
information exchange.

There are some intersections between bio-
inspired algorithms and artificial intelligence. Bio-
inspired algorithms can implement learning and op-
timization functions in artificial intelligence, such as
the wolf pack algorithm (Mirjalili et al., 2014), ant
colony algorithm (Deng et al., 2020), fish swarm al-
gorithm (Huang ZH and Chen, 2015), and particle
swarm optimization algorithm (Jain et al., 2022).
Bio-inspired algorithms are designed with inspira-
tion obtained from hunting and escaping processes
of biological groups in nature. They are just a spe-
cial method or perspective in the field of artificial
intelligence. Artificial intelligence is a broad field
that includes other methods and applications besides
bio-inspired algorithms, such as the various methods

mentioned above.

2.3 Bio-inspired perspectives

The pursuit–evasion problem is essentially a
branch of collective behavior research (Wang JN
et al., 2021). Studying the pursuit–evasion problem
from a bionic perspective means studying the phe-
nomenon of hunting in biological groups. In contrast
to the previous two perspectives, the research from
a biological perspective focuses more on the emer-
gent mechanisms and modeling processes of collec-
tive hunting behavior. Collective hunting is not only
an extension of the multi-player problem in the tradi-
tional pursuit–evasion problem, but also reveals the
results of collective motion with two different moti-
vational groups (Kamimura and Ohira, 2019). For
determining the pursuit–evasion problem’s optimal
strategy and decision-making process, research on
the hunting phenomenon in nature is instructive.

2.3.1 Basic model of swarm behavior

The swarm model is used mainly to imitate the
collective biological behavior in MAS and MRS. The
motivation for studying the swarm model is to under-
stand the intrinsic mechanism of emergence, which
is significant for designing artificial systems. Espe-
cially for studying the internal mechanisms of collec-
tive biological behavior, the swarm model is essen-
tial to achieve precise control over MAS and MRS
swarm behavior. Therefore, introducing the basic
swarm model of collective behavior before analyzing
the pursuit–evasion problem is necessary. Next, sev-
eral basic models of biological swarm behavior will be
introduced; a brief comparison of them is tabulated
in Table 2.

Reynolds (1987) proposed three principles based
on the flight of a flock of birds, which can simulate
the collective motion of the flock. In the spatial
model, the individuals are regarded as “Boid” in the
flock, which has a limited field of vision. The spatial
model follows three basic principles:

1. Separation. Individuals separate from each
other to avoid collision (Fig. 3a).

2. Alignment. The individual direction is ad-
justed to the average direction of the nearest indi-
vidual (Fig. 3b).

3. Cohesion. Individuals move towards the aver-
age position (central position) of neighbors (Fig. 3c).
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Table 2 Comparison of various model characteristics

Model Characteristic

Boids model Three basic principles: separation,
(Reynolds, 1987) alignment, and cohesion

Vicsek model The model is based on particle
(Vicsek et al., 1995) collective motion, considering

only velocity synchronization
Couzin model The perceptual range is divided

(Couzin et al., 2002) into three areas, the blind area
of the visual field is considered,
and the turning angle is added

Leader–follower Within the swarm, there are two
(Jadbabaie et al., types of roles: leader and
2003; Couzin et al., follower. The leader has a fixed
2005) heading, and the movements of

all individuals in the system will
eventually converge to the leader

Perception range

Neighbor

Individual

The next direction of
individual movement

Direction of neighbor
movement

(a)

(b) (c)

Fig. 3 Illustration of Boids model: (a) separation; (b)
alignment; (c) cohesion

The primary basis for the formation of swarm
behavior is the individual’s limited local perception,
rather than the global perception. Each “Boid” ad-
justs its motion in response to the motion state
of neighboring individuals, and complex behaviors
emerge under the framework of unsophisticated and
fixed rules. Although the model can better simulate
the collective motion of the flock of birds and the
school of fish in three-dimensional space, it has not
been realized for foraging, evasion, or other related
behaviors.

Vicsek et al. (1995) proposed the Vicsek model,
which simulates and explains the models of aggrega-
tion, transport, and phase transition in nonequilib-
rium systems. The model reproduces the statistical

characteristics of self-driven collective particle mo-
tion and provides a foundational model for the study
of complex dynamic networks.

The Vicsek model analyzes the consistency
problem in collective motion, which inspires further
research on system convergence time and system sta-
bility in collective motion (Lin et al., 2004; Ren and
Beard, 2005; Ren et al., 2005). However, the Vicsek
model has its own limitations. In the Vicsek model,
each individual has a global vision, which contra-
dicts the fact that the vision of individuals in nature
is limited. In addition, the size of the individual
is not accounted for in the model, which will affect
the actual effect of the collision avoidance rule. Al-
though the Vicsek model has some limitations and
considers only the problem of speed synchronization
between individuals, the improved model based on
the Vicsek model has numerous applications in dis-
tributed sensor networks and multi-agent collective
motion (Savkin, 2004; Tian et al., 2009).

Couzin et al. (2002) divided the space into three
regions based on the Boids model: the zone of re-
pulsion (zor), zone of orientation (zoo), and zone of
attraction (zoa). The field of the individual’s view
was considered in the model. As shown in Fig. 4, the
range of view is α. Except for the zor sphere area,
where there is no individual, there is a perceptual
“blind area” in which the center individual reacts to
other individuals in zoo and zoa. The model also
adds the turning rate θ according to the actual bio-
logical movement, which is the maximum angle that
an actual individual can turn per unit of time. The

x

y

2π α

α

zoa

zoo

zor

z

Fig. 4 Illustration of the Couzin model (zor: zone
of repulsion; zoo: zone of orientation; zoa: zone of
attraction)
Reprinted from Couzin et al. (2002), Copyright 2002, with
permission from Elsevier Science Ltd.
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additional rule design is more satisfied with the ac-
tual motion conditions.

The Couzin model uses accurate mathematical
formulas to reveal how the changes in individuals’
behavior affect swarm behavior. By using unso-
phisticated local rules for individuals, individuals
can accurately change their position in the flock,
which can well simulate the motion rules of bio-
logical groups. The collective motion emerging in
the simulated groups can be well verified in actual
swarms, particularly schools of fish. This model
reveals that individuals may change their position
relative to other individuals in schools according to
their internal state or the risk of predation (Krause,
1993; Bumann et al., 1997; Gazi and Passino, 2003),
which is of enlightening significance to the study of
the pursuit–evasion problem in subsequent biological
groups.

Jadbabaie et al. (2003) proposed a modified
leader–follower model based on the Vicsek model.
The concept of a leader is introduced into the model,
which makes the followers move at the same speed as
the leader and have a fixed heading. Finally, with the
evolution of the system, the movement of all individ-
uals in the system will converge to the leader. This is
of great significance in consistency research. Couzin
et al. (2005) studied the impact of the proportion of
leaders on the behavior of biological systems. De-
spite the fact that other individuals in the system
do not know which individuals are leaders, the lead-
ers’ information can still be transmitted within the
group.

For the practical application of the leader–
follower model in an MAS, a theoretical framework
for a distributed flocking algorithm for multi-agent
network systems was proposed (Olfati-Saber and
Murray, 2004; Olfati-Saber, 2006; Olfati-Saber et al.,
2007), which laid the foundation for most of the theo-
retical frameworks of MAS consistency problems. In
this algorithm, it was assumed that all individuals in
the group know the leader’s information even though
the leader is virtual, which contradicts the reality.
However, Su et al. (2009) and Song et al. (2010) sim-
plified this condition by assuming that only some in-
dividuals knew the leader’s information and adopted
the method of implicated control to prove system
consistency, which makes the method more realistic
and general.

2.3.2 Model of pursuit–evasion

From a biological perspective, the majority of
studies on collective hunting behavior describe the
mathematical model in terms of statistical physics.
In this subsection, we focus on the rules and math-
ematical models involved in pursuit–evasion behav-
ior, whereas the related biologically specific swarm
behaviors and biological effects are discussed in
Section 3.

The current research aims to derive universal
statistical features from collective hunting (a mathe-
matical, highly nonlinear, dynamic model of pursuit–
evasion behavior). The strategy of collective hunt-
ing behavior is applied to those models based on the
classical models mentioned above to reproduce bio-
logical collective hunting. A lattice model was pro-
posed by Kamimura and Ohira (2010) to examine
the problem of how one group chases another. The
group was divided into predators and evaders. Each
predator chased the nearest evader, while the evader
avoided the closest predator. Based on the Vicsek
model, Angelani (2012) proposed a simple pursuit–
evasion model which serves as a foundation model
for subsequent studies. Additionally, the predation
phenomenon and escape strategy were examined in
the context of various escape strategies and various
group speeds. Its mathematical model provides an
explanation of the escape strategy mechanism in im-
proving the probability of prey survival.

Collective motion and the traditional pursuit–
evasion problem are linked in this subsection. The
motivation is to develop mathematical models and
rules that can represent collective hunting from a
swarm intelligence standpoint. In Dutta (2014), the
inherited rules and mathematical models of biologi-
cal collective hunting behavior were introduced. To
make the model more realistic, these discrete statis-
tical models need to be extended with animal be-
haviors and sophisticated strategies. When extend-
ing the classical model to a biological vision based
pursuit–evasion model, Qi et al. (2020) took percep-
tion into account and proposed the visual perception-
decision-propulsion model with the self-propulsion
and alignment term (v̂al

i ), repulsion term (v̂rep
i ), and

escape term (v̂CT
i ) as

vint
i (t+Δt) = φalv̂

al
i (t) + φrepv̂

rep
i (θrep

i , t)

+ φCTv̂
CT
i

(
θCT
i , t

)
,

(4)
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where vint
i denotes the ith unit vector, θi repre-

sents the visual information, and all terms sat-
isfy φal + φrep + φCT = 1. In addition, two cap-
ture patterns—separative capture and cooperative
capture—are found by varying the values of three
parameters in Eq. (4).

The predatory behavior of natural biological
groups is instructive for the extension of the pursuit
model, in addition to the physical model for study-
ing pursuit–evasion behavior from the perspective of
collective motion. Cooperation between individuals
is necessary for biological groups to engage in col-
lective hunting and escape, whether it is for a group
of predators to capture prey or a group of preys to
avoid capture or even repel predators. There are two
main research directions for the study of pursuit–
evasion from the perspective of cooperation: estab-
lishing a cooperative hunting model for predators
and establishing a cooperative escape model for prey.
Chakraborty et al. (2020) investigated the escape dy-
namics and survival probability of groups by vary-
ing the range of interactions between prey groups
based on a simple prey–predator model. They did
not consider other factors that may affect the out-
come, such as environmental noise or heterogeneity
among individuals. After finding that prey had the
maximum chance of survival over an intermediate
range of interactions, the theoretical framework can
be extended to study cooperative hunting by multi-
ple predators. When a prey group is being pursued,
it might choose anti-attack behavior rather than es-
cape, although this choice puts it at greater risk
of being captured. Zhang S et al. (2019a) consid-
ered the prey’s anti-attack behavior by abstracting
the anti-attack game simply as a game of energy
confrontation. Although they did not compare their
model with other existing models, this is a novel re-
search perspective. The update functions of energy
for prey and predators are as follows:

⎧⎪⎨
⎪⎩

Δetar(ξ, v) = ξ

(
U

np
+

echa

na

)
− (1 − ξ)kvϕ,

Δecha(ξ, v) = ξ
∑

etar − (1− ξ)kvϕ,

(5)
where Δe(ξ, v) = ξa(·)− (1− ξ)b(v) denotes the en-
ergy update function within the prey’s energy Δetar
and the predator’s energy Δecha. ξ is a switch
function with a value range [0, 1]. For the prey,
a(·) = U

np
+ echa

na
. U denotes the rate of energy acqui-

sition, and np is the number of preys. echa denotes
the residual energy, and na is the number of anti-
attacking preys. For the predators, a(·) =

∑
etar,

where etar denotes the energy of the captured prey.
b(v) = kvϕ is an energy loss function.

In contrast to the typical pursuit–evasion game,
there are two types of prey: evading prey and anti-
attacking prey. The group with an energy advantage
will win the game. In addition, the above-mentioned
model extends the group chase and escape model,
and investigates the effect of prey aggregation pref-
erences. Most research on group chase and escape
does not consider individual energy, which is con-
trary to the reality of pursuit–evasion scenarios. A
model for analyzing how energy management affects
predation behavior was provided by Zhang S et al.
(2019b). Also, in the two behaviors of staying to eat
and continually escaping in the pursuit–evasion pro-
cess, Zhang S et al. (2019b) analyzed how the prey
weighs these two options based on its energy levels.
This research has great reference value for long-term
chase-and-escape scenarios or scenarios that require
multi-round games.

2.4 Comparison of pursuit–evasion methods
from different perspectives

There are some intersections between the re-
search methodologies for solving pursuit–evasion
problems from different perspectives, but they are
not completely independent from one another. As
mentioned above, the bio-inspired perspective and
the artificial intelligence perspective intersect each
other. Bio-inspired algorithms can be used for learn-
ing and optimization in the field of artificial in-
telligence, and game theory methods can be com-
bined with artificial intelligence methods to form
a new scheme. These different research perspec-
tives on pursuit–evasion games have some common
characteristics:

1. Same goal. The pursuer’s goal is to find and
capture the evader, while the evader’s goal is to avoid
being caught.

2. Constraints. Both sides of the pursuit–
evasion game have certain constraints in real situa-
tions, such as different speeds, turning radii, percep-
tion ranges, and other maneuverability constraints.

3. Equilibrium assumption. The abilities of the
pursuer and the evader are studied under the premise
of trade-offs. The pursuer and the evader usually
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do not have all “strong” abilities at the same time,
but if they have “strong” abilities, they have rela-
tive weakness. For example, lions have high speed
and attack ability; however, due to their large size,
they have a larger turning radius compared to rab-
bits and antelopes. Therefore, if a pursuer’s speed
is higher than that of an evader, there may be other
limiting conditions, such as a large turning radius,
fast energy consumption, limited pursuit time, or a
small perception range. Otherwise, regardless of the
evader’s escape strategies, the evader will definitely
be caught if the pursuer is stronger than the evader
in all aspects.

In addition to the common characteristics
of the above-mentioned pursuit–evasion problems,
there are differences in the methods from different
perspectives.

1. Game theory. The game theory method
that is suited to the situation is small-scale (few
players) and involves relatively simple mathemati-
cal game models. From this perspective, research
focuses mainly on differential games, using game
theory methods and models to analyze the optimal
strategies, equilibrium solutions, and other informa-
tion on both sides of the pursuit–evasion problem. It
can effectively describe the relationship between pur-
suers and evaders and depict their rational behavior
and expected effects. However, for complex practi-
cal situations, it is difficult to establish accurate and
reasonable models, and when uncertain factors inter-
fere, it will lead to unpredictable and uncontrollable
results. For complex and nonlinear models, there is
significant computation, and it may be difficult to
solve and derive subsequent results from the given
state using only a mathematical method.

2. Control theory and artificial intelligence. The
methods of control theory and artificial intelligence
are more suitable for large-scale, more complex non-
linear pursuit–evasion processes. By analyzing the
nonlinear factors in the pursuit process, a reasonable
dynamic model is established, the cost function is de-
termined, and the optimal strategy is analyzed and
solved by solving the HJI equation. The develop-
ment of artificial intelligence technology makes the
pursuit problem independent of the dynamic model,
and can complete the solution and optimization of
complex cost functions through corresponding learn-
ing algorithms that can adapt to a wider range of
application scenarios.

The mathematical analysis of control theory can
provide theoretical guarantees and guidance, and can
use artificial intelligence structures, such as neural
networks, to calculate optimal solutions of more com-
plex systems. This ability makes this method capa-
ble of handling multiple participants and have better
solutions to uncertainty in the real world. However,
this also requires a lot of computing resources and
time, and accurate knowledge of model parameters
and initial conditions. These methods may also have
problems such as falling into local optimal solutions
and overfitting.

3. Bio-inspired. Bio-inspired methods are suit-
able for large-scale, high-dimensional, dynamic, non-
linear, and complex pursuit processes. The main re-
search focuses on the local rules of individuals, and
by imitating the tasks and roles of biological swarm
individuals in the group, complex global behaviors
emerge. From a bio-inspired perspective, it can han-
dle more complex dynamic pursuit processes and is
closer to real-world pursuit–evasion scenarios and
strategies. However, the individual modeling rules
of this imitation design lack theoretical analysis and
proof and have not revealed the specific mechanism
of emergence. In addition, the simulation and test
require a lot of computing resources and time.

3 Pursuit–evasion in biological systems

Self-organizing behavior in biological groups
emerges with more functions at the swarm level, and
the actual biological inspiration is more concentrated
in decision-making strategies and cooperative col-
laboration. Pursuit–evasion behavior in biological
systems is reflected mainly in predator–prey behav-
ior. The objective of predators is to pursue and cap-
ture prey, while the prey’s objective is the opposite.
Both predator and prey have their animal strategies,
with predator and prey guiding movements based on
them. They also adjust their motion according to
their perception of relative position. These animal
strategies provide enlightening ideas for strategy de-
sign in artificial systems. Therefore, investigating
predator and prey behavior and modeling animal
strategies as algorithms for artificial systems are crit-
ical to understanding the relationship between pur-
suers and evaders.
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3.1 Predator pursuit behavior

For predators, a successful capture phase in-
cludes the processes of discovery, search, pursuit,
strike, and capture (Peterson et al., 2021). Same-
species predators always engage in cooperative col-
lective hunting, which also needs collaboration and
perception among individuals. The biological collec-
tive hunting strategy provides a reference design for
the problem of multiple pursuers in pursuit–evasion.
In this subsection, we overview the collective hunting
behavior of fish schooling and bird flocking, along
with the animal strategies applied to increase the
success rate of capturing.

3.1.1 Intermittent pursuit

Fish predators pursue prey usually with in-
termittent burst-and-coast swimming (Soto and
McHenry, 2020). During the burst phase, the preda-
tor accelerates and changes the heading rapidly.
The coast phase is the duration between consecu-
tive bursts. Fish predators enter the coast phase
after burst swimming and adjust the direction of the
tail beat to relocate the prey.

3.1.2 Pursuit formation

Mammal groups usually capture their prey by
gathering prey, and predators form a certain forma-
tion to surround the prey to prevent escape (Haque
et al., 2010). Tursiops truncatus dolphins arrange
themselves into a horizontal “line abreast” array
when hunting their prey to form a predator front,
move uniformly to the collection of prey, and attack
by gathering prey (Pryor and Norris, 1991). The
lion forms a “catcher’s mitt” shape, and its prey is
encircled for capture and attack (Estes, 2012).

3.1.3 Classic pursuit and CATD pursuit

For flying predators (Chiu et al., 2010), the pur-
suit strategy of flying predators is different from the
pursuit strategy of fish. For stationary prey tar-
gets, classical pursuit (CP) strategy is often applied,
in which the predator directly pursues the instanta-
neous position of the prey, and the speed vector of
the predator is always pointed to the prey (Nahin,
2012). However, when the prey moves, CP is inef-
ficient. In this situation, flying predators often use
a constant absolute target direction (CATD) strat-

egy. During the evasion of the prey, the predators
adjust their speed and heading as the prey changes.
In CATD, the sight line of the predator and the prey
is constant at each stage. In addition, there is a de-
viated tracking strategy that is more general for the
prey’s constant viewing angle (Kane et al., 2015).

3.2 Prey evasion behavior

For prey, antipredator strategies are often
used to respond to the predator’s pursuit behav-
ior (Bedoya-Pérez et al., 2021). The purpose of an
anti-predation strategy is to make the prey escape
successfully. The escape distance is a critical fac-
tor affecting the survival of prey (Peterson et al.,
2021). In addition, sensitive perception and excel-
lent escape speed can increase the success rate of
evasion. Through the observation of anti-predation
responses in biological systems, the intrinsic mech-
anism of prey escape behavior can be generalized,
which provides an excellent solution to the evasion
problem in pursuit–evasion.

3.2.1 Evasion formation

When a school of fish encounters predators, the
formations may be as follows (Parrish et al., 2002):

1. Ball. All individuals come together to form
a closed sphere. This is the defensive formation of
the fish, and the formation of dense, large groups
contributes to the predator confusion effect.

2. Flash expansion. The school of fish quickly
spreads from the center point in all directions, escap-
ing to all directions.

3. Split. The school of fish is split into two
groups that move in two directions.

4. Vacuole. Schools of fish swim in circles around
predators, forming a circular formation centered on
the predator.

3.2.2 Evasion group effect

In addition to the evasion and escape of forma-
tion change, the group effect created by self-schooling
will reduce the probability that the fish become prey:

1. Dilution effect. This is a concept in the field
of behavioral ecology. The probability of a roaming
individual being preyed on will be reduced by joining
the group, with the probability of being preyed on
reduced to 1/N of the original probability, where N
represents the number of individuals in the group
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(Civitello et al., 2015).
2. Confusion effect. Many fish move rapidly in

the predator’s field of vision, making it difficult for
the predator to focus on a single individual. The
predation targets are continually changing, thereby
effectively reducing the predation success rate (Ioan-
nou et al., 2012).

3. Marginal predation. Predators preferentially
capture individuals that are located on the periph-
ery of the formation in the prey group (Duffield and
Ioannou, 2017).

3.2.3 Evasion orientation

When the prey is pursued by the predator, it
favors sideways evasion, which has proved to be more
effective than other evasion tactics (Ilany and Eilam,
2008) because sideways evasion interferes with the
visual guidance of predators (Shifferman and Eilam,
2004). In addition, the rapid degree of prey evasion
response and the short burst speed will greatly affect
the success rate of the sideways evasion strategy.

4 Pursuit–evasion in artificial systems

In artificial systems, collective behavior is ap-
plied mainly in MAS and MRS. Thus, the essence of
the research on the pursuit–evasion problem in ar-
tificial systems is to study the strategy designed to
realize the actions of pursuit and evasion in MAS
and MRS. We have a clear understanding of the
pursuit–evasion strategy in biology as reviewed in
the previous section. In this section, the pursuit and
escape behaviors in artificial systems will be specifi-
cally classified according to the biological predation
process, and the different stages of their behaviors
will be discussed separately. The motivation is to es-
tablish a connection with each link of the predator-
prey process of biological groups and provide an in-
tegrated framework in the field of swarm intelligence
for the study of pursuit and evasion strategy.

4.1 Relationship between predator–prey and
pursuit–evasion

Inspired by the cooperative behavior of biologi-
cal groups in nature, the research aims to reproduce
and imitate the behavior of biological groups. The
researchers tried to achieve group-level functional-
ity through the formulation of interaction rules be-

tween individuals and the design of an overall control
strategy. The pursuit–evasion problem in biologi-
cal groups includes two roles, predator and prey, in
which the predator wants to catch the prey, while the
prey tries to escape to avoid being caught. Based on
the biological predator–prey behavior, the pursuit–
evasion process is divided into the following four
stages (Mirjalili et al., 2014; Zhang XQ and Ming,
2017; Zhang XQ et al., 2021):

1. Locking. Predators in the biological group
search for the hunting target.

2. Driving & chasing. The prey is driven to
favorable terrain and positions.

3. Encircling. The predators surround the prey
and form a circle that keeps shrinking.

4. Besieging. The predators develop a hunting
strategy and attack the hunting target, and finally
capture it.

Whether it is a predator or prey, it needs to
go through the stages mentioned above. The four
stages establish a link between the two problems of
predator–prey behavior and pursuit–evasion. The
biological system’s pursuit–evasion strategies pro-
vide an inspired idea for the design of artificial sys-
tems. Thus, the pursuer can improve the success
rate of the pursuit by imitating the predator’s pur-
suit behavior and employing comparable strategies
or formations, whereas if the evasion group effect
was properly employed in the artificial system, the
success rate of escape may be increased. Jiang et al.
(2022) proposed a novel bio-inspired algorithm called
the orca predation algorithm (OPA) that simulates
the hunting behavior of orcas. The predation pro-
cess is divided into three steps: driving, encircling,
and attacking prey. The algorithm balances the
development and exploration phases by parameter-
tuning to assign different weights to the drive and
besiege phases. After testing and comparative anal-
ysis, the predation algorithm is able to maintain su-
perior performance compared to other tested algo-
rithms. Based on the improved Boids model, Yu
ZJ et al. (2022) simulated the predator’ hunting be-
havior, which includes searching, approaching, chas-
ing groups, chasing individuals, attacking, and other
steps. According to these steps, the predatory behav-
ior of wolf packs was simulated in the experiments,
which is similar to the realistic observation results.
Muro et al. (2011) proposed two simple distributed
rules to control intelligent agents that can emerge the
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main characteristics of wolf pack hunting behavior:
tracking the prey, pursuit, and encircling the prey.
This provides an explanation for the cooperative be-
havior of wolves when hunting.

In contrast, unlike artificial systems, biologi-
cal groups have fully autonomous movement and
decision-making capabilities, the working mecha-
nism specifics of which have not yet been fully re-
vealed. This presents a significant challenge to the
design of artificial systems. The current research on
the problem of pursuit–evasion in artificial systems is
focused mainly on the design of strategies for collec-
tive behavior, i.e., establishing a series of equations
through the mathematical description of the prob-
lem and finally solving the optimal decision strategy.
Moreover, the performance of the strategy designed
determines the quality of the individual’s autonomy,
which is a critical requirement of the pursuit–evasion
problem.

Next, some recent results are introduced by a
novel taxonomy based on the degree of each indi-
vidual’s ability: strong-pursuer-weak-evader, weak-
pursuer-strong-evader, and strong (weak)-pursuer-
strong (weak)-evader. The terms “strong” and
“weak” refer to different levels of ability, and there
is a threshold that can be used to make this distinc-
tion. The specific definition is as follows:
Definition 1 The ability of agent i is defined as
gi, which involves a variety of performance indices,
such as maneuverability and attack capability. There
is a uniform standard threshold c that denotes the
boundary between strong and weak. If gi ≥ c, agent
i is considered “strong;” otherwise, agent i is consid-
ered “weak.”

However, extending to all scenarios of the
pursuit–evasion problem, it is hard to find a stan-
dard threshold. In this paper, to make it easier to
describe the literature, “strong” and “weak” are con-
sidered as a pair of relative concepts. For example,
if the pursuer’s speed is higher than the evader’s,
given the same other performance indices, then the
type is strong-pursuer-weak-evader. Based on this,
the concepts of “strong” and “weak” are defined here:
Definition 2 Consider in scenario A. A pursuer
group Pn is composed of n pursuers, the ability of
the ith (i = 1, 2, · · · , n) pursuer is defined as gi, and
the ability of Pn is denoted as Gn. gi involves var-
ious performance indices, such as maneuverability
and attack capability. Similarly, an evader group

Em is composed of m evaders, the ability of the jth

(j = 1, 2, · · · ,m) evader is defined as fi, and the
ability of Em is denoted as Fm. If gi > fj , the ith

pursuer is considered as “strong” and the jth evader is
considered as “weak” in scenario A. If Gn > Fm, the
pursuer group Pn is considered as “strong,” and the
evader groupEm is considered as “weak.” The ability
of the ith pursuer gi can be expressed as follows:

gi = [w1, w2][Mi, Ai]
T, (6)

where W = [w1, w2] denotes the weight matrix, Mi

is the maneuverability of gi, and Ai is the attack ca-
pability of gi. w1 and w2 satisfy w1 + w2 = 1, and
usually w1 < w2. ManeuverabilityMi includes speed
vi and lateral acceleration al, Mi = ‖vi +Δt · al‖2,
where Δt is the lateral direction change time, and
is usually a small constant. Maneuverability is the
ability of an individual to move, not only in terms
of how fast it moves, but also in terms of its ability
to change direction. The movement happens more
quickly the faster the speed. The turning radius de-
creases with increasing lateral acceleration, while the
degree of flexibility increases with increasing lateral
acceleration.

If the system is homogeneous, the strength of
a single member determines whether the group is
“strong” or “weak,” whereas for the heterogenous
system, the group’s strength depends on the sum
strength of all members.

With the definition of “strong” and “weak,” the
pursuit–evasion problem can be classified into three
types: strong pursuer group vs. weak evader group,
weak pursuer group vs. strong evader group, and
equal-ability pursuit–evasion.

4.2 Strong pursuer group vs. weak evader
group

For the strong pursuer group pursuing the weak
evader group, because the stronger group is faster,
the research on the pursuit–evasion problem focuses
on two issues: the escape strategy of the weak evader
and the optimal number of pursuers for the strong
pursuer. Kamimura and Ohira (2010) evaluated the
effectiveness of the optimal number of chasers in a
population, i.e., whether there is an optimal number
of chasers that minimizes the cost of capturing all
targets. In the scenario of two faster pursuers pur-
suing one evader, because in Mi = ‖vi +Δt · al‖2,
Δt was a very small constant, the maneuverability
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was determined mainly by the speed. The attack
capability was not considered in this literature; ac-
cording to Eq. (6), we have gi > fi. Therefore, this
is two “strong” pursuers chasing a “weak” evader.
Makkapati et al. (2018) discussed the escape strat-
egy under the maximum capture time. The escape
strategies for two specific situations were analyzed
in detail, and the optimal evasion strategy for relay-
pursuit was investigated. This research provides a
framework for multi-player pursuit games in differ-
ent information structures.

It is hoped that the strong pursuer will use an
optimal number of pursuers or an effective pursuit
strategy to ensure that the evader will be caught
regardless of the escape strategies applied. Hayoun
and Shima (2017) provided a solution to the pursuit–
evasion game about missile interception based on a
linear bounded control. Also, the optimal control
strategy for the scenario in which two strong pursuers
are pursuing one weak evader was discussed. They
found that the overall performance of strong pur-
suers was not caused by cooperation or coordinated
maneuvers, but by their own presence. The cen-
tral capture zone (CZ) and two additional no-escape
zones (NEZs) were the three regions into which they
divided the game space in their construction and
analysis, while in CZ or NEZs, the outcome of the
pursuers was guaranteed. Pierson et al. (2017) pro-
posed a distributed algorithm that guarantees cap-
turing multiple evaders by multiple pursuers in finite
time, which extends an “area minimization” based
on Voronoi tessellation of the environment. How-
ever, its success in capturing all evaders assumes that
all pursuers and evaders are in a bounded convex
environment.

Although the pursuer is faster than the evader in
this assumption, the evader generally has more agile
maneuvers and a smaller turning radius, which guar-
antees that they can apply some maneuvering strate-
gies to avoid capture by the pursuers. Li W (2017)
proposed a dynamic framework and effective escape
strategies from a bio-inspired perspective, which are
accomplished by evaders’ sudden maneuvers and by
controlling the scale of agile maneuvers. The escape
strategy fe(t) is described as follows:

fe(t) :=

{
d(t), ‖xe(t)− x1(t)‖ > c,

Rd(t), otherwise,
(7)

where d(t) := xe(t)−x1(t)
‖xe(t)−x1(t)‖ denotes the unitary

relative-positional vector from the position x1(t) of
the pursuer to the evader position xe(t), and c is a
threshold for the evader beginning to make an agile
maneuver. R is one of the constant matrices of Rl

and Rr.

Rl :=

[
0 −1

1 0

]
, Rr :=

[
0 1

−1 0

]
. (8)

Rld(t) denotes the sudden left turn maneuver, and
Rrd(t) represents the right turn maneuver. This is
distinct from the other modeling of escape strategies
as differential game problems. This study has an en-
lightening significance for revealing the natural laws
of biological groups.

The evader wants to extend the time before be-
ing captured as much as possible. If the evader’s goal
is to reach a specified destination, the escape strategy
needs only to ensure that the evader is not caught
before reaching the destination, rather than being
pursued for an indefinite period of time. On the
basis of the previously mentioned concepts, Selvaku-
mar and Bakolas (2022) proposed a method based on
min–max Q-learning in RL to compute the escape
strategy of an evader such that the slower evader
reached the specified destination, while avoiding be-
ing captured by multiple pursuers. To characterize
the salient features of the pursuit–evasion game, its
state space is represented using capture time param-
eters rather than position and velocity. This ap-
proach has its own limitations. It assumes that the
pursuer uses a relay pursuit strategy, which may not
be optimal for the entire pursuit process.

There are also some special situations, i.e., one
strong pursuer pursuing multiple weak evaders or ho-
mogeneous systems where gi > fj, but the number
of pursuers is smaller than the number of evaders
(n < m). In this situation, the evader may not
choose to escape but to use anti-attack behavior, or
even repel the pursuer. Zhang S et al. (2019a) pro-
posed an energy update model as in Eq. (5) and an-
alyzed the type of escape or anti-attack behavior of
the evader based on the energy between the pursuers
and the evaders. This is also the case in the active
target defense game, where the defender protects the
target from being captured by a superior attacker.
The cooperation strategy between the defender and
the target, based on the analysis of reachable re-
gions, was discussed in Garcia (2021), where these
two cooperated to avoid the target being intercepted
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by the attacker.

4.3 Weak pursuer group vs. strong evader
group

Overcoming strength with weakness is a very
topical problem of practical importance and research
value. In contrast to a strong pursuer group pursu-
ing a weak evader group, there is no pursuer speed
advantage, which eliminates the guarantee that an
evader can be captured in a pure pursuit and sus-
tained pursuit strategy. For weak pursuers pursuing
strong evaders, an efficient cooperative mechanism
is necessary to capture the evader. The drawback
of slow movement is offset by a cooperative strategy
that takes advantage of the number of the pursuers.
To describe the natural group chasing in a closed
boundary area, Janosov et al. (2017) proposed an
agent-based, bio-inspired approach. They analyzed
the characteristics of a pursuit strategy for scenarios
in which the pursuers pursued faster evaders. They
did not consider the attack capability of the pursuer
and evader, with the pursuer’s maneuverability Mp

smaller than the evader’s maneuverability Me. Ac-
cording to Eq. (6), we have gi < fi. Therefore, this
is “weak” pursuers chasing a “strong” evader. It was
found that pursuers acting alone or without coop-
eration had no chance of successfully capturing the
much faster evader. In addition, there is an opti-
mal group that captures evaders more quickly when
a soft, repulsive interaction force is added between
agents. Wang YD et al. (2020) proposed a learning-
based communication method to share internal co-
ordination information and improved the RL-based
collaborative multi-player pursuit algorithm, reduc-
ing the complexity of the algorithm’s implementa-
tion. The efficiency of the algorithm is shown in
a case where multiple pursuers pursue a superior
evader with the same speed but a smaller turning
radius. The pursuers can successfully capture the
superior evader in this case. The ability to scale up
this algorithm is a challenging research work.

To increase the chances of successfully captur-
ing the evader, the pursuers must not only approach
the evader quickly using maneuvering strategies, but
also rely on the advantages of numbers to encircle
the evader. A distributed pursuit algorithm for a
faster free-moving evader was proposed in Fang et al.
(2022), which consists of two parts: the encirclement
algorithm and the trade-off algorithm, where the en-

circlement algorithm enables the pursuers to quickly
form an encirclement as follows:

α̇i = ki (εi,i+1 − εi−1,i) , i = 1, 2, · · · , n, (9)

where αi denotes the polar angle, εi,i+1 is the cov-
erage angle of adjacent pursuers, ki > 0 is a sur-
rounding coefficient, and α̇ represents the pursuer
surrounding the evader counterclockwise.

The trade-off algorithm finds a balance between
forming an encirclement of evaders and rapidly ap-
proaching them for capture. The surrounding coeffi-
cient ki and hunting coefficient hi are represented in
the trade-off algorithm by designing trade-off coeffi-
cient βi, as shown in the following:

⎧⎪⎪⎨
⎪⎪⎩

ki =
Vi sinβi

ri |εi,i+1 − εi−1,i| ,

hi =
Vi cosβi

ri
,

(10)

where Vi =
√
‖vi,s‖22 + ‖vi,h‖22 denotes the pursuer’s

maximum speed. The surrounding direction vi,s and
the hunting direction vi,h are two projection compo-
nents of velocity Vi. βi is a concave function with
respect to the polar radius ri as follows:

βi (|εi,i+1 − εi−1,i| , ri) = π

2

(
1− e−δiγi

)
, (11)

where δi ∈ [0, 1] denotes the surrounding factor, and
γi ∈ [0, 1] is the hunting factor.

However, the research (Fang et al., 2022) needs
to satisfy the assumption that the pursuers should be
distributed based on equal angles around the evader
before the game starts. This implies that in addi-
tion to an effective cooperative strategy to overcome
strength with weakness, the initial spatial distribu-
tion of the pursuers has a critical impact on the suc-
cess of the capture. When the evaders are initially
distributed in this way, the pursuit–evasion problem
becomes a fishing game; i.e., the superior evader at-
tempts to pass the gap between the two pursuers
to avoid capture. Chen et al. (2016) proposed a be-
sieged state and a capturing state under encirclement
and provided an expression for the minimum num-
ber of pursuers required to guarantee capture. The
besieged status inequality (12) and capturing status
inequality (13) are described as follows:

ri,i+1(k) ≤ a [di(k) + di+1(k)] , (12)

ri,i+1(k) ≤ 2vpΔt, (13)
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where ri,i+1 denotes the distance between two adja-
cent pursuers, and k is the time step. a =

vp
ve

rep-
resents the speed ratio of the pursuer to the evader.
di is the distance between the evader and the ith

pursuer. Δt represents the length of one time step.
In addition, they found that the minimum num-

ber of pursuers nmin was related to the speed ratio
a:

nmin ≥
[

2π

arccos (1− 2a2)

]
=

[ π

arcsina

]
, (14)

where [·] is the least integer operator. Based on the
above expressions, they designed a cooperative pur-
suit scheme for the pursuers: besiege-shrink-capture.
This provides an excellent research idea for the de-
sign of capture strategies in multi-player collective
hunting.

In fact, most of the current studies have been
carried out under the premise that there is a closed
boundary environment or that the initial space of
the pursuer is evenly distributed around the evader.
Wang CY et al. (2022) developed a cooperative hunt-
ing strategy based on the idea of the Apollonius circle
for multiple pursuers pursuing a superior evader, in
which the pursuers capture the evader while main-
taining formation. Some necessary requirements for
the successful capture of a “strong” evader are clari-
fied, but they did not account for the effects of lim-
ited observation and measurement noise, whereas in
Ramana and Kothari (2017), an escape strategy for
high-speed evaders was proposed based on the same
idea. On the basis of this work, Vechalapu (2020)
proposed a trapping pursuit strategy to capture a
high-speed evader. Based on the Apollonius circle
principle, trapping pursuers were used to mislead the
evader into the trap. This approach is more effective
than the cooperative pursuit strategy because it ad-
justs the critical speed ratios and the capture time.

4.4 Equal-ability pursuit–evasion

The equal-ability pursuit–evasion problem is
similar to the game of two cars because both the pur-
suers and the evaders have the same speed and other
properties. The situation is probably the “fairest”
pursuit–evasion game. With identical dynamics and
external constraints, the ultimate success of cap-
ture or escape depends entirely on the corresponding
strategy.

There are few current studies on the equal-

ability pursuit–evasion problem, and the research
on these situations has concentrated on differential
game methods to find the capture zone and escape
zone in strategy space. Kothari et al. (2017) pre-
sented a cooperative strategy for multiple pursuers
to pursue an evader in a bounded connected domain,
where all pursuers and the evader had the same speed
and turning radius. By discussing the capture strat-
egy based on minimizing the safe-reachable areas for
holonomic systems and the pursuit guidance law,
an extension of non-holonomic system tracking algo-
rithms was developed. Bravo et al. (2020) discussed
the pursuit–evasion problem for two identical differ-
entially driven robots, which was the same case as
the game of two cars. Similarly, the strategy design
considered in this work is under non-holonomic con-
straints that both robots have motion constraints
and are not able to change orientation instanta-
neously. They exhibited cases where the evader can
always avoid capture when the barrier is closed. The
above studies are both based on qualitative differen-
tial strategies in differential games, where the corre-
sponding barriers are constructed to find the capture
and escape zones.

5 Future studies

Although great progress has been made in the
research of pursuit–evasion in group behavior, there
are still some problems to be solved.

5.1 Emergence mechanism and quantitative
metrics

Although some biological swarm behaviors have
been reproduced in artificial systems, there is still no
accurate explanation for the specific internal mech-
anism of emergent behavior. Individuals with sim-
ple intelligence and behavior in nature have complex
behavioral functions after forming a group. If the
specific internal mechanism is studied clearly, it can
better realize similar behavior in the design of artifi-
cial systems.

For emergent behaviors, corresponding quan-
titative metrics need to be proposed, to not only
better describe behaviors in biological systems, but
also quantitatively measure emergent mechanisms in
artificial systems. Whether it is the corresponding
emergence model or the corresponding quantitative
parameter, the basic mechanisms behind emergence
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should be revealed. Emphasis can be placed on
the analysis of weak emergent, non-emergent, and
strong emergent phenomena, as well as discussion
of necessary and sufficient conditions for the emer-
gence of emergent behaviors (Sturdivant and Chong,
2018). In this sense, seeking the intrinsic mechanism
of emergence and corresponding measurement meth-
ods is a critical issue. There is still a lack of inter-
pretability and measurability of the emergent mech-
anism when designing feasible artificial systems, so
any progress will have a strong promotional effect on
the group cooperation behavior of artificial systems.

5.2 Heterogeneous system design

Swarm behavior in nature often involves the in-
teraction of many independent individuals to pro-
duce complex functions (Rubenstein et al., 2014).
In artificial systems, for the purpose of achieving
more complex functions, an increase in the number
of agents is required. However, if homogeneous indi-
viduals with the same functional attributes are used,
it will lead to redundancy in task coverage (Parker,
1994). Agents with different attributes and func-
tions can make the assignment of tasks more dynam-
ically adaptable. Therefore, heterogeneous systems
will play an important role in MAS and MRS in
the future, and the increase of heterogeneous indi-
viduals in the system will enhance the robustness of
the entire swarm system. Moreover, considering the
consistency of the communication structure of the
swarm system network, the expansion algorithm of
the communication network is one of the challenges
(Hou et al., 2020).

5.3 Generalization of strategy

Most current pursuit–evasion strategies are
predicated on specific premises and necessitate the
satisfaction of specific initial conditions. The exten-
sion of pursuit–evasion strategies to general situa-
tions, not limited to a specific scenario, is a great
challenge for future research. Additionally, in an ac-
tual environment, there are many uncertainties and
multi-source disturbances. Therefore, it is of great
importance to improve the stability and robustness
of group decision-making for the reproduction of ar-
tificial group behaviors. The biologically heuristic
swarm intelligence algorithm has demonstrated su-
perior performance in solving optimization problems,

especially the swarm intelligence algorithms of fish
schools, bird flocks, and wolves, which provide a sig-
nificant reference for the formulation of MAS pursuit
and evasion strategies. With the development of arti-
ficial intelligence technology, the future expansion of
these swarm intelligence algorithms will require ex-
ploration of more general characteristics and mech-
anisms, and the combination of other advanced and
effective algorithms (Tang et al., 2021). Such en-
deavors will promote the development of relevant ar-
eas such as cooperative games and non-cooperative
games. Furthermore, interdisciplinary research in
multi-disciplinary fields such as control, gaming, bi-
ology, and communication may shed new light on the
cooperative control of swarm systems.

5.4 Uncertain pursuit speed

Many studies of the circumstances involving
pursuit and evasion make the assumption that the
pursuers move at a certain speed, which is not the
case in practice. Given the complexity of the ac-
tual environment, the pursuers’ speeds are uncertain
as a result of environmental factors such as terrain,
weather, and energy (Yan FH et al., 2019). There-
fore, it is crucial to research cooperative strategies
that account for the uncertain speed of the pursuer.
Meanwhile, we need to explore the bias introduced
in the pursuit strategy under speed uncertainty and
ensure that the success of the capture strategy is
not affected by speed uncertainty. Especially when
the speed of some of the pursuers is greatly reduced
by a lack of energy, designing effective strategies that
can coordinate pursuers with different energies to ac-
complish the task of capture is a challenging research
direction for the future.

5.5 Environmental feature prediction

The shape of the environment affects the dis-
tribution of individuals in the swarm, and differ-
ent environmental characteristics make individuals
form a discriminative distribution in the environ-
ment (Emmons et al., 2018). In the same way, the
distribution of individuals in a group can reflect the
characteristics of the environment. The environmen-
tal features are inferred by analyzing the formation
and density of the swarm system, and their distri-
bution is of great significance for the prediction of
surrounding environmental features. Compared with
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obtaining global information to model environmental
scenes, it is more convenient and efficient to obtain
unknown environmental information through local
perception among individuals and autonomous dis-
tributed observations.

The key questions of this study are divided
mainly into the following three aspects:

1. Determine the relationship between individu-
als’ behavior, environmental characteristics, and the
distribution of observable quantities.

2. Develop the appropriate prediction distri-
bution algorithm based on the determined relation-
ship. The challenge is to quickly and accurately pre-
dict the environmental characteristics based on the
known individuals’ behavior and the observed local
distribution (Dai et al., 2022). To improve system
robustness, the already developed aspects must not
be disturbed by individual faults and damages (Em-
mons et al., 2020).

3. The design of optimal network sensor cov-
erage in swarm systems is critical for reducing the
scope of local perception and the occupation and
consumption of computing resources (Singh et al.,
2021). There is a great correlation between the sen-
sor networks and the number of individuals in the
swarm systems. In addition, we need to explore the
application in large-scale swarm systems.

Analysis of the local autonomous behavior and
distribution of the group has a significant effect on
the judgment of obstacles and exits in the process
of individual movement. For random motion, the
denser area in the group may be more crowded,
which can predict the position of the exit through
the distribution observation of this position. The re-
lationships between the environmental features and
the distribution of individuals may have better guid-
ing significance for expanding the type of applica-
tion environment scene in the MAS. By predicting
environmental characteristics, the exit and the lo-
cation of obstacles can be found only through local
autonomous behavior analysis without global com-
munication. Therefore, the designed control strategy
can adapt to more random environments, especially
the environment where communication is lost and
the positioning sensor is damaged. This has impor-
tant application significance and makes the swarm
system more robust in adapting to complex environ-
ments, thus expanding the types of swarm intelli-
gence application scenarios in the future.

5.6 Cyber security

In pursuit–evasion problems, predators rely pri-
marily on vision to pursue their prey. The advance-
ment of artificial intelligence technology not only
enables predators to accurately identify prey, but
also makes prey deceptive. The prey uses the ad-
versarial sample to attack the predator’s pursuit al-
gorithm, resulting in misidentification by pursuers
and camouflage creation. Similarly, the deliberate
deception of information by internal cheaters can af-
fect the behavior of the entire system (Huang LN
and Zhu, 2022). In the MRS and MAS, the impact
of deceptive behavior of multiple individuals on the
overall system behavior needs in-depth research. In
addition to deception and camouflage, there are at-
tacks against multi-agent and multi-robot cyber sys-
tems (Ishii et al., 2022). These attacks may result in
leakage of system information or system failure, in-
creasing the risk to the entire system. The research
on cyber security is related to information security
and capture success rate in the pursuit–evasion sys-
tem. In the future, combining artificial intelligence
technology to study individual camouflage and de-
ception strategies may be one of the solutions to
optimizing pursuit–evasion strategies. In addition,
cyber security for communication and control sys-
tems is a crucial study topic to ensure dependability
of pursuit and evasion strategies.

6 Concluding remarks

Pursuit–evasion is a critical issue in swarm be-
havior, and it is also a multidisciplinary research
hotspot. In this paper, we reviewed the classi-
cal pursuit–evasion models and then discussed the
pursuit–evasion problem from the perspectives of
biological systems and artificial systems. We pro-
posed a taxonomy of swarm behavior according to
the characteristics of the swarm system and intro-
duced swarm behavior in biological systems and ar-
tificial systems. In artificial systems, we discussed
the application of relevant pursuing strategies from
three perspectives: strong pursuer group vs. weak
evader group, weak pursuer group vs. strong evader
group, and equal-ability group. Finally, we discussed
some key problems and future studies to promote the
development and improvement of pursuit–evasion in
swarm intelligence.
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Exploring the pursuit–evasion problem is a gen-
eralization of swarm intelligence in the MAS and
MRS. To realize the goal of intelligent hunting in arti-
ficial systems in the future, a breakthrough in design
is still indispensable for studying the emergent mech-
anism of swarm behavior and control theory meth-
ods, especially the design of heterogeneous swarm
systems, which will be a major potential direction
of future development. It is also essential to expand
the application scenarios for swarm systems and im-
prove the effectiveness of pursuit–evasion strategies
in practical situations because swarm systems re-
quire more reliability and security. Additionally,
encouraging the fusion of artificial intelligence and
swarm intelligence technology will result in novel so-
lutions to the pursuit-evasion problem.
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