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Abstract:

Ant colony algorithms comprise a novel caiegory of evolutionary compuiation methods for optimi-

zation problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony

algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-

funciion-based heuristic pheromone assignment approach for pheromone update to filiraie solution candidaies.

Global optimal solutions can be reached more rapidly by self-adjusiing the path searching behaviors of the ants

according to objective values. The performance of the proposed algorithm is compared with a basic ant colony

algorithm and a Square Quadratic Programming approach in solving iwo benchmark problems with multiple ex-

tremes. The results indicaied that the efficiency and reliability of the proposed algorithm were greatly im-

proved.
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INTRODUCTION

Ant colony algorithms ( Hertz, et al.,
2000, investigated systematically at first in
Dorigo’s Ph.D. dissertation (1992) as the imi-
tation of the food-seeking behavior in ant societ-
ies; have attracted the great aitention of re-
searchers in comprehensive fields of sysiem opti-
mization with high complexity, e.g., communi-
cation network routing, multi-robot job assign-
ment, dynamical data mining and graph creation
and partitioning ( Dorigo et al., 2000). Because
of their biological background, the basic ant col-
ony algorithms developed by Dorigo and extended
by others are designed to solve complicaied com-
binatorial optimization problems Ceg., TSP, and
QAP) and little has been done for the search in
continuous-spaces ( Bilchev et al., 1995; Zhang
et al.> 2000; Dorigo et al., 2000). Some as-
pecis such as pheromone assignment and update
methods, route searching approaches and opti-
mal solution reservation strategies in the basic
ant colony algorithms could be improved ( Song
et al.» 1999). Empiricism and intuition remain
in those algorithms due to their short develop-
ment history and lack of rigorous theoretical vali-
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dation and practical implementation. As a re-
sult, the basic ant colony algorithms have low ef-
ficiency, poor convergence, and divergence of
searching results (Stiitzle et al., 2000; Dorigo
et al., 1996).

To break through the limitations of the basic
ant colony algorithms described above, an adap-
tive ant colony algorithm is proposed here to
solve the optimization problems in continuous-
spaces> benefiting from the encoding techniques
and elite reservation sirategies used in genetic
algorithms and local region search featured in
hill-climbing approaches. The adaptive ant colo-
ny algorithm adopts a novel objective-value-
based heuristic pheromone assignment mecha-
nism. This algorithm can adaptively adjust the
route searching behavior of ants according to ob-
jective values to make more refined search ai-
tempts within hopeful regions, and explore wider
space by keeping diversity in rouie selection,
and thus find global solutions rapidly.

BASIC ANT COLONY ALGORITHM

To present the algorithm developed in this
paper more clearly, the graph-based ant system
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proposed by Gutjahr (2000) is briefly described
first in this section.

1. An oriented graph is defined as C =(V,
S),where V is the set of nodes in the graph C
and S the set of oriented arcs among those
nodes. A path, connecting an initiative node
and a terminal node through a series of interim
nodes by orienied arcs, is denoted by w. A
function ¢ maps the path w in the graph C to a
feasible solution of an optimization problem, un-
der the constraint that no path loop exists in this
graph.

2. The set of n ants in an ant colony is de-
noted by A4 = {4, -

ing period, an ant randomly chooses a path w in

s A, }. In each ant search-

the graph C according to a predetermined path
selection possibility. In this way, a path seeking
movement by an ant corresponds to the search for
a feasible solution of a shortest route problem. A
searching period ends up in the algorithm when
all the n ants finish their path seeking respec-
tively. The path selection possibility P;,;(¢) for
a search from node i to node j Cdenoted by the
path segment (i, j)) in the searching period ¢ is
defined by

a b
@i,j(t) ° di,j

\ 1 a . 1) ’
Zl(i,k)es,k&lﬁpi,k(t) d;
1

where U is the partial route that had been
searched by ants in the period t; ¢;,;(¢) is the

Pi,j(t) =

density of pheromone accumulated at the path
segment (i, j) by ants in the period ¢, implying
the ant’ s searching tendency in the next period;
d. -

v

j?» usually representing distance or price, etc;

is the cost of searching on path segment (i,

and a> b are both positive real numbers, called
pheromone index and cost index, respectively.

3. The pheromone ¢;,;(t) on the path seg-
ment Ci,j) will be updated according to the be-
havior of the ant colony system at the end of each
searching period in such a way that

gDL,j(t'Fl):Ang,j(t)-l-(l—)\)A@L,j(t),
2

where A is called the evaporation factor> and O
<A <1; Ag;,; is a pheromone increment corre-
lated with the objective values of feasible solut-
ions corresponding to all the paths passing
through the path segment (i, j) as a non-in-

creasing function of objective values, e.g.

SUROTAS SRS
Ag;,; = LASOL':_//LQ,,»GS AZ{AG%_/ ’

k=1
Aol — ¢Cf ) it Cisj) is passed by ant ks
@i = o,

otherwise;

3>

where f, is the objective value corresponding to
the searching path of the ant A;; and ¥(*) is a
non-increasing function. The pheromone incre-
ment vanishes for any path that has noi been
searched yet in the current period.

4. The algorithm ends when the number of
searching periods reaches a predetermined val-
ve. This is a commonly used criterion because of
its random searching characteristics.

A rigorous proof for the convergence of the
graph-based ant colony algorithm was given
(Gutjahr, 2000) under several conditions. For
the problems to be solved in this paper; the
shortcomings of the algorithm include:

1> How to map continuous space optimiza-
tion problems to the graph-based ant colony sys-
tem;

2) How to update more efficiently the phero-
mone on the paths searched by ants to prevent
the algorithm from making a large number of in-
valid search efforis, due to the fact thai, accord-
ing to Eq. (3D, all the searching paths passing
through the path segment (i, j) contribute pher-
omone increments to it;

3) How to assign pheromone to each segment
in a path to emphasize the significance of ceriain
“best” path segments in order to speed up the
convergence of the algorithm. Also according to
Eq. (3D, a uniform assignment strategy is used
in the original algorithm, with no consideration
for the influence of searching scale on the effi-
ciency of the algorithm.

ADAPTIVE ANT COLONY ALGORITHM FOR
CONTINUOUS-SPACE  OPTIMIZATION PROB-
LEMS

1. Mapping continuous-space optimization problems
to an oriented-graph searching problem

The continuous-space optimization problem
to be solved in this paper is as follows:
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{min ]:f(x) (0

1
Kﬂln$x<xﬂ’ldX; xeR

The complexity of the problem expressed in Eq.
(4) lies in the objective function f(x) that may
not be formulated analytically or even mathemai-
ically. As the first step to solve this problem by
using ant colony search, we express the solution
candidate x with /V-length binary string:

XS {b,\eb,\e_]"'b]}’ (5)

where b, & 0,1} for j=1,2,, N; by is the
lowest bit and by is the highest bit in the string.
An oriented graph C = (V, S) is defined with
the set of nodes

V= {1}57’[}%"71}%",17'"’1}(1)7U}yaﬂ}\e’,ly "50}}’
6)
and the set of oriented arcs
S:{(UQ\JUQ\,1>5"'5(7J 77) )(7) 71}/1>5
(ol ,11/ 1) (1} ,11 ) “,(02,111)} 7

where the node v, is the unique initiative node;

the nodes ¢ and v for each j represent two

J
states of the bit b;> i.e.» O and 1, respective-

’N’

there exist only the arcs that point to the nodes

ly. At the nodes v? and v} for j =2,3, "

v?_l and v}_]

The ant A; begins its search from the node
v, » along the path segment composed of the arcs
through N nodes: to form a path w; consisting of
the nodes sequence {vk‘ , vi;;jl s s vy ) for iy
5 iy € {0, 1}, corresponding to the binary
string {bf\ebf\e',l bil }. The sequence can be de-

coded to a solution candidaie x;:

DCw; ) = bbb Yeox; = ﬁ'

( Xmax — Xmin ) + Xpin? (8>
where X; is the binary number of the siring
{byb_, =" b} }5 to guarantee all the searching

paths satisfy the constraint x ., << x << x,,,, under

max

the mapping of Eq.(8).

2. Pheromone increment assignment strategy based
on bit pesition

Based on the uniform pheromone assignment
sirategy in the basic ant colony algorithm,

(f; ) is independent of the order of the segments
in the searching path. However, according to
the proposed mapping from continuous-space op-
timization problems to a graph searching pro-
cess> the preceding nodes in a searching path
correspond to the upper bits of an encoded solu-
tion candidate. The variation of the amount of
pheromone on the segments among those nodes
may result in a great change in the value of the
solution candidate. The pheromone on the seg-
ments among the posterior nodes in the path will
produce reverse effects. This uniform pheromone
assignment straiegy induces the same probability
in the choice of different searching step lengths
in the next searching period, when the new
search is made on the basis of those paths.

The searching technique based on the uni-
form pheromone assignmeni sirategy does not
match the conclusion derived from the analysis
on the topological structure of solution spaces
(Zhang et al. > 20000 . The reasonable searching
strategy should be that> on the one hand, for
betier solution candidates the search in the next
period is apt to be conducted in a smaller region
of the solution space in order to gain better conv-
ergence in the probabilistic sense ( Preux et al.

1999); on the other hand,

candidates, in the next period a bigger search

for worse solution

step should be set for global optimality .

We preseni a bit-position-based pheromone
increment assignment strategy to tackle the prob-
lem mentioned above.

Suppose that, in the ¢’'th searching period,
the node i of the path segment (i, j) in the
searching path W, (¢) corresponds to the k'th
bit of the binary-encoded soluiion candidate x,
and £,(z) is the objective value corresponding to
the path W, (). According to the principle of
smaller searching sieps for betier solutions, a
new method for the pheromone increment calcu-
lation is defined as

1
&btk AR YIOEY)

,,,,,, WO+
(9

where f,., (2 is the minimum of the objective
values in the last t searching periods, 3,8 >0.
The function on the right side of Eq. (9) is
shown in Fig. 1, and has the following character-
istics:
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if fi <f2s then A, ; (fi: k) > Ag;, ;.
(far ks

if k) < ky and f. < fuin + 0> then Ag;, ;.
s k1) <A i Cfor k2D

if ky <k and f, > f;, + 0 then Ag;, ;.
Cfor ki) > Dgi,Cfar ko)

Combining Eq. (9) and Eq.(1), it can be
seen that, at the end of the searching period ¢,
the worse the solution candidate, or the lower
the encoding bit position, the smaller the proba-
bility is in which the corresponding node will be
searched. In this way in the searching period t
+ 1, it is more likely to make a small-scale step
search based on the original solution candidate,
to avoid losing effective information provided in
the previous searching periods .

Fig.1 Pheromone increment assignment function

SIMULATION STUDY

To validate the algorithm proposed in this
papers the adaptive ant colony algorithm ( AA-
CA) was used in the simulation study to solve
two benchmark problems. The basic ant colony
algorithm ( BACA)D as well as a conventional Se-
quential Quadratic Programming ( SQP) method
were also used to solve the same problems for
comparison.

Test 1: The Combinatorial Exponential Sinu-

soid CCESIN) problem

min J,Cx) =5e "3 sin30x + "% sin20x + 6,

(100

The property of the objective function J, is

shown in Fig.2. Obviously, It has a large num-
ber of extremes among which the global minimum
is J; =1.2573 that is very sensitive to the vari-
ation of the argument x .

Test 2. The Six-hump Camel Back (SCB)
problem (Michalewicz, 1996):
1 4

?%| )X? +

min J,Cxyr 2,0 =(4-2.1x} +

%1% + (=4 +4x3)x3;
v €L -2,2];
xnel -1,11.
(1)

> o

£
:

o 1 2 3 4 5 6 7 8
Fig.2 Objective function of the CESIN problem

The characteristic of the objective function
J> can be seen in Fig.3. There are total six ex-
tremes within the predefined feasible regions
among which there is a global minimum J, =
—1.0316 at two different points (s x5 ) =
( -0.0898,0.7126) and ( — 0. 0898, -
0.7126).

Fig.3 Objective function of the SCB problem

For comparison, the parameters in the two
algorithms were set the values listed in Table 1.
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In view of the probabilistic characteristics of
both AACA and BACA, as well as the fact that
the effectiveness of SQP strongly depends upon
the choice of the initial points from which the al-

gorithm starts its search, comparison of their
performance is done in a statistical way. The
statistical indexes taken into consideration for

each tested algorithm include:

Table 1 Parameter settings of AACA and BACA

Parameters
Test Number of Size of ant Encoding Evaporation Pheromone Cost
searching periods  population length factor index index
Test 1 20 10 8 0.2 0.1 0
Test 2 40 20 8 0.5 0.8 0

1. The minimal objective value found by the
itested algorithm in NV rounds of computations is

defined by

J© = min ){J(k)}:
m

ke 1.2

where J** denotes the best objective value ob-
tained in the k-th round of problem solving; this
index is a direct measure for the ability of the
tested algorithm to search for a global optimal so-
lution;

2. The mean value of the best objective val-
ues found in the /V rounds of computations is de-

fined by
1 ¥
7 N 7GR
J==2,7
N
which can be used to estimaie the repetitiveness

of the tested algorithm in the search for a global
optimal solution;

3. The relative error of the mean value J of
the minimal objective value J* among the best
objective values found in the /V rounds of com-
putations is defined by

€:‘J—J*
J%

which can also be used as an alternative index to
estimate the repetitiveness of the tested algorithm
in searching for an optimal solution of a tested
problem; or, furthermore, to compare the ability
of the tested algorithm in searching for corre-
sponding optimal solutions of different problems;

4. The standard deviation of the objective
values found in NV computations of the mean val-

ve J is defined by

which can be used to evaluate the divergence of
the solutions found by the tested algorithm, or»
in other words»> the stability of the algorithm.
One thousand independent solutions of the
CESIN problem and the SCB problem were tested
by AACA, BACA and SQP, respectively; in
such a way that in each round of computations a
choice of initial path selection probability (for
both AACA and BACA) or initial start points
(for SQP) was made at random. The corre-
sponding statistical results are listed in Table 2

and Table 3.

Table 2 Performance comparison for 1000 rounds of
CESIN problem solving

Algorithms J" J € o
AACA 1.3652 1.4403  0.0550  0.0061
BACA 1.3652 1.5311 0.1215 0.0104

sSQpP 1.2573  4.3420  2.4534 1.9849

Notes: The best objective value found by AACA and BACA is worse than that
by SOP due to the limitation of the encoding length.

Table 3 Performance comparison for 1000 rounds of
SCB problem solving
Algorithms J’ J € o
AACA  -1.0315 -1.0299 0.0016 0.0034
BACA —-1.0314 -0.8718 0.1547 0.1455
SQP —-1.0316 -0.7341 0.2883 0.4967

Statistical resulis based on the 1000 rounds
of computations indicaied that> on the one hand,
for the coniinuous-space optimization problems
with multiple local extremes, both AACA and
BACA were greatly superior to the conventional
SQP method using gradient or curvature informa-
tion to guide its search; on the other hand, the
optimal-solution-searching ability and algorithm
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stability of AACA were betier than those of BA-
CA. For example; in comparison with BACA,
the relative error of the mean value of the besi
objective value found in 1000 rounds of compu-
tations conducted by AACA was decreased by
54.73% and 98.96% respectively in two tests,
and the corresponding standard deviation of the
objective values was decreased by 41.34% and
97.66% . These resulis indicated that, the effi-
ciency and reliability of the adaptive ant colony
algorithm proposed in this paper have been
greatly improved.

Fig.4 shows the irend of searching perfor-
mance of AACA, represented by the best objec-
tive values obtained in all searching periods, in
a typical round of computations of Test 2. The
distribution of the solution candidaies in the so-
lution space in the 1st> 8th> and 40th periods in
Test 2. is shown in Fig.5. It can be seen that,
the solution candidates at the beginning of the
algorithm were randomly distributed in the solu-
tion space; with the elapse of searching time,
however, more and more solutions influenced by
the pheromone got closer to the current better so-
lutions .

-0.6

£,=1.0315

-0.7F

|
o
o0

]
e
o

Objective values

|
_—
—

s 10 15 20 25 36 35 40
Searching periods

Fig.4 Performance of AACA in Test 2
(The best objective values to n solution candidates
in all searching periods>

A practical problem of complicated hybrid
production scheduling in flexible processing in-
dustries was solved via a revised version of nest-
ed AACA (Li et al., 2002), demonstrating its
strong capability for solving hard optimization
problems with coupled continuous-time and dis-
crete-event variables.

1 — T
0.8} o . ¥
N e
0.6 *+ + %
. Q
045 + ® , + +
02t +
= or +
-0.2}F +
-04 . oo fr
-06 03 / + .
~038 ¢ A
2 A +
-2 -1.5 -1 ~-05 0 0.5 1 1.5 2

Fig.5 Solution candidates in different searching
periods of AACA in Test 2

(The symbols of plus. circle and star represent the solu-

tion candidates in the 1st. 8th. and 40th period, respec-

tively)

CONCLUSIONS

In this paper we propose an adaptive ant col-
ony algorithm to tackle coniinuous-space optimi-
zation problems. This approach uses a new ob-
jective-function-based heuristic pheromone as-
signment method for pheromone update, ensuring
that the assignment of pheromone in the path
segmenis is positively proportional to the opti-
mality of the solutions. Besides, this approach
uses the bit encoding information for pheromone
update to avoid inefficient searches.

The applicable fields of the proposed algo-
rithm include> but are not limited to:

1. problems with multiple local exiremes due
to the muliiple-points-random-searching charac-
teristics of the proposed approach;

2. problems without struciural objective ex-
pressions such as equations or formulas because
no gradient or curvature information are needed
in the proposed algorithm;

3. problems with hybrid data structures such
as the combination of continuous-time variables
and discrete-event variables via the introduction
of encoding mechanism;

4. problems with large scale owing to the
parallelity of the ani colony algorithms in nature.
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