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Abstract :  In this paper, the authors present the results of their study on the scheme of reconstructing the 
atomic wave function by using a standing wave laser beam. The scheme effectively avoids the initial random 
phase problem of the running light wave of lasers. The paper presents the relation between measured data and 
the atomic wave function, whose reconstruction procedure is also analyzed. 
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INTRODUCTION 

The quantum state is an important concept in 
quantum mechanics and other related fields in- 
cluding quantum optics, atom optics, and the 
physics of trapped particles. In recent years,  
people devoted much time to produce various 
quantum states, and paid much attention to the 
problem of how to effectively measure a quantum 
state (Weigert ,  1996; Jones,  1994; Raymer et 
al. , 1994) ,  because a quantum state is not as 
simple to observe as the state of a classical sys- 
tem, and to synthesize a quantum state requires 
suitable methods to probe it, one of which is re- 
construction of the complete information encoded 
in a quantized system. The reconstruction of a 
quantum state not only has great significance in 
theory, but had also been achieved in experim- 
ents to reconstruct the vibratory states of a single 
ion (Bardroff et al. , 1996) and a diatomic mol- 
ecule (Dunn et a l . ,  1993) ,  and to reconstruct 
the quantum states of single atoms in the physics 
of a trapped particle (Leibgried et a l . ,  1996) .  

There were several methods proposed to mea- 
sure quantum states of light and quantum states 
of matter. For instance, the tomographic method 
(D'Ariano et a l . ,  1995; Vogel et a l . ,  1989) is 
a main method based on a set of probability dis- 
tributions for a position observable, and is suit- 

able for both kinds of wave functions of quantum 
states of light and matter. The endoscopy method 
(Bardroff et a l . ,  1996; Bardroff et a l . ,  1995) 
makes use of the excitation statistics of atoms 
that have interacted with the cavity field to re- 
construct the quantum state, while the atomic 
deflection method ( Herkommer et a l . ,  1992 ) 
makes use of the momentum distributions of at- 
OITIS. 

In the reference (Freyberger et a l . ,  1997) ,  
an interferometric method was proposed to probe 
the atomic wave function. This method has many 
advantages such as mathematical simplicity and 
experimental feasibility. The scheme consists of 
two counter propagating lasers 1 and 2 ,  which 
locate at z = 0 and z = 11 respectively. They in- 

teract resonantly with a beam of two-level atoms 
and their interaction regions are of the same 
length a .  The relative phase between them is 
controlled by a phase shifter. 

In order to obtain the full information of the 

interference term xF* ( x ,  T)  xF ( x - ~tx, T) in 
this scheme, it was proposed to measure a set of 
four position distributions of atoms on the 

7l" 
screen, w(x,zXx,~o), with ~ = 0 , ~ - ,  rr, and 

3____~ the variation of ~ is achieved with the help of 
2 

the phase shifter between laser beams 1 and 2. 
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An important assumption in the reference is that 
the initial phase a0 of the running light wave of 

the laser is 0. But if the initial phase a0 in Eq.  

(2A)  (Freyberger et a l . ,  1997) is not omitted, 
then the Equation ( 3 )  should contain the factor 
a0,  and the ~ in Eqs. ( 5 )  and ( 1 0 )  should 

contain the initial phase a0 as well. Because the 

a0 is completely random for each of the indepen- 

dent four times' measurements,  the ~p cannot be 
7r 37r 

determined to be 0,  ~-,  rr, and -~- .  

Since it is needed to extract the whole irrfor- 
matioa on the atomic wave, especially on the 
phase information, and to exclude from the mea- 
sured data the background which is not related 
with the interference term, it is unavoidable to 
carry out the independent measurements for sev- 
eral times, and then to analysis the data obtained 
from the measurements.  Therefore, to solve the 
random problem of the initial phase seems very 
important to the present measurement scheme 
(Liu et a l . ,  2000) .  

Note that in a standing wave of laser beam, 
the initial phase is actually determined by the in- 
tersection position of atomic flow and laser 
beam, such as at the wave valley or node, and 
this initial phase does not change with time. 
Through adjusting the intersection position at 
which the atomic flow traverses the laser beam, 
one may adjust the phase angle a of the standing 
wave field expressed as sin 2 (kx  + a ) .  It is wor- 
thy to consider that the atomic flow interacts with 
a standing wave of laser beam. 

In this paper,  we will discuss this standing 
wave scheme as an improvement to the scheme in 
the reference (Freyberger et a l . ,  1997).  

STANDING WAVE METHODS 

We consider the two-level atom of mass m 
moving in the z direction at a velocity much 
higher than any velocity component in the x di- 
rection, that is, its total momentum ~P0 is sup- 
posed to be much larger than any transverse mo- 
mentum component in the x direction (Freyberg- 
er et a l . ,  1997).  The atomic beam is scattered 
elastically along a standing wave laser, and each 

/i2p~ We solve atom has constant energy E0 = 2m " 

the scattering problem for the stationary incident 
atomic wave at z = z0 : 

l aI~(X,Zo,t)> = e x p ( -  iEo t / t i ) [  I 2 ~  ' "  

( p ,  z0 )exp(  ipx ) I g} 

+ ~ 2 - ~ e ( P , z o ) e x p ( i p x ) l  

e)]  ( I )  

where ~s (e ) (P ,  z0) is the wave function in mo- 
mentum representation. The interaction with a 
standing wave laser of wave vector k in the re- 
gion, z0 ~ z ~ z0 + a ,  is governed by the Ham- 
iltonian: 

h 2 
/_/ = ~_~m(jO= + p2)  _ e ( z  - Zo)@(Zo + a 

- z )hAs in2 (ke  + a ) ( # _ +  # + ) ,  (2 )  

where the momentum operator for the x degree of 
8 

freedom is jO = - i ~xx and the one for the z de- 

gree of freedom is p,  = - O--z; two Heaviside 

functions | switch the interaction on and off; X 
is the coupling constant of a.tom and field. #_ 

and 8 + are the Pauli spin operators describing 
transitions between the atomic states, and a can 
be changed by shifting the intersection position 
of the atomic beam and the standing wave laser. 

In the interaction region the atomic wave can 
be generally expressed as: 

I xr2"(x ,z , t )  ) = e x p (  - iEot/t i  ) x [ f 2ff~ s �9 

( p , z  )exp[ ip, (p  )(  z - Zo)]" 

exp[ i p , ( p ) ( z  - Zo) ]exp( /px) 
I e> 3, (3 )  

Since the scattering process is elastic, then 

the total energy Eo ~-- h Z pg l2m = ( p2 + p~ ) 

will remain constant, where the longitudinal mo- 
mentum p, = p, ( p ) .  

Substituting Eq. ( 3 )  into the Sehr~ inge r  
equation: 

8 
ih~-~ I a/t > = /-/ I>, (4 )  
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we get the coupled equations: 

ivo ~ r  a 1 a, , (P '*)  = - ~ { r 1 6 2  

-2k , z )exp(  i2a) + r  

+ 2 k , z ) e x p ( -  i 2 a ) ] } ,  (5) 

ivo ~ ( p , z ) =  Z 1 

- 2 k , z ) e x p ( i e a )  + Cs(P 

+ 2 k , z ) e x p (  - i 2 a ) ] } ,  (6)  

where v0 is the velocity of the atomic flow; if 2k 
is a small quantity in comparison with p ,  some 
approximation is adopted (Freyberger et a l . ,  
1997)- pz(p + 2 k ) ~ p : ( p  - 2k) . . .~p:(p)~ 
Po ; and since Cg ( p ,  z ) and r ( p ,  z ) are the 

a2 r  
slowly varying functions of z,  then Oz---- ~ 

32 
~o and 5~r  =o 

Then we have 

32 _ ( a ) 2 { 3 r 1 6 2  
a~ -~r ( p ' z )  = 2v0 

- 2 k , z ) e x p ( i Z a )  + Cg(p 
1 

+ 2k ,z )exp(  - iZa ) ]  + ~-[r  

(p  - 4 k , z ) e x p ( i 4 a )  + Cg(p 

+ 4 k , z ) e x p ( -  i 4 a ) ] } ,  (7) 

and 

8 2 

bz 2 r (p 
, . )  = _ ( ~_h_)2 {_~r  ~ ~) _ [ r  

2v0 
- 2k,z)exp( i2a) + r 

1 
+ 2 k , z ) e x p (  - i 2 a ) ]  + ~ - [ r  

(p -4k , z )exp(  i4a) + r 

+ 4 k , z ) e x p (  - i 4 a ) ]  }. (8)  

Note that Eqs. ( 7 )  and ( 8 )  have similar 
forms, for simplicity, in the following derivation 
we omit the subscript g (  e ) :  

Let a = 0, have 

__o 2 , az2r ) = _  ( ) 2 r  + 4k,z) (2k)4  

(9) 

a = ~-, have 

63 2 
3z2r  = - 0 2 { 4 r  + 2 # ' ( p  + 2k ,  

z ) ( 2 k )  2 + 1r  (p  

(2k)4} ,  

a = g ,  have 

32 
8z2r  = - g 2 z { r  + i 2 r  

1 (2k)  - # ' ( p , z ) ( 2 k )  2 - ~-" 

r ( p ,  z) (2k)4  } , (11) 

3rr have 

02 
3z2r  = - D2{ r  - i2r  

+ 4 k , z ) "  

(10) 

(2k)  - # ' ( p , z ) ( 2 k )  2 

- l r  (12) 

_ A and Ct ~ r are the first to 
9 where s _-- 2v0 

fourth order difference derivative of r ( p ,  z ) with 
respect to the parameter p in the difference step 
of 2k,  for instance, r162 - r 
(p - 2k ,  z ) ] / ( 2 k ) .  Because 2k is a small 
quantity, in the following solution to Eqs. (9)  
through ( 1 2 ) ,  we omit those terms containing 
higher order small quantities such as ( 2 k )  2 and 
(2k)4 .  We obtain the expression of the wave 
function on a screen at z = l ,  when a = O, 

IXF(x,l,t)> =exp(  - iEot/h ) { I 2-~ Cs (p,~o) 

exp[ ~o, (p)Z + 0~] + ~-~f 
4o. 
2rr 

r 1 - 5 ( r  (p +2k ,zo)  + 
r  - 2 k , z o ) ) ]  x exp[/pz (p) l  
+ /px]} I g> + exp( - iEot/ti) 

t I + 
1 

(r (P + 2k,zo) + Cs (P - 2k, 
~o))]~q~E/p, (p)t + ~ ] i l  ~>. 

(13) 
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Assume that atoms are initially in the ground 
state, i . e . ,  r  r 1 6 2  

p2 
Substituting Pz ( P ) = ~ - p2 .~ Po - 2po ' p~ 

(p  + 2 k )  ~ P 0  - ( p  + 2 k ) 2  2p0 , and p.. ( p  - 2 k )  

( p  - 2 k )  2 . 
m t o E q .  ( 1 3 ) ,  we have -~ Po - 2po 

I g r(  x ,  1, t ) > = exp( - iEo t / h  ) exp (  ipo 1) x 

{ 1 a t r ( x , T )  l g  > 
[1 + O 2 a 2 ]  1 

E2a 
+ [1 + g ' 2 2 a 2 ]  / • [~T'r(x' T)  

1 
- ~ - [exp[  i ( ~  - 2 k x ) ] g r ( x  

+ 2zkx, T) + exp[ i( 

+ 2kx)  ] g r ( x  - 2 z S x ,  T ) ] ]  

l e } l ,  (14)  

4k  21 kl ml 
where q~_= - 2p~- 'z~x = , T =  , and 

Po /ipo 

a F ( x ,  T) f 2d-~r ( p ) e x p (  ipx - i  ~f f -T)  a m  " 

The probability distribution for the position of 
the atoms reads: 

w (~ (x  ,ZXx, T) = 
g.2 2 a 2 

I g r ( x ,  T) 12 + 
4(1 + 02  a 2 ) 

[ I a/t(x + 22~c, T) I z 

+ l a F ( x - 2 z S x , T )  l 2] 

g.2 2 a 2 

+ 2(1 + O2a  ~Re{ ei4kx'tT2r* " 

(x  + 2zLx, T)gZ(x -2zkx ,  T) 

- X~* ( x ,  T ) [ e  i (9 -2a)  aft .  

( x + 2Z~x , T )  + e i(~+ 2kx) xI- t" 

(x - 2zSx, T ) ] } .  (15) 

7r 
In the same way, when a = - ~ ,  we have 

I aF (x ,  l ,  t ) )  = e - iGt/~e~ot { cos(2g'2a ) g r ( x ,  T) I 

I 
g )  - -~ isin(Zf2a) • 

F ~:(  x ,  T) + 1 [ ei(~-2~)a/~(x 

+ 2s  T)  + e i(~+2k~) g r ( x  

Note that 0 = 

quanti ty,  and 

02  a 2 ~ 02  a 2 s i n 2 2 0 a ~ 4 0 2 a  2, and 1 + O 2 a  2 

Then 

w ( ~  ) - w (~ - -  ( Oa )2Re I aF" ( x T )  [ exp[ i ( r 

- 2kx)  ] a/r(x + 2zSx, T) 

+ exp[ i(q~ + 2kx)  ] g r" 

(~ -2~ ,T ) ] t .  

- 2 z S x ,  T ) ] ]  l e l ,  (16)  

and 

sin z ( 2 O a )  
w ( ~ ) ( x ' 2 t x ' T ) = g r ( x ' T ) 1 2 +  16 " 

[ t x/r(x + 2ZEx, T)12 + Ig r -  

1 �9 2 ( x - 2 z S x , T )  l 2 + ~ - s m  " 

( 2 0 a ) R e {  e x p ( i 4 k x )  aF* - 

( x + 2zSx , T ) gr ( x - 2zSx , 
T) + gr* ( x ,  T ) [ e x p [  i(q~ 

- 2kx )  g r ( x  + 2zSx, T) 

+ exp( i (q9  + 2 k x ) ] g r ( x  

- , S x ,  T ) ] } .  (17 )  

2 2a 
so g ' 2 a -  is a small 

2v0 '  2v0 
the following formulas stand:  

(18 )  

If without the approximation above, we let A --= 
s inZ(2Oa)  (1 + O 2 a  2) 

4 0 2 a  2 , ~ _  I x / r (x ,  T ) I  z , and 

~ k = w  k _ @ ( k = ~ _ , o r 0 ) ,  then we get:  

-- A,~ (~ = l s i n 2 ( 2 s  xF* ( x ,  T)"  

[exp[  i (  ~ - 2kx)  ] g r ( x  

+ 2zSx, T) + expE i(  9 + 2kx)  3" 

a / : (x  - 2 ,5x,  T) ] }. (19 )  

ff for the nmnerieal processing of the measured 
data by computer,  the parameter A is adjusted to 
get the deares t  interference design after the de- 
duction of the two sets of data above, then one 
may regard the ehoiee of A is appropriate, and 
obtain the interference information of x/r * ( x ,  T) 
�9 g r ( x  + 2,Ax, T) and xF* ( x ,  T ) g r ( x  - 2 , ~ ,  
r ) .  
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rr 3rr 
In the same way, when a = ~ and -~- ,  one 

may obtain 

l a / J ' ( x , l , t )  > = e x p ( -  i E o t / h ) e x p ( i p o l )  

1~2aXF(x, T) lg> - i" 

I + C  1 s C  ) + - -  x {7: (x ,  

i 
T) •  2kx)  ]" 

XF(x + 2z3x, T) - exp[ i" 

(q~ + 2 k x ) ]  a F ( x  - 2zSx, 
T ) ] } l e >  }, (20)  

6 

where C -- eosDxt, and S --_-- sinE2a ; • eorre- 
7r 3~r 

spond to the cases of a = ~- and ~-- ,  respective- 

ly. 
And 

w ( ~ ) _ w ( 3 # ) = ( l + C  l + C  . , + - -~- -  )trnl ~ *  ( x ,  T) 

x [exp[ i (~o-  2/~x) ] g r ( x  

+ 2zSx, T) - exp[ i ( (  2 + 2kx) ]- 

a/t(x - 2zkx, T) ] }. (21) 

Finally, we obtain 

4 (~) At~ (o) 
exp( - /rp ) [ sin2 (2g-2a) ( @ - ) + i "  

1+  C 1+  C -2 . w(~)  + - T -  ) - )] 

= kv'" ( x ,  T) [exp(  - i2kx)  g t ( x  + 2zXx, T) 

- exp( i2kx ) g t (  x - zAx, T) ] .  (22)  

In Eq. ( 2 2 ) ,  the left hand side only relates with 
the experimental parameters and measured data, 
and the right hand side contains the interference 
terms such as xF ( x  - 2A~x, T)  xp'* ( x ,  T ) .  
Thus, this equation builds up a connection be- 
tween the atomic position distributions and the 
atomic wave function, so that it is a core 
equation which provides us a method for measur- 
ing the atomic wave function aF ( x ,  T)  via the 
measured data of the recorded position distribut- 
ions. 

In the following, we will discuss how to re- 
construct the whole wave function a F ( x ,  T) = I 
a/r ( x ,  T) I exp [ ir ( x ,  T) ] .  One should f'mst de- 
termine the modulus l a/.t ( x ,  T ) I ,  through 

which we are going to learn in which position in- 
terval [ x= ,  x, ] the wave function is mainly dis- 

tributed. Then we may neglect the area not with- 
in this interval, where the modulus is close to 
zero. We apply Eq.  (22)  into this measurement 
procedure: at position x = Xm, we may evaluate 
the phase difference ~ ( x , , ,  T)  - ~ ( xm + 2,Ax, 

T) of x/r( xm, T) and ( x,~ + 2 A x ,  T) ; another 

contribution which contains g"(  Xm -- 2AX, T) is 
negligible, for its position is not within the inter- 
val. Then,  we go 2z2~ step further to the posi- 
tion x,, + 2s and apply Eq.  (22)  again. Since 
this time we already know the second term on the 
right hand side we can extract the phase differ- 
ence ~(x , ,  + 2s T) - ~(Xm + 4s T) of xF 
(xm + 2s T) and xF ( x ,  + 4zSx, T ) .  Thus, 

we can go on step by step according to this meth- 
od till we cover the full interval [ Xm, Xn ]. 
Eventually, we will achieve a sequence of the 
phase differences in that interval as I ~ ( x , , ,  T) 

- ~(xm + 2s T ) ,  ~ (x , ,  + 2s T) - ~ ( x  m 

+ 4zSx, T ) , " "  }. 
Clearly, the above sequence carries the in- 

formation about the phase encoded in g r ( x ,  T ) ,  
with spacing 2z3x. Moreover, if we want to de- 
termine the individual phases via this sequence, 
we should first set the unknown phase at the po- 
sition x,, as zero, i . e .  , ~('~) ( x , , ,  T)  ~ 0,  so 

that the phases ~{=) (Xm + 2s T ) ,  ~('~) (x, ,  
+ 4 A x ,  T ) , " "  can be recursively calculated. 

The reconstructed wave function satisfies: 

x/- t(=)(x,  T) = XF(x,  T ) e x p [ -  i~(x, , , ,  T ) ] ,  
(23)  

whose phase is determined on a grid with the 
spacing 2Zkx in the interval [ x . , ,  x.  ] .  The 

phase factor exp[ - i~ ( x . , ,  T ) ]  is multiplied as 
a constant phase factor. 

If the grid spacing 2s is fine enough, then 
we can propagate xF (~) ( x ,  T)  time-inversely 
according to the relation: 

i p2 
XF(x, t )  _----exp( - - ~ 2 m T ) W ( x )  

1 �9 2 
f_'| dpexp[ -(px- 

(24) 

Thus we get a/t(~) ( x ) = xF ( x ) exp [ - i~ ( x , , ,  
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T )  ] ,  which corresponds to the reconstructed 
wave-function at z = z0. In this way, we may 
back project all the discrete wave functions and 
obtain the sequence t at r(r~) ( Xm ) ,  ~I'r(rec) ( Xm 

+ 2zkaa) , " "  } . 
It should be noted that this method is subject 

to the limitation of the grid parameter 2Ax ,  so 
the reconstruction cannot be arbitrarily fine. If 
the structure of the atomic wave function is finer 
than the spacing 2 ~ ,  then this reconstruction 
will become less effective. 

CONCLUSION 

In conclusion, we applied the standing wave 
laser beam for interferometric measurement of 
atomic wave function, found that the method can 
effectively solve the initial random phase problem 
of the running light wave of the laser (Freyberg- 
er,  et a l . ,  1997 ) .  We presented the relation 
between the measurement data (atomic position 
distributions) and the atomic wave function. 
This method is quite applicable when the spacing 
2Ax is finer than the atomic wave function struc- 
ture. 
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