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Abstract:

The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated

within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent prop-

erties, the material constants were further considered as functions of temperature. A solution method based on

state-space formulations with a laminate approximate model was proposed. For a thin plate, the method was

clarified by comparison with the thin plate theory. The influences of material inhomogeneity and temperature-

dependent characteristics were finally discussed through numerical examples.
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INTRODUCTION

As known, thermal behaviors of structures
must be considered in many situations. Study of
thermal effect on deformations and stresses of a
plates especially a thick plate is increasingly im-
portant. First> the problems of thick plates are
more complicated and thus more attractive to
many scientists. there are practical

requirements for thick plates in various modern

Second»

projects, such as high building, raceway, high-
way, container wharf, and so on. Many studies
on thick and laminated plates had been reported
( Wu and Tauchert, 1980; Reddy, 1997,
1999). Xu et al. (1998) established a sixth-or-
der> inhomogenous state equation for an ortho-
tropic elastic body, and investigated the thermal
response of an orthotropic thick laminated plate.

Functionally graded material ( FGM) is in
fact a special kind of inhomogeneous material
with smoothly varying constitutive properties> re-
sponsible for its heat-resistant characteristics that
can meet the needs of engineering construction
materials. Therefore FGM is receiving consider-
ably more attention in recent years ( Chen et al. ,
2001, 2002: Xu and Zhao,> 2001).

In thermal environment> the material consta-

Functionally graded material (FGM), State-space method, Simply supported rectangular plate
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nts of FGM are actually temperature-dependent
and can be expressed as (Touloukian, 1967)

M= Co(C_lt_l +1+ Clt+ Czt2+ C3t3)(1)

where ¢ is Kelvin temperature and C; are consta-
Reddy and Chin (1998) used first-order
shear plate theory to analyze the thermoelastic
responses of an FGM plate using finite element
method. Loy et al. (1999) employed Rayleigh-
Ritz method to consider the vibration of FGM cy-
lindrical shells from the viewpoint of Love s
shell theory .

The thermal deformations and stresses of a

nts.

thick transversely isotropic FGM rectangular
plate in thermal environment were investigated in
this work. Three-dimensional elasticity equations
were used to derive a second-order homogenous
state equation and a fourth-order inhomogenous
state equation by introducing two displacement
and two stress functions. The layerup model was
used to approximate the FGM plate; which
should be more and more accurate with the in-
creasing number of layers. The material consta-
nts were assumed to be temperature-dependent as
shown in Eq.(1). The analytical solution for a
simply supported rectangular plate with arbitrary

thickness-to-span ratio was obtained, and the
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analytic solution for a thin plate was accorded
well with thin plate theory. The influence of the
material gradient index as well as that of temper-
ature-dependent property on thermal behavior
were discussed.

STATE-SPACE FORMULATIONS

In Cartesian coordinates Cx, v, z), with x
— y plane identical with the isotropic plane of
the material, the constitutive relations involving
thermal effect of a transversely isotropic elastic

body are (Ding et al., 2002)

du dov dw
Gx=011£+0128—y+0133—z+,81Ts
_ (@ LW)
Ty, = Cuy Jz + ay
du dv dw
o, = Cl2a_+0118_+0138_+BIT’
v Y z 2>
= 2%+ 29
Ty, = Cyg Jz + Jx
au 81; 8w

o, = 013$+ 013$+ €3 5, + BT

224 22)
Ty = Ce6 ay + Jx

where ¢; and 7; are the normal and shear stress
components respectively; w, v and w are the
displacement components in x> ¥ and z direc-
tions respectively; T is the excess temperature
above the reference temperature t, in a stress-
free state; c¢; are elastic constants and ce = Ceyy

— ¢13)/2; (3 and B35 are thermal moduli defined
by

- ,31 = Cn1a; + Cpay + Cj3as;
- B3 = cza; + cpa; + cpazs

in which «a; are linear thermal expansion coeffi-
cients. Considering the material” s graded prop-

erty, we assume c¢; and a; are functions of the

i
coordinate z. In additions to reflect the physical
reality, all these constants shall be functions of
the temperature t( = ¢, + 7, as shown in Eq.
1.

In absence of body forces, the equations of

equilibrium are

dx T Jdy dz
Iz, Jdo, It

ax ay =+ az =0 (3)
8sz aTyz aaz

ax dy *t 9z 0

It can be shown that a sixth-order state
equation for transversely isotropic thermoelastici-
ty can be directly derived from the one for ortho-
tropic thermoelasticity if certain constrained rela-
tions of elastic constants are introduced ( Fan,
1996; Xu et al., 1998; Ding et al., 2002).
Here, however; we apply the following substitut-

ions (Chen, et al., 2001)

2y G 2y G
“=T9y T9x VT 9x T 9y’

(4
Te =g, T ax %% T ax Ty

where ¢ and G are displacement functions,
while 7, and 7, are stress functions. With Eq.
(4), we can derive from Eqgs. (2) and (3) after

tedious mathematical manipulation:

ERL” _[ 0 1/044]{¢}
az{‘rl}_ — ce N 0 7 (5)
G
Jd | o,
Iz| o[~
w
0 0 Vey 1];6G
0 0 A 0]lo,
—Cey = AlesdA ep/cen 0 Of| = +
Cepl e )N 1/ cx 0 Ol'w
0
0
(03331 - 013‘83)71 6)
C33
By
C33

where A = 3*/d x* + 9*/9 y*. Although the total
order of Eq.(5) and Eq.(6) is still six, the or-
der of either single equation has been reduced
which is helpful for solving practical problems.

By virtue of Eq.(2), the other three stress
components can be expressed in terms of state
variables as
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Oy — 0y = — 2066[2% + 8x2 - ayz G
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THERMAL ANALYSIS OF AN FGM RECTANGU-
LAR PLATE

Consider a simply supported transversely iso-
tropic FGM rectangular plate with the isotropic
plate parallel to its middle plane. The geometry
and coordinates of the plate are shown in Fig. 1.
It is difficult to solve Eqs.(5) and (6) directly
due to their variable coefficients matrices.
we employ the laminate approximate model, in
which we divide the plate into p equal layers.
The thickness of each layer h/p is assumed to be
very small, where h is the thickness of the plate.

Now
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Fig.1 Plate geometry and Cartesian coordinates
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where § =z/h> & =x/a and 9 = y/b are dimen-
sionless coordinates; J,, = — (s? + s3), s, =
Chliad)mms s, = Ch/D) nws ¢ represents the
value of ¢y at z =0 ete. It is immediately seen
that the solutions given in Egs. (8) and (9) sati-
sfy the simply supported conditions in the three-
dimensional sense ( Fan, 1996; Ding et al.,
2002). At the same times; we expand the arbi-
trary temperature difference 7T as given below:

T(E,ﬁyg) = ZZT(g)sin(mmS)sin(nrmy)
o (10

where TC(Z) =

1r1
4 [ TC&spp ©sinmre)

sinCnmy)d&dy . Substituting Egs. (8),(9) and
(10D into Egs.(5) and (6, and utilizing the or-
thogonal properties of trigonometric functions, one
can obtain for an arbitrary couple of Cm, n)

d

It (k=12

(1D
where Vl = [;ba {'IJT, V2 = [a,&z,‘;2’1;):|’r, Hl
(033:81 - 013:83)’

V,(e) = MV, (0 + TCOH,
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0
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Since each layer is sufficiently thin, the ma-
terial constants within it can be assumed constant
rather than variable. In the following, their val-
ues at each mid-plane are to be taken, i.e. in

Eq. (110, we have cy = c44|C:<2z'2—1) etc. in the
p

j-th layer. Thus the coefficient matrices and col-
umn vectors in Eq. (11D become constant within
any layer and the solutions can be obtained (Fan,
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1996)
Vk<§> _exp[< = gj )Mk]Vk<§j>+ P,(OH,

where

¢ _
P.(o) = Lexp[(g — OM, 1T(z)de (13D

The exponential matrices expl ( £ — g M, ] in
Eq. (12) are known as the transfer matrices,
which can be expressed as the polynomials of M,
if Cayley-Hamilton theorem is employed ( Bell-
man, 1970).

The continuity conditions at each hypothetical
interface { = j/p require that the six state vari-

ables be continuous. Thus one can obtain from

Eq.(12)
Vk(1>=Tka(0)+Sk (14)
1
where T, = Hexp( M, /p) are square matrices,
and o
i+1
=[0,0]", § E[Hexp(Mg/p)]C

i=p j=p

s>

ptl
where C; = P,Ci/p)* H,, Hexp(Mz/p) =1.
I is an identity. It is convenient and efficient to
program using this form of S, .

It is assumed that the top and bottom surfaces
of the plate are tractions free and hence the plate
is only subjected to a temperature load. It can be
shown that the state variables ¢ and 7 vanish ev-
erywhere in the plate, and

G(1D GO
8 - T 8 + S A6
w(D) w0
which gives
GO Ty Ton -l{sn}
{;;(o>}= Ty T234] Sy, a7

where T),; are elements of the matrix T, S,; are
Once the state
variables at the top surface are known, the nonze-

elements of the column vector S, .

ro state variables at an arbitrary interior point can
be obtained by Eq. (12) and the induced vari-

ables are determined from Eq. (7).

The above analysis can be applied to an iso-
tropic plate if the following relations ¢} = ¢33 = A
+2us cp=cp3=A> ¢y =p and a; = aj are in-
troduced> here A and p are two Lame constants
(Ding et al., 2002).

NUMERICAL EXAMPLES

For numerical investigation, an excess tem-
perature distribution 7"= T'C{)sin(x&dsin(ry ),
with TCE) = (T = Ty)* ¢ + T, is considered. It
is obvious that Ty and T, are the excess tempera-
tures at the central points on the top and bottom
surfaces> respectively.

The functionally graded property of the mate-
rial is represented by (Reddy et al., 1999)

MCtr2) = M,m( )

M,,(t)[l—(h )] (18)

h

where M (t, z) represents an arbitrary material
constant of FGM, while M, (¢) and M, (¢) are
the corresponding ones for two homogenous mate-
rials. The dependency of M; (¢t)Ci = I, II) on
the temperature ¢ = t, + T is shown in Eq. (1).
For numerical calculation, 1, = 300K is taken
hereafter and C,(n = — 1, ***,3) are listed in
Table 1 for the two materials. The parameter « in
Eq. (18) is the gradient index. Obviously, the
plate will be made of Material I only if « =0

First we consider a simply supported thin
FGM rectangular plate with a/h =40 and b/h =
30. It is easy to extend the thin plate theory
CTPT ) for isotropic homogeneous materials
(Timoshenko and Woinowsky-Kriegers 1959) to
transversely isotropic functionally graded materi-
als. Results show that it is sufficiently accurate if
the plate is divided into 30 layers when « = 20
and AT =Ty — T; is not very large.

From Tables 2 and 3, we can find the two
methods agree with each other very well. The dis-
placements obtained by the thin plate theory are
in-between the ones of the top and middle surfac-
es obtained by the present method.

Second; we consider a simply supported thick
FGM rectangular plate with a/h =4 and b/h =
6. T, = 5K and AT = 50K are taken. Table 4
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gives the nondimensional results when p =30 and
p =32 (gradient index « =20). It is shown that
the relative errors between p = 30 and p = 32
meet the requirement of engineering (the biggest
relative error is 0.94% ). We will take p =30 in
the following and the results are believed to be of
high precision. It should be noted that the stress-
es g, and ¢, are not continuous across the hypot-

hetical interface because of the laminate approxi-
mation. However> the distinction can be com-
pletely neglected within the significant digits.
Figs.2 and 3 display curves of the nondimen-
sional displacement w/h and the nondimensional
normal stress o,/c) at the central point of the
middle surface versus the gradient index .

The dotted lines correspond to the case when the

Table 1 Temperature -dependent coefficients of elastic constants cij(Pa) and
linear thermal expansions o; (1/KD

Material 1 Material 11
o Co c, c, c, o Co c, G, c,
cyy 0 2.084ell —-1.020e-3 0.160e-7 —-1.995¢-10 0 2.062ell 3.102e—-4 —-6.942e¢-7 O
cyp 0 1.191ell -1.107e—-3 0.54le-7 —-1.535¢-10 O 1.211ell  2.728e-4 —-7.823e-7 O
c3 0 6.309el0 —-2.407e-3 0.339e—-7 -1.815¢—-10 O 1.038¢11  3.314e—-4 —-8.24le-7 O
cy 0 3.667ell —-3.226e—4 3.339e—-7 —-1.009e—10 O 2.103ell 2.886e—-4 —-7.994e-7 O
cyy 0 2.09ell —-6.856e—-4 1.624e—-7 —-9.385¢—11 0 5.012¢10 0.534e-4 -9.86le-7 O
ay 0 1.10le-5 —-2.84le—-4 0 0 0 8.914e-6 -3.871le—4 0 0
as 0 5.714e-6 —4.416e -4 0 0 0 4.107e-6 —-2.114e—-4 0 0
Table 2 Central deflection w/h( x 10~3) for different temperatures( T, = 5K, k = 0)
AT Present TPT Relative errors
Top surface Middle plane Bottom surface (with middle plane)
5K —-5.451 -5.421 -5.400 —-5.428 0.129%
30K —32.816 —-32.724 —32.681 —32.763 0.119%
50K —54.937 —54.794 —54.735 —54.855 0.111%
Table 3 Central deflection w/h( x10~3) for different temperatures( T, = 5K, K = 20)
AT Present TPT Relative errors
Top surface Middle plane Bottom surface Cwith middle plane)
5K -4.939 —-4.909 - 4.886 -4.921 0.244%
30K —-27.876 —-27.781 —27.736 —-27.833 0.187%
50K —46.457 —-46.310 —46.246 —-46.381 0.153%
Table 4 Comparison of various variables ( x 1073) for different layer-ups (x =20)
Location w/h o/l o,/ c o, /¢
»=30 p=32 »=30 p=32 »=30 p=32 »=30 p=32
Top surface -1.033 -1.033 -0.211 -0.213 -0.345 -0.346 0.000 0.000
Middle surface -0.886 -0.886 -0.381 -0.383 —-0.471 -0.473 0.000 0.000
Bottom surface -0.823 -0.823 -0.667 - 0.668 —0.681 -0.682 0.001 0.001
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material constants are taken unaltered and that
the values at the initial stress-free temperature g

= 300K are used. The curve of o,/ ¢y is very

similar to that of o,/c¢} and hence is not given
here. From the figures, we can find that the gra-
dient index Kk has significant effect on the stress
and deformation.

We now study further the influence of temper-
ature-dependent property. A thick FGM plate as
above described, but with 7', = 100K, is consid-
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X

Fig.2 Variation of w/h at the center on middle
surface with gradient index x
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Fig.4 Variation of w/h at the center on
middle surface with AT(x =0)

CONCLUSIONS

1. Using the state-space formulations, in
connection with the laminate approximate model,
the order of the final solving equations of an FGM

ered. It is shown that p = 100 is enough for an
accurate result. Figs. 4 and 5 give the variations
of w/h> the nondimentional displacement at the
center on the middle plate, with AT for two val-
ues k¥ = 0 and 0. 25, respectively. As shown
above the dotted lines are for the case of temper-
ature-independent material constants with the val-
ues at to = 300K. It is clearly shown that the ma-
terial” s temperature-dependent characteristic has
important effect on the plate deformation.

(x107*)

T
)

0 5 10 15 20 25 30 35
I'g

Fig.3 Variation of ¢,/cY at the center on middle
surface with gradient index x
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Fig.5 Variation of w/h at the center on
middle surface with ATCx =0.25)

plate does not vary with the number of the layers
divided. It thus can improve the numerical effi-
ciency as well as the numerical precision.

2. It is seen that for a thin FGM plate the
thin plate theory agrees well with the present 3D
analysis. The relative error between them de-
crease with the increase of AT. That is because
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for a big AT, the bending deformation will pre-
vail in the plate; which coincides with the basic
assumption adopted in the thin plate theory.

3. Table 4 shows that the deflections of the
plate in different locations along the thickness di-
rection are quite different, which indicates that
both the thin plate theory and the first-order shear
plate theory are no longer suitable for thick FGM
plate. On the other hand, the present analysis is
valid for any thickness-to-span ratio and can be a
benchmark of two-dimensional approximate plate
theories or numerical methods.

4. Figs.2 and 3 indicate that the material
gradient index has significantly important effect on
the thermal stresses and displacements, of which
the sensitive ranges are not the same. This char-
acter can be used in engineering projects to meet
some special requirements. Also> Figs.4 and 5
show that the dependency of material properties
on temperature will change the results to a con-
siderable degree as AT increases. Thus in a se-
such a dependency
must be considered to accurate analysis results.

vere thermal environment,
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