Peng / Front Inform Technol Electron Eng

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Perspective:

2023 24(11):1513-1519 1513

Software development in the age of intelligence: embracing

large language models with the right approach

Xin PENG
School of Computer Science, Fudan University, Shanghai 200438, China

E-mail: pengxin@fudan.edu.cn

Received Aug. 8, 2023; Revision accepted Sept. 25, 2023; Crosschecked Oct. 26, 2023

https://doi.org/10.1631/FITEE.2300537

The emergence of large language models
(LLMs), represented by ChatGPT, has had a pro-
found impact on various fields, including software
engineering, and has also aroused widespread con-
cerns. To see a right way through the fog, we have
recently been discussing and contemplating a theme
of “software development in the age of LLMs,” or
rather “the capability of LLMs in software develop-
ment,” based on various technical literature, shared
experiences, and our own preliminary explorations.
Additionally, I have participated in several online in-
terviews and discussions on the theme, which have
triggered further insights and reflections. Based on
the aforementioned thinking and discussions, this
article has been composed to disseminate informa-
tion and foster an open discussion within the aca-
demic community. LLMs still largely remain a black
box, and the technology is still rapidly iterating and
evolving. Moreover, the existing cases reported by
practitioners and our own practical experiences with
LLM-based software development are relatively lim-
ited. Therefore, many of the insights and reflections
in this article may not be accurate, and they may
be constantly refreshed as technology and practice
continue to develop.

ORCID: Xin PENG, https://orcid.org/0000-0003-3376-2581
(© Zhejiang University Press 2023

1 Impact of large language models

The wave of enthusiasm surrounding ChatGPT
(based on GPT-3.5) has yet to subside when sud-
denly GPT-4 made its debut, bringing about a com-
prehensive impact across all domains (OpenAl, 2023;
Zhao et al., 2023). In the field of software engineer-
ing, both the academic and industrial communities
have been astounded by the all-encompassing capa-
bilities of LLMs in software development. Numerous
technical experts have enthusiastically harnessed the
power of LLMs to tackle a myriad of development
tasks. These tasks encompass requirement analy-
sis, software design, code implementation, software
testing, code refactoring, defect detection, and re-
pair, spanning each stage of the software develop-
ment process illustrated in Fig. 1 (Dou et al., 2023;
Du et al., 2023; Hou et al., 2023; Liu et al., 2023;
Wang et al., 2023; Yuan et al., 2023a, 2023b; Zheng
et al., 2023). Some have even attempted end-to-end
software application development using LLMs (Wu
et al., 2023). The results have been nothing short
of astonishing, to the extent that many have ex-
claimed, “programming is about to be terminated”
or “programmers will be laid off in large numbers.”
Consequently, there have been numerous assertions
of a “new era in software engineering;” some call it
Software Engineering 3.0, while others refer to it as
Software 2.0, signifying that software development is
poised to enter a fully intelligent new era.


www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

1514

Design

Development

Maintenance

Fig. 1
life-cycle

Overview of the software development

The powerful capabilities of LLMs in software
development are undoubtedly undeniable, and their
disruptive impact on the field can be foreseen. In
other words, it is certain that LLMs will drive soft-
ware development into a new era of intelligence.
However, what remains uncertain is what this new
era will look like. What kind of changes can be ex-
pected in the foreseeable future regarding software
development approaches? Which software develop-
ment roles will disappear, and which new roles will
emerge? Both the academic and industrial commu-
nities are perplexed and anxious because the road
ahead is unclear. For instance, Matt Welsh, former
professor of computer science at Harvard University
and director of engineering at Google, predicted that
generative artificial intelligence (AI) will lead to the
end of programming within three years, leaving only
two roles for humans in software development: prod-
uct manager and code reviewer (Welsh, 2023). If
his prediction comes true, many research directions
and related job positions in the current field of soft-
ware engineering, such as software architecture and
software maintenance, would become unnecessary.

2 Calm reflection

ChatGPT (and other LLM-based tools) has
been widely accepted as an effective intelligent as-
sistant in various software development tasks (Hou
et al., 2023). This reminds me of the research I con-
ducted 15 to 20 years ago on software reuse and soft-
ware product lines. While achieving local and par-

Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519

tial reuse through code copy—paste and application
program interface (API) calls is relatively straight-
forward, the real challenge lies in systematic reuse-
based software development that takes into account
the requirements and design (as promised by soft-
ware product lines). Similarly, using ChatGPT for
intelligent assistance in local software development
tasks, such as code snippet generation and techni-
cal queries, is not difficult. The real challenge lies
in harnessing it for end-to-end, systemic generative
development.

In this regard, some industry experts have ex-
plored this area and shared their experiences on var-
ious platforms. From these explorations, we can ob-
serve that for common small-scale software appli-
cations like Tetris or Snake, ChatGPT can gradu-
ally generate complete executable programs through
natural language interactions when properly guided,
producing code with reasonably high quality. This
leads to the question of whether this end-to-end gen-
erative software development capability can be ex-
tended to larger, more complex enterprise software
projects. It reminds me of Brooks’ discourse on
the fundamental difficulties (essence) and acciden-
tal difficulties (accident) in software development in
his classic work “No Silver Bullet Essence and Acci-
dents of Software Engineering” (Brooks, 1987). The
essence of difficulties lies in conceptualizing complex
abstract software entities, while the programming
language representation of these entities is only an
accidental difficulty. Most of the progress in software
engineering over the past few decades has been in
dealing with accidental difficulties, while fundamen-
tal difficulties (primarily centered around require-
ments and design) have seen little advancement.

End-to-end generative software development
clearly requires overcoming the two major challenges
of requirement analysis and software design. How ca-
pable is ChatGPT in these areas? Based on the cur-
rent shared experiences, it appears that ChatGPT
does possess some analysis and design capabilities,
including:

1. automatically generating detailed require-
ments based on high-level requirements and orga-
nizing them into items,

2. generating standardized representations of
requirements, such as unified modeling language
(UML) sequence diagrams,

3. automatically generating design structures



Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519

consisting of multiple classes,

4. incrementally generating application code
based on developer prompts and understanding the
existing code structure,

5. automatically refactoring code based on gen-
eral design principles to enhance comprehensibility
and scalability, and

6. generating database schemas and correspond-
ing SQL statements based on requirements.

Can ChatGPT really perform analysis and de-
sign in software development? Based on the practical
experiences shared by various experts, it is not accu-
rate to say that it cannot. However, the attempted
software applications are relatively small in scale
(e.g., two or three hundred lines of code) with simple
requirements (e.g., Tetris games and library manage-
ment) or even readily available code and documents
for similar applications online. In addition, to enable
ChatGPT to generate complete code through dia-
logic interactions, developers need to possess strong
communication and guidance skills, consistently ex-
pressing requirements clearly, decomposing develop-
ment tasks into a series of well-defined steps, and
guiding ChatGPT accordingly. For example, in a
case shared by an industrial expert (https://mp.
weixin.qq.com/s/sUMt9oy ASUU0eO9j1CurEw), the
implementation process of a simple Tetris game was
broken down into 10 tasks: create a game framework,
replace the console with a graphical user interface
(GUI), display an L-shaped block on the GUI, move
the block and perform collision detection, rotate the
block, let the block fall and create a new block, check
for game over, add a line elimination feature, include
all types of blocks, and add scoring capability. This
task breakdown reflects a very rational process of
incremental and iterative development, where sub-
sequent tasks depend on the completion of previous
tasks, and each task’s result can be confirmed (e.g.,
the program is runnable). Although this task break-
down was also inspired by ChatGPT’s output, devel-
opers still need to grasp the overall iterative process,
and design considerations are incorporated. Further-
more, developers need to continuously check Chat-
GPT’s output, promptly identifying errors and exe-
cuting corrections. Particularly, in the requirement
analysis process, ChatGPT’s requirement refinement
relies mainly on common sense or general features
of certain software, which may overlook some criti-
cal requirements, and innovative or personalized re-

1515

quirements need to be supplemented by developers.

Let us discuss some possible limitations of the
current application of LLMs in the field of software
engineering, considering their training approach and
the essence of software development. These limita-
tions are not specific to any particular stage; instead,
they span various stages in the software development
lifecycle, including planning, design, development,
testing, deployment, and maintenance.

1. Scale and complexity of software development
may limit the capabilities of LLMs from both human
and machine perspectives.

First, the generative development process heav-
ily relies on developers’ step-by-step guidance of the
LLM, which requires developers have a complete and
in-depth understanding of the entire software design
and implementation process. Only then can they
break down tasks in a reasonable manner and guide
the LLM to generate code progressively. When a
software project reaches tens of thousands, hundreds
of thousands, or even millions of lines of code, the
human brain may no longer be able to fully grasp
the entire code generation process. Additionally, for
large-scale complex software systems, task break-
down and implementation are not strictly sequen-
tial; instead, they involve multiple parallel threads
with continuous forking and joining. In traditional
software development, developers need to decom-
pose large-scale complex systems into multiple lay-
ers, with different teams and individuals responsible
for different levels and sections of work. The de-
velopment team needs to communicate, coordinate,
and adjust design plans as needed. This process
is challenging to replace with LLMs. Furthermore,
LLMs themselves have limitations in their ability
to fully comprehend the global development pro-
cess of complex systems. For instance, a compara-
tive study by our team (https://mp.weixin.qq.com/
s/GMMjF9sDv0c31AoRTXSIYA) found that even in
the small-scale software generation process, Chat-
GPT might “forget” previously generated code (e.g.,
inconsistent method names or method return val-
ues). This suggests that LLMs may have difficulty in
generating code for large-scale software implementa-
tions. Similarly, while LLMs can excel in generating
unit tests for individual functions, their performance
in generating system-level tests for complex systems
is less than ideal. Finally, the existence of manual
code review underscores the ongoing significance of


https://mp.weixin.qq.com/s/sUMt9oyASUU0eO9jlCurEw
https://mp.weixin.qq.com/s/sUMt9oyASUU0eO9jlCurEw
https://mp.weixin.qq.com/s/GMMjF9sDv0c31AoRTXSIYA
https://mp.weixin.qq.com/s/GMMjF9sDv0c31AoRTXSIYA

1516

software design and code quality. Even the most op-
timistic estimates acknowledge that code generated
by LLMs still requires human review. As a result,
for large-scale software systems, principles such as
modularity, information hiding, separation of con-
cerns, and code comprehensibility remain essential.
Otherwise, developers responsible for reviewing the
code may struggle to understand the code generated
by LLMs, and become bottlenecks in the software
development process.

2. LLMs may lack abstract thinking capabilities
and may exhibit limitations in precision.

Software design, especially high-level architec-
ture design, often involves complex abstract think-
ing. Some design abstractions have clear layer-by-
layer refinement, such as gradually refining inter-
face designs into concrete implementations.
ever, there are also design abstractions that involve

How-

global system abstractions, often including complex
trade-off decisions, such as selecting software archi-
tecture styles and patterns. These complex design
abstractions may not be the strong suit of LLMs.
The training approach of LLMs makes them profi-
cient in generating relevant content based on flat-
tened context and prompt information. They can
achieve creative and associative effects through fine-
grained (e.g., word-level) flexible combinations, but
they may lack the corresponding comprehension and
application abilities for extensive abstract design de-
cisions. Additionally, the probabilistic nature of
LLMs conflicts with the precision sought in soft-
ware development. Therefore, while LLMs can of-
ten achieve 80%-90% accuracy in local coding tasks,
they require developers to promptly identify issues
for alert, correction, or even direct modification and
supplementation.

3. In software requirements and design, there
exists a significant amount of tacit knowledge that is
difficult to capture.

The success of LLMs largely comes from learn-
ing existing Internet text corpora (including code)
and professional books and materials. In contrast,
much of the knowledge related to software develop-
ment requirements and design does not have explicit
written records. It might exist in the minds of de-
velopers (including architects), on whiteboards, or
within discussions from project meetings. Even if the
development team provides detailed requirements
and design documents, it is generally understood

Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519

that not all the important information about require-
ments and design can be found in the documents.

Furthermore, there are often numerous compar-
isons and debates concerning requirements and de-
sign decisions, and these decision-making processes
are typically not explicitly recorded. While one could
argue that LLMs can learn requirements and design
knowledge given sufficient data, these tacit knowl-
edge aspects are challenging to capture, and meeting
the prerequisite of sufficient data might be difficult.

Even if we try to record such information
through photographs or meeting minutes, its high
level of abstraction or ambiguity (e.g., the meaning
of a certain element in a design and its impact on
code implementation) might make it hard for LLMs
to learn and apply this knowledge.

4. There are doubts about the long-term mainte-
nance and support capabilities of LLMs for complex
software systems.

Enterprise software systems generally have long
lifecycles, during which they may undergo modi-
fications for various reasons such as changing re-
quirements, evolving usage environments, fixing bug,
improving performance, and customizing for differ-
ent clients. These software maintenance and evolu-
tion processes entail many software engineering chal-
lenges and issues.

To achieve intelligent development support for
software systems, LLMs cannot be a one-time so-
lution (i.e., only responsible for initial code gener-
ation). Instead, they need to be able to handle
various tasks related to functionality extensions and
code modifications throughout the extended software
maintenance and evolution processes. This requires
the LLMs understand the various requirements and
design solutions already implemented in the code, as
well as the precise correspondence between require-
ment /design elements and code elements. Addition-
ally, the models need to be aware of and manage
the interaction relationships between code modifica-
tions and different parts of the system (e.g., direct
or indirect impacts caused by modifications). Fur-
thermore, the code generated by LLMs may contain
many repetitive segments, and the long-term mainte-
nance, especially consistency modifications, of these
code clones could become burdensome.



Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519 1517

3 Embracing large language models
with the right approach

The remarkable performance of LLMs in some
programming tasks has brought excitement to many,
and it has also fostered optimistic prospects for the
disruption of software engineering and the realization
of comprehensive generative software development.
However, I believe that when discussing the soft-
ware development capabilities of LLMs, we must first
differentiate the types of software being developed.
For small-scale software applications or even appli-
cations suitable for end-user programming tasks, it
is entirely possible to use LLMs for end-to-end code
generation. However, for large-scale and complex
software systems, achieving end-to-end code gener-
ation based solely on the given requirements is not
yet feasible.

Embracing LLMs is undoubtedly a correct and
even necessary direction for software enterprises to
improve their quality and efficiency. In fact, if in-
formation security risks are not a concern, directly
using LLMs like ChatGPT in the enterprise develop-
ment process can significantly enhance development
productivity and quality. However, to achieve com-
prehensive and systematic software intelligent devel-
opment, there is still a lot of foundational work to
do, and there are several key issues that need to
be explored. Here are some related considerations
and suggestions, corresponding to the four limita-
tions outlined in Section 2.

1. Solidly building a digitized and knowledge-
driven foundation for software development.

Software development provides digital solutions
for various industries, yet the level of digitization
within software development itself is often quite low.
For instance, common software assets such as public
components are not effectively organized or reused,
and the phenomenon of reinventing the wheel (re-
peatedly implementing the same functionality) is
widespread. The cause and effect of each code mod-
ification are often unclear, and development tasks
that trigger code changes (e.g., feature implemen-
tation or bug fixes) and the impact of code modifi-
cations (e.g., introducing code issues or changes in
metrics) lack systematic records. Additionally, the
description of requirements and design knowledge
embedded within the software lacks explicit docu-
mentation and clear mapping to the code, leading

developers to frequently rethink the same problems.
In such cases, expecting LLMs to directly provide
transformative and comprehensive intelligent devel-
opment experiences might be unrealistic. The cor-
rect approach may be to solidly build a digitized and
knowledge-driven foundation for software develop-
ment, and then to combine it with LLMs to achieve
more systematic intelligent development support.

For instance, this digitized and knowledge-
driven foundation could involve creating a library of
domain-specific common components and establish-
ing a descriptive system, implementing a compre-
hensive tracking and management system for soft-
ware code clones and the software supply chain,
establishing tracking relationships among develop-
ment tasks (e.g., feature implementations and bug
fixes), developers, and code submissions and mod-
ifications, and establishing and maintaining high-
level design descriptions and their mapping to code
units. These digitized and knowledge-driven efforts
can themselves enhance the quality and efficiency of
software development. LLMs can provide technical
and domain-specific knowledge to support the dig-
itization and knowledge-driven aspects of software
development, while also serving as a powerful means
to integrate information and knowledge within these
digitized and knowledge-driven platforms.

2. Placing greater emphasis on fundamental
software engineering capabilities such as require-
ments, design, and validation.

I agree with the viewpoint expressed by
Bertrand Meyer in his blog post at Communications
of the ACM (Meyer, 2023). He suggested that LLMs
like ChatGPT will not bring about the end of pro-
gramming but instead revive some good old main-
stays of software engineering, such as requirement
analysis, precise specification, and software valida-
tion (including dynamic testing and static analy-
sis). These traditional software engineering tech-
niques have the potential to rejuvenate in the era of
LLMs, but it may require careful consideration that
how to integrate them organically with data-driven
LLM technologies. As mentioned earlier, there is also
a need to strengthen the digitized and knowledge-
driven infrastructure in areas such as requirement
analysis, design, and testing.

3. Exploring an intelligent interactive engine
that effectively integrates LLMs, developers, and
various tool capabilities.



1518

The current situation in the field of software
development is similar to the challenges addressed
by Gartner’s recent promotion of hyperautomation.
There are many automation tools (such as debugging
and testing tools, compilation and building tools,
and code static analysis tools) that have formed
rich repositories of software artifacts and processes
(such as general component libraries, open-source
code repositories, software development online Q& A
systems, defect tracking systems, and version man-
agement systems). However, the problem is how
to seamlessly integrate these automation capabili-
ties and resources into an intelligent experience in
the entire process with the support of Al technology.

For software development, another important is-
sue is how to organically integrate the capabilities of
humans (developers) and machines (LLMs and var-
ious tools) to achieve efficient human—machine col-
laboration. As mentioned before, the role of LLMs
in generative software development is closely related
to the interaction and guidance abilities of humans.
Additionally, human experience plays a significant
role in high-level decision-making and code review
processes.

Therefore, a systematic intelligent development
process should not rely solely on the interaction
abilities between developers and LLMs. Instead,
it should pursue the establishment of an intelli-
gent interaction engine capable of unifying and ef-
fectively integrating the capabilities of LLMs, de-
velopers, and various tools. For example, relying
on the next-generation integrated development envi-
ronment (IDE), a unified developer portal can use an
intelligent interaction engine to understand the cur-
rent development tasks and progress. Based on this,
it can flexibly schedule and use the generative ca-
pabilities of LLMs (such as refining requirements or
generating code segments), existing digitized infor-
mation and knowledge (such as code dependencies,
general components, and software design decisions),
various tool capabilities (such as running code static
analysis or automated testing, querying relevant de-
fect reports, and submitting new defect reports), and
developers’ subjective judgments (such as making re-
quirements and design decisions and reviewing the
results generated by LLMs).

A prominent feature of this process is that the
intelligent interaction engine takes the lead, com-
bining developers’ experiential judgments with the

Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519

capabilities of various tools and LLMs in an organic
manner, thus achieving a highly smooth, intelligent,
and automated development process. Additionally,
the intelligent interaction engine needs to manage
and switch session states and contexts during the
human-machine interaction process between devel-

opers and LLMs.

Furthermore, the intelligent interaction engine
should support interactive exploration with LLMs
in a “multi-threaded” manner and enable the on-
demand splitting (fork) and merging (join) of these
exploration threads. In this process, the intelligent
interaction engine needs to manage and switch ses-
sion states and contexts effectively.

4 Conclusions

Embracing LLMs is definitely a correct and even
necessary direction for software enterprises to im-
prove quality and efficiency. However, achieving sys-
tematic and comprehensive intelligent software de-
velopment still requires careful consideration and
there is much fundamental work to do.
terprises, solidifying the digitization and knowledge

For en-

accumulation of software development, as well as
the fundamental capabilities of software engineer-
ing such as requirement analysis, design, and vali-
dation, remains crucial and is also a basic condition
for achieving higher levels of intelligent development.
For academic research, there is still much work to do
in the direction of systematic and comprehensive in-
telligent software development. This also requires
us have a deeper understanding of the complexity
of software systems and software requirements and
design, based on understanding the capabilities of
LLMs.

Compliance with ethics guidelines
Xin PENG declares that he has no conflict of interest.

References

Brooks FP Jr, 1987.
dents of software engineering. Computer, 20(4):10-19.
https://doi.org/10.1109/MC.1987.1663532

Dou SH, Shan JJ, Jia HX, et al., 2023. Towards understand-
ing the capability of large language models on code clone
detection: a survey. https://arxiv.org/abs/2308.01191

Du XY, Liu MW, Wang KX, et al., 2023. ClassEval: a
manually-crafted benchmark for evaluating LLMs on
class-level code generation.
https://arxiv.org/abs/2308.01861

No silver bullet essence and acci-



Peng / Front Inform Technol Electron Eng 2023 24(11):1513-1519 1519

Hou XY, Zhao YJ, Liu Y, et al., 2023. Large language
models for software engineering: a systematic literature
review. https://arxiv.org/abs/2308.10620

Liu JW, Xia CS, Wang YY, et al.,, 2023. Is your code
generated by ChatGPT really correct? Rigorous eval-
uation of large language models for code generation.
http://arxiv.org/abs/2305.01210

Meyer B, 2023. Al does not help programmers. Commun
ACM, early access.

OpenAl, 2023. GPT-4 technical report.
https://arxiv.org/abs/2303.08774

Wang JJ, Huang YC, Chen CY, et al.,, 2023. Software

testing with large language model: survey, landscape,
and vision. https://arxiv.org/abs/2307.07221

Welsh M, 2023. The end of programming. Commun ACM,
66(1):34-35. https://doi.org/10.1145/3570220

Wu QY, Bansal G, Zhang JY, et al., 2023. AutoGen: en-
abling next-Gen LLM applications via multi-agent con-
versation.
https://arxiv.org/abs/2308.08155

Yuan ZQ, Liu JW, Zi QC, et al., 2023a. Evaluating
instruction-tuned large language models on code com-
prehension and generation.
https://arxiv.org/abs/2308.01240

Yuan ZQ, Lou YL, Liu MW, et al., 2023b. No more manual
tests? Evaluating and improving ChatGPT for unit test
generation. https://arxiv.org/abs/2305.04207

Zhao WX, Zhou K, Li JY, et al., 2023. A survey of large
language models. https://arxiv.org/abs/2303.18223

Zheng ZB, Ning KW, Chen JC, et al., 2023. Towards an
understanding of large language models in software en-
gineering tasks. https://arxiv.org/abs/2308.11396

Xin PENG is Professor and Deputy
Dean of School of Computer Science at
Fudan University, China.
his PhD in Computer Science from Fu-
dan University in 2006. He is Deputy
Director of CCF (China Computer Fed-
eration) Technical Committee on Soft-
ware Engineering. He is Co-Editor-in-
Chief of Journal of Software: Evolution
and Process and serves on the editorial boards of reputable
journals, such as ACM Transactions on Software Engineering
and Methodology, Empirical Software Engineering, and Chi-
nese Journal of Software. His research interests include intel-
ligent software development, cloud native and artificial intel-
ligence for IT operations (AIOps), and software development
and testing for smart vehicle. His works won the Best Pa-
per Award of ICSM 2011, the ACM SIGSOFT Distinguished
Paper Award of ASE 2018/2021 and ICPC 2022, the IEEE
TCSE Distinguished Paper Award of ICSME 2018,/2019/2020
and SANER 2023, and IEEE Transactions on Software En-
gineering Best Paper Award for 2018.

He received




	Impact of large language models
	Calm reflection
	Embracing large language models with the right approach
	Conclusions

