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Abstract :  'I'ne Wilson and Taylor dements Q6 and QM6, the representative nonconforming finite element 
method(FEM), have been successfully developed and implemented in the finite element code SAP for im- 
proved displacement and stress analysis. This paper formulates an improved convergent nonconforming axisym- 
metric element AQM6 over the corresponding axisymmetric Q6 and QM6 elements. The proposed modified 
nonconforming axisymmetric element AQM6 satisfies the engineering patch test condition for convergence, and 
also meets the condition for suppression of spurious shear stress by using a special remedying procedure. The 
numerical test results are in agreement with the element performance. 
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INTRODUCTION 

The nonconforming finite element Q6(Wilson 
et a l . ,  1973) improves the accuracy of conform- 
ing finite element Q4 by incorporating higher or- 
der nonconforming displacements which reduce 
the shear locking, soften the stiffness of compati- 
ble elements and increase the interpolation accu- 
racy. QM6(Taylor et a l . ,  1976), an improve- 
ment of Q6 by constant Jacobian (adjo in t )  
'cr ime'  scheme, further satisfies the patch test 
which improves the convergence and/or robust- 
ness of a nonconforming element. Consequently, 
QM6 has been considered to be the representa- 
tive nonconforming finite element method(FEM) 
widely used and implemented in FE software 
with remarkable performance. 

It seems to be more challenging to formulate 
a robust convergent nonconforming element for 
axisymmetric analysis. The successful constant 
Jacobian (adjoint)  ' c r i m e '  scheme for QM6 
cannot apply to the corresponding axisymmetric 
element for QM6 to pass the patch test (Taylor et 
a l . ,  1976; Cook, 1981). 

Furthermore, without additional special 

treatment, nonconforming displacements in non- 
conforming elements usually introduce spurious 
shear stresses, so the condition for suppression 
of spurious shear stresses should also be satisfied 
for an ideal nonconforming axisyrmnetric element 
(Cook, 1981). 

In this paper the classic Wilson and Taylor 
nonconforming elements Q6 and QM6, are fur- 
ther modified to formulate a nonconforming axi- 
symmetric element which satisfies both patch test 
condition for convergence and the condition for 
suppression of spurious shear stresses. 

ELEMENT FORMULATION 

1. Nonconforming axisymmetric finite element formu- 
lation 

The following principle of minimum potential 
energy was applied to formulate displacement fi- 
nite elements, 

f, l i p  = -2 erCedv = min. (1)  
v 
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where v is the element volume, C is material 
matrix and the strain vector. In isoparametric el- 
ement formulation, we assume 

U = Uq + U = Nq + M (2a)  

= [ N , M ] { q , ~ , }  r = ( compa t ib l e+  inco- 
mpatible) element displacement vector (2b) 

where N and M are compatible and nonconform- 
ing displacement shape function matrices, q and 
~, are vectors of nodal displacements and internal 
displacement parameters respectively. Here N is 
also the interpolation function matrix for coordi- 
nates ( r ,  z ) .  The strain vector e = D U  in terms 
of displacement vector U = { u ,  w t r is given as 

.. /0 a lOz (3)  
= = D U  = iO/O z O/Or 

eO rz k 1/r  0 

Then the resultant nonconforming element 
formulation is given as follows: 

E : Eq 4- ~2~ -~ [ B q , B a ] { q ~ , }  r 

= ( D N ) q  + ( D M ) ) ,  

= [ B q , B a ] { q ~ , }  T 

= ( 1 / J ) F q W ~ q q  + ( 1 / J ) F ~ W ~ ,  (4)  

[ [ Bq, Bz ] TC [ Bq, Bz ] dv K, 
v 

1 
f BTCBqd'l) f BTCB)~MUj [Kqq gq).] 

= = 

v v 
= element stiffness matrix (5)  

= CSq = CBqq = element stress vector (6)  
where J =  J ( ~ , 7 )  = d e t [ J ( ~ , 7 ? ) ]  =Jacobi  
detemfinant in terms of isoparametric coordinates 
( ~ , 7 ) ,  and ( 1 / J ) F q  and ( I / J ) F ~  are result- 
ing strain shape function matrices in terms of 
natural coordinates ( ~ ,  r / ) ,  W~q and W~ are 
constant matrices in terms of nodal coordinates 
( r  i , z i ) .  ~q( : W~ and YA( = W~Z ) can be 
viewed as generalized compatible and incompati- 
ble strain vector parameters as in the assumed 
stress/strain element methods. The correspond- 
ing explicit complete expressions can be found in 
the Appendix of Reference (Zhang et al. , 1997) 
for several 4-node isoparametric elements. 

2. Explicit formulation of wilson nonconforming ele. 
ment functions 

For an isoparametric nonconforming element 
(Fig. 1 ) ,  we have the following element dis- 
placements and coordinates, 

noneonform, displace,  vector (7) 

{r}= 

where 

4 
-~.Nq= {1ZqWqtT ~- ~ Ni(~ , r l ) {UiWi}  r 

i=1 

~-[O~10~ 1 0 ~  3 0 ~ 4 ]  {1~77} T (8) 
t~5 a6 a7 a8 

[ a ,  a2 a3 Gt4] { l~T]~ } T (9)  
bl b2 b3 b4 

1 
Ni = ~-(1 + ~/~)(1 + rlirl), 

~i = + 1,qi  = + 1, - 1 ~ ~ , ~  ~ +  1 , i  = 1, 
2 , 3 , 4  (10) 
a = a l , ' " , a 8 1  r = d i a g [ L , L ] q  (11) 

q = u l , ' " , u 4  w l , ' " , w 4 t r  (12) 

T 

q (r.z.,) 

(r,,z,) ~ 4 

z (l~,z,) 

~r  (r, ,z,) 

Fig. 1 Isolmramelric axisymmetric 
quadrilateral element 

lI+l 
+ 1  + 1  + 1  

- 1  + 1  + 1  - 1  
L - -  1 - 1  + 1  + 1  

+ 1  - 1  + 1  - 1  [a z] 
a2 b2 r2 Z2 

a3 b3 = L r3 z3 

a4 b4 r4 z4 

(13) 

(14) 
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For a constant Jacobian element, a 4 = b4 = 

O; for the rectangular element with sides parallel 
to physical coordinates r and z,  a 3 = b 2 = a 4 = 

b 4 = 0 ;  and an element with diagonals parallel to 

physical coordinates ( r  and z) yields a 2 - a 2 = 

0 and bl - b3 = 0 .  

The resulting element strain vector can be 
obtained by differentiating the displacement vec- 
tor using the following differential operator 

{a/ar  1 310zJ [ j ] - I  (15a) = tO/Orlj 

[ j ] - l  [J]" 1 Oz/Or I 3z /3~]  
- J - - J [ -  a r / a  T Or /a~  

1[ b 3 +  b 4 ~  - ( b 2 +  b 4 r ] ) ]  

- J - ( a 3  + a 4 ~ )  a 2  + a 4 ~  

(15b) 

J = d e t [ J ]  = a + b~+  cr/ = (a2b3 - a3b2) 

+ (a2b4 - a4b2)~ + (a4b3 - a3b4)r/ 
(15c) 

According to Reference(Zhang, 1991), the ele- 
ment (strain) functions can be expressed in the 
following form by splitting the strains into func- 
tion and constant parts for convenient analysis: 

e = D U  = ( D N ) q  + ( D M ) ~ ,  

= ( 1 / J ) F q W ~  + ( 1 / J ) F a W ~ ,  (16a) 

where ( 1 / J ) F q  and ( 1 / J ) F a  are resulting strain 
shape function matrices in terms of natural coor- 
dinates ( $ ,  77), W~ and W~a are constant matri- 
ces in terms of nodal coordinates ( r i , z i ) . To- 
gether with the compatible nodal displacements 
q and incompatible disparameters A, respective- 
ly, 7q ( =  W~ and ya ( =  W~A) can be 
viewed as generalized compatible and incompati- 
ble strain vector parameters as in the assumed 
stress/strain element methods. The explicit ex- 
pressions for these matrices of isoparametric 4- 
node elements can be found in Reference(Zhang 
et a l . ,  1997) . Here the concerned matrices for 
internal nonconforming displacements are given 
as follows : 

F~ = d i ag [F  ~ , /~a,  F ~ ,/~a ] (16b) 

F~ = J d i a g [ m l  m2] (16c) 
F 

Axi-Q4: 

[-0 010 W~ = 2 A o  

Co 

m l  = m 2  = 0 ,  F ~ = 0 

Axi-Q6(Wilson et a l . ,  1973): 

m l  = m 2  = [ 1  - ~2 1 -- ~ 2 ] ,  

F~ = [ 1 ( 1 - ~ 2 )  1 ( 1 -  72)] 
T 

[a, 0 o ,  

A0 = 0 - a 2 0 - a4  ' 

B o = [ - 0  b3 0 - b 4  0 ]  T 
b 2 0 b4 

Axi-QM6(Taylor et a l . ,  1986) : 

m I = m 2 = [ 1  - ~2 1 - 7 2 ] , F ~  = [q ~ 

(16d) 

(17) 

(18a) 

(18b) 

(18c) 

( 1 8 d )  

,1] 
(19a) 

F~ = [ J ( 1 - $  2) l ( 1 - q z ) ]  (19b) 
/" r 

, B o  = - 3 
Ao = 0 - a2 b2 

(19c) 

Co= [1 0] (19d) 

Unlike QM6, the corresponding axisymmet- 
ric nonconforming elements Axi-Q6 and Axi- 
QM6 cannot pass the patch test (Taylor et a l . ,  
1976; Wilson et a l . ,  1973). 

IMPLEMENTATION OF THE PATCH TEST 
CONDITION 

The constant strain/stress patch test condi- 
tion(Taylor et a l . ,  1986; Wilson et a l . ,  1973) 
is 

f B~ dv 0 ( 20 ) 
v 

By use of the previously given explicit ex- 
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pressions in Eq. ( 1 6 a )  for resulting element 
strains as in Reference (Zhang et a l . ,  1997 ) ,  
we can rewrite the PTC into another form: 

+1+1 

fB dv = f 2 ffn  rd d =O 
v v - 1 - 1  

(21a) 

o r  

+1+1 

ffF~rd~d~TW~ - - 0  (21b) 
- 1 - 1  

where W~a is constant matrix given by eq. 

(16d) .  
To enforce the above patch test condition 

(PTC) for plane elements, one alternative is to 
make some terms zero in W~a to eliminate the vi- 

olating function terms in Fa .  For example, by 

adopting constant Jacobian (adjoint) to set a4 = 

b4 = 0 in W~ of Wilson element Q6, the violat- 

ing terms ~2 and r/2 in corresponding F~ are con- 

sequently removed and an improved element has 
been successfully formulated, which is well 
known as QM6 satisfying the patch test. 

For axisymmetric element or other arbitrary 
nonconforming displacements, this constant Ja- 
cobian scheme becomes invalid (Taylor et a l . ,  
1976); i . e . ,  Axi-QM6 does not pass PTC with 
the resulting incompatible strains. 

If we keep W~ intact and adopt the following 

procedure to enforce the PTC, 

+1+1 

- I - I  

then this alternative approach will be general and 
valid for all the eases. Here r and F~ are given 

by Eqs. (11) and (16a) ,  respeetively. 
We have two alternative schemes to imple- 

ment this PTC. 
( 1 )  Simply omit those terms such as and 

(violating the PTC) in F~ . 

(2)  Add some modifying constants to the vi- 
olating terms in Fa , so that Eq. (22) satisfies. 

By using scheme ( 1 ) ,  deleting or setting the 
violating terms ~2 and r/2 to be zero in Fa of Q6, 

QM6 passing PTC is immediately obtained. This 
scheme is equivalent to the constant Jacobian 
' crime' scheme(Taylor et al. , 1976), but can- 
not be applied to the axisyrmnetrie case; other- 

wise, the Wilson axisymmetric element AQ6 will 
turn out to be axisymmetric conforming element 
AQ4. 

Here we try to apply the scheme(2) to Axi- 
Q6 and Axi-QM6 violating PTC to formulate an- 
other axisymmetric element AQM6 satisfying 
in Eqs. (22) and (20) ,  by adopting the follow- 
ing new internal strain shape functions: 

F~ = d i a g [ F ~ , F ~ , F ~  (23a) 

where 

r 
corresponding to Axi-Q6 

or [ ( e - 3 - ~ l ) ( r / - 3 - ~ l ) ] ,  corresponding to 

Axi-QM6 (23b) 

1 ,72)] (23c) 

It will be shown that when the optimal 2 x 2 
Gauss integration is adopted, the derived axi- 
symmetric element AQM6 gives the same numer- 
ical results, whether it is derived from Q6 or 
QM6. 

ANALYSIS OF AQM6 

The analysis will be made with respect to 
satisfaction of the patch test condition, the con- 
dition for suppressing spurious shear stress and 
the element rank condition for stability. 

It can be readily verified that AQM6 satisfies 
the patch test condition in Eqs. (20) - (22) .  

However, it was pointed out that the cou- 
pling between sa a and ?'~ in nonconforming axi- 

symmetric element generation may trigger spuri- 
ous shear stress r= when there should be no such 

shear stress. Additional special treatment for tra- 
ditional Axi-Q6 and Axi-QM6 is needed to elimi- 
nate the spurious shear stress by removing all 
those terms related to r= and obtaining the shear 
stress at the center of the elements only (Cook, 
1981 ) .  

Numerical test shows AQM6 in this paper 
has no coupling between s~/u~ and y~ ( = )'q + 

y'~ ), and e~/ua will not contribute to y=. 

Therefore AQM6 based on Eq(23c) satisfies nu- 
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merically the decoupling condition for suppres- 
sion of spurious shear stress. We find this is be- 
cause the best 2 x 2 Gauss integration for these 
axisymmetric elements is carried out at Gauss 

points ( ~, r / )G~  = + ~ '  • in element 

/ I \ 
stiffness generation and all the t 3 - -  ~2) and 

1 ~2) in E ~ and other related terms (Kq~ (X- 
and Kaa ) of AQM6, will eventually vanish in el- 
ement stiffness computation. 

Consequently, we ean omit the term ~ in 
Eq. ( 2 3 e )  and have the following reasonably 
simplified formulation for AQM6: 

where 

ea = jFaW~a~, (24a) 

F~ = d i a g [ F ~ , F ~ , F  ~ ] (24b)  

a2  

and I ~  is given by Eqs. (19e) and (16d) with- 

out C0, 

[ 001 2 0 ~ = A0 (24d) 
A0 B0 

which is actually the same as that of QM6. 
Like Axi-Q6 and Axi-QM6, it can be analyt- 

ically verified that AQM6 satisfies the element 
rank conditions ( Zhang, 1993 ) for stability in 
the case of both regular and distorted element 
shapes. 

The easiest procedure to verify element rank 
is to check some crucial element configurations, 
such as the rectangular element ( a 4  = b4 = a3  = 

b2 = 0)  with sides parallel to physical coordi- 

nates r and z, and the element (a~ - a~ = 0  

and b22 - b~ = 0)  with both element diagonals 
parallel to physical coordinates r and z,  where 
the geometric parameters a i and bj are given by 
Eq. ( 1 4 ) .  These two element configurations 
most likely cause element rank deficiency 
(Zhang, 1993). 

NUMERICAL VERIFICATION AND TEST 

The numerical test problems (Figs. 2 and 3) 
are included to investigate the proposed noncon- 
forming axisymmetric element AQM6, the axi- 
symmetric elements Axi-Q4, Axi-Q6 and Axi- 
QM6 corresponding to conforming element Q4, 
nonconforming Wilson element Q6 and its modi- 
fied QM6 respectively, in respect to patch test 
(for both regular and irregular mesh) ,  locking 
test ( for almost incompressible materials ) and 
computation of elastic limit loads. 

Z 
E=10 000, Poisson ratio=0.49 

1.0 

P 

t" 

0.5 .~  0.5 ., 

T T .o.3  

; .......... I i ~  
0 

L., 

5 
v~,_; 

F i g . 2  Axia l  p a t c h  t e s t  p r o b l e m s  and meshes 
Case 1-Regular mesh  Case  2-Irregular  mesh ( d a s h e d  
l ine)  

Table 1 Axia l  p a t c h  t e s t ( P T )  and spurious shear stress t e s t ( S S S T )  r e s u l t s ( F i g . 2 )  

Elements  Axi-Q4 Axi-Q6 Axi-QM6 AQM6 Exact 

[ c a s e  1~ - 3 . 3 1  - 3 . 2 8  - 3 . 2 8  - 3 . 3 1  - 3 . 3 1  
u, ~ case 2)  - 3 .31  - 3 . 4 3  - 3 . 2 8  - 3 . 3 1  

[ ease 1 ~ - 6 3 6 . 6  No Const .  No Const .  - 6 3 6 . 6  - 6 3 6 . 6 0  

a,  ~ case  2]  - 6 3 6 . 6  - 6 3 6 . 6  

case 1 ~ 0 . 0  No Const .  No Constnt .  0 . 0  0 . 0  
r= case  2 /  0 . 0  0 . 0  

PT Pass Fail Fail Pass  - 

SSST Pass Fail F,*il Pass - 
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Table 1 shows that unlike the compatible ele- 
ment Q4 and the successful plane nonconforming 
element QM6, the con'esponding axisymmetric 
elements Axi-Q6 and Axi-QM6 cannot pass the 
patch test(Wilson et a l . ,  1973; Taylor et a l . ,  
1976) or satisfy the spurious shear stress test 
(Cook, 1981; Wu et a l . ,  1987),  even for a 
constant Jacol)ian rectangular mesh. Like com- 
patible clement Axi-Q4, the AQM6 obtained in 
this paper by the new PTC implemental method 
passes the patch lest and the spurious shear 
stress test. 

The second test problem is to investigate the 
clement performance in relieving shear locking. 
For an axisymmetric problem with a 5-element 
mesh in Fig. 3, Axi-Q4 experiences severe loek- 
ing in displacement computation for an almost in- 
compressible nmterial when Poisson ratio tends to 
0 . 5 ( F i g . 4 ) .  

Fig. 3 Axisymmetric test problem for locking test 

E:l,  Poisson ratio=0.3-0.499999 

A 

5 x20 100 

Mises yield criterion, yield stress a r = 6 0 0 0  

kg/cm:,  E = 102 kg/cm: and/~ = 0 . 4 9 .  The re- 
sults in Fig. 5 show that AQM6 can provide better 
representation for ideal elasto-plasticity than Axi- 
Q4, especially in computation of plastic limit 
loads. According to References (Desai et a l . ,  
1997; Desai et a l . ,  1998; Zhang et a t . ,  
2000) ,  AQM6 can be applied to adaptive finite 
clement analysis of highly nonlinear softening de- 
formations and high-frequency wave propagation 
in linear piezoelectric materials. 

700({ 

E 
4800 

2600 

Axi-Q4 

Analvt ~ g/AQM6 

r:100 cm 
R=200 cm 

0 

Fig. 5 

10 20 30 40 
Displacemcnt(cm) 

Ideal elasto-plasfic pressure-radius 
displacement curve for a cylinder 
with uniform internal pressure 

CONCLUDING REMARKS 

31.83 
= 31.78 

E 

0.031 

~ Exact 

Axi-Q4 ---~/ ~'Axl Q8 

Poisson ratio 

Fig.4 Radius displacement vs. Polsson ratio 
for an almost irocompressible material 

A=0.3; B=0.49; C=0.4999; D=0.499999 

In Fig. 4,  the result for AQM6 is obtained 
without static condensation for incompatible pa- 
rameters in element stiffness computation; other- 
wise the resuh will be slightly worse. 

We may further adopt the test problem in 
Fig. 3 for ideal elasto-plastie analysis with Von- 

From the theoretical and numerical analyses, 
we can see that, for axisymmetric elements, 
when Wilson incompatible displacements are in- 
troduced with the satisfaction of the patch test 
condition and deeoupling condition for suppres- 
sion of spurious shear stress, element perfor- 
mance can be improved by retaining the compati- 
ble axisymmetric element's merits of representing 
constant stress states with no false shear stress 
and removing the demerits of compatible axisym- 
metric element's overstiffness and locking. 

By means of the PTC implemental proce- 
dure, the obtained axisymmetric Wilson element 
AQM6 in this paper passed the patch test and 
satisfied the decoupling condition for suppression 
of false shear stress. However, more comprehen- 
sive numerical comparisons between AQM6 and 
other existing axisymmetric elements are needed 
with respect to patch test, spurious shear stress, 
accuracy and efficiency. 
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