ISSN 1009 - 3095 Journal of Zhejiang University SCIENCE V.4, No.2,P.152 - 161, Mar. — Apr., 2003
http: //www . periodicals. com. cn; http: //www. zju. edu. cn/English

152

http: //www . zjupress. com; http: //lib. zju. edu. cn/eindex. htm; jzus@zju.edu.cn

A natural language user interface for fuzzy scope queries”

HUANG Yan(# #8), YU Hong-feng(1 %20, GENG Wei-dong(#k LZ)7, PAN Yun-he G 22%5)
(College of Computer Science and Engineering, Zhejiang University s Hangzhou 310027, China)

TE-mail: gengwd @ cs. zju. cn
Received Dec.21, 2001, revision accepted May 6, 2002

Abstract:

This paper presents a two-agent framework to build a natural language query interface for IC in-

formation system, focusing more on scope queries in a single English sentence. The first agent, parsing agent,

symtactically processes and semantically interprets natural language sentence to construct a fuzzy structured

query language (SQL) statement. The second agent. defuzzifying agent, defuzzifies the imprecise part of the

fuzzy SQL statement into its equivalent executable precise SQL statement based on fuzzy rules. The first agent

can also actively ask the user some necessary questions when it manages to disambiguate the vague retrieval

requirements . The adaptive defuzzification approach employed in the defuzzifying agent is discussed in detail .

A prototype interface has been implemented to demonstrate the effectiveness.

Key words:
Matching degree
Document code: A

INTRODUCTION

An integrated circuit (IC) information sys-
tem stores IC data in its database. This greatly
benefits 1C designers by allowing them to browse
or query various IC information like logic func-
tions, package types, pin descriptions, techni-
cal parameters, producer information and typical
applications> etc. Unfortunately, relatively little
attention has been paid to this area.

We built an IC information database on Unix
Solaris platform that can be queried via a WWW
browser using the client-server model. The query
conditions are specified by either Boolean Lan-
guage or Graphic User Interface (GUID . Howev-
er, in practice; Boolean Language and GUI have
limitations in IC information query process. 1C
queries mainly involve parameter retrieval, most
of which can be categorized into scope queries.
Conventional Boolean Language and GUI are
suitable only for straightforward scope queries
with precise boundaries.
scope queries are desirables they tend to fail
since fuzzy conditions can hardly be accommo-

However, if fuzzy

dated in an adequate way in conventional math-

CLC number:

Integrated circuit information system, Natural language user interface; Grammar, Fuzzy rule,

TP391.2; TP273.4

ematical formulae or placed in form slots or menu
options. In IC queries; although experts always
prefer straightforward scope queries; fuzzy scope
queries are usually popular for non-expert users
taking into consideration that they can only give
succinet qualitative descriptions to specify target
data and search conditions. A natural language
interface can meet the requirement of non-expert
users by allowing them to specify fuzzy query
conditions in normal English sentence and leav-
ing the understanding of natural language and the
defuzzification of fuzzy conditions to computers.

Moreover; natural language input is more us-
er friendly for a normal user whose only natural
means of communication and expression is natu-
ral language. Hence, natural language interface
is more attractive to novices by freeing novices
from having to worry about the way of expressing
queries or to learn an artificial query language .
Pritchard-Schoch (1993) affirmed that the goal
of many information retrieval experts is "to com-
pletely replace Boolean techniques with natural
language techniques.”

Early researches on natural language queries
focused more on " examining natural-language-

Project (No. 98 — 15 supported by the National Planning Committee of China

A natural language user interface for fuzzy scope queries

153

processing techniques as a way of improving re-
trieval performance when the stored information
is largely textual” (Van Rijsbergen et al.,
1993). They extracted keywords from natural
language input and counted the occurrence of the
terms in the stored documents. Such researches
do not handle ambiguity, vagueness and impre-
cision inherent in natural langnage element, and
therefore, are not suitable for the application of
IC query interface which always accommodates
fuzzy terms for queries exemplified by “List Flip-
Flops with very high noise resistance ability” .
Among researches on fuzzy queries like
(Kacprzyk et al., 1996; 2001: Zemankova et
al.» 1993; Bosc et al.» 1998;: Tahani, 1977),
Kacprzyk et al. (2001 implemented FQUERY
for Access, a user-friendly interface to Microsoft
Access; which is a powerful set of fuzzy-logic-
based tools for effective and efficient handling of
imprecise elements of natural language. Howev-
er, it skips the natural language parsing step by
prohibiting users from inputting whole natural
English sentences as query conditions, and only
permitting the specification of fuzzy elements as
SQL WHERE clauses via GUI, while our system
aims at the entire pipeline from natural language
processing to retrieved records ranking. Wang
(1994; 2000) presented a natural language in-
terface for geographic information system (GIS),
which is very similar to our system. However, it
mainly involved representing fuzzy spatial fea-
tures and evaluating imprecise spatial relation-
ships based on fuzzy grammar and possibility the-
orys and thus,
IC’ s scope queries. Moreover, in the aforemen-

cannot be directly applied to

tioned two systems, the defuzzification process
was somewhat static since the interpretations of
fuzzy terms were predefined by users or by pro-
gram, and computers retrieved records based on
these predefined static interpretations. Such ap-
proaches are not suitable for IC query interface
in that the changeful IC data will often outdate
the static interpretations. We enhance the query
system’ s adaptability by employing an adaptive
defuzzification technique. That is, the interpre-
fation of a fuzzy term describing a certain at-
tribute is dynamically customized based on the
statistics of all comparable attribute values stored
in the IC database.

The work reported in this paper is an attempt

towards considerably improving existing Boolean/
GUI 1IC query interface by providing formal
means to parse natural language and handle
vagueness resulting from the use of natural lan-
guage. We propose a two-agent framework to
build a natural language user interface for IC in-
formation system. This framework equips IC in-
formation system with an effective front-end with
three main functions: comprehension of natural
language, adaptive fuzzy-rule-based transforma-
tion of a fuzzy linguistic element into its equiva-
lent SQL query that can be executed by a com-
puter, and fuzzy-rule-based computation of
matching degrees of retrieved records. A proto-
type interface has been implemented. Currently,
the interface can process scope queries as well as
some relational queries of single English sen-
tence that is grammatically correct.

OVERVIEW OF TWO-AGENT FRAMEWORK

The two-agent framework is shown in Fig.1.

Parsing Agent The task of this agent is to
understand a natural language query sentence by
syntactical processing and semantic interpreta-
tion, that is> to extract from the natural sentence
the linguistic parts expressing fuzzy or crisp
query conditions. Based on the predefined IC-
query-related context-free grammar, a parse tree
is created from the query sentence using bottom-
up parsing technique. If more than one parse
tree can generate the same sentence and can be
reasonably interpreted semantically, the agent
will actively ask the user to designate the right
parse tree to disambiguate the parsing process.
The parse tree is then converted into a query
graph which is the semantic interpretation of the
query sentence.

Defuzzifying Agent

ures out what each fuzzy condition means by de-

Firstly, this agent fig-

fuzzifying the imprecise conditions within the
query graph into precise Boolean formula so that
an executable SQL statement can be generated.
To do this,» we express the imprecise condition as
a fuzzy set which, along with its adaptive mem-
bership function and a threshold, determines the
precise query conditions.
record, the matching degree is calculated based

For each retrieved

on the corresponding membership function.

HUANG Yan. YU Hongfeng et al.

Matural language query condition

Meise Tind the CMOS Criremo with very Tow transmission deluy.

Parser

PParse tree

lIII|‘I critive sentence

I Find Condition list
SR (VERRS
Subcondition (DOT)
Reecord tvpe list Noun camplement list
Noun complement
The CMOS : .
(DETERMINER Circuit Prepasition phrase list

(RECORDTYPLY
With Atomic condition list
(PREPOSITION)
Ao condition

Fuzzy value description lransmission delay

TATTRIBUTE VARIABLE)

very [aw
(LINGUISTIC HEDGE) (FLZZY VALUE)
|

Semantic [»ruc-:srurlp__'

Query graph

STANDARD
CIRCUIT

CIreuil name

ransmission

Record type is
deluy is very low

CMOS Circui

I
Detuszihization

SOL query clause

Select circuit_name
From STANDARD CIRCLIT
where STANDARD CIRCUIT record-type = 'CMOS Circuil’ and

STANDARD _CIRCUIT transmission-delay lowerlimit = 25

T

ing agent

Search ¢ngine

T
Retrieved records
6327% CCSAHC25T <--- - Click for details
8167 COSAHCTO4 <- - -~ Click for detuls
98 020 COSNCTOY <<= == CTick for details

Fig.1 The two-agent framework

A natural language user interface for fuzzy scope queries

155

PARSING AGENT

To understand a natural language query con-
dition> two successive processes, namely parsing
and synthesizing, are involved. Parsing an En-
glish sentence, which is the focus of this sec-
tion, is to first grammatically break it into com-
ponent parts and then semantically interpret the
component parts. The synthesizing process will
convert semantic expression with fuzzy elements
into precise executable image that is equivalent
to the natural language condition. This process is
decribed in the next section.

1. Syntactic processing

Grammar describes the internal structure of
the language being compiled. With predefined
grammars an input query sentence can be parsed
by a parsing technique. We employ context-free
grammar (Allen, 1995) to control the structure
of query sentences.

The IC-query-related context-free grammar
we introduced is partially given in the appendix.
It is represented as a variation of Backus-Naur
form (BNF). By this grammar, we can express
three types of English sentences, including de-
clarative sentence exemplified by "1 need pulse
than
ct54g110” imperative sentence exemplified by ”

distributor whose pin number is less
Please find a noise reduction circuit with very
high S/N radio and environment temperature,” as
well as WH interrogative sentence exemplified by
"What is the manufacture technique of SC5156
encoder?” This grammar’ s productions contain
both precise value phrase and fuzzy value
phrase> and accordingly support not only precise
attribute value queries, but also fuzzy scope or
relational queries. This grammar covers most of
the IC query patterns and can be further extend-
ed for practical use.

We employ the general bottom-up parsing
technique, which is similar to the counter-reason-
ing process and is implemented by a push-down
automation, to build the parse tree which is a
structural representation of the sentence being
parsed and shows how the starting symbol of the
grammar derives the primitives in the language.
An example of parse tree is shown in Fig.1.

However; it is not guaranteed that only one

the

parse iree is generated. That is to say>

grammar may be ambiguous so that more than
one parse tree can generate the same sentence
and there is no way to predict, from the grammar
itself; which one of these is in accordance with
the searcher’ s intention. For example, for the
query sentence "l want to know the working tem-
perature of CD1452 and Phase.Loop. Lock or data
selector with eight data input ports”; two parse
trees are possible. For one, ”the working tem-
perature of CD1452 and Phase.lLoop.lLock” and ”

data selector with eight data input ports” are two
sub-conditions respectively, while for another, ”
the working temperature of CD1452"” and "Phase.
Loop.Lock or data selector with eight data input
ports” are two sub-conditions respectively. To
overcome ambiguity,; Wang (20000 proposed a
possibility-theory-based fuzzy grammar to find
the most possible parse tree. In our approach,
we leave the issue of ambiguity to the subsequent
semanlic interpretation stage. That is> a parse
tree that can be reasonably interpreted semanti-
cally is selected as the final parse tree. In the
aforementioned example, the latter parse tree is
semantically wrong since Phase Loop.lLock has
no attribute named ” data input port”; and is
therefore discarded. If more than one parse tree
are semantically reasonable, the parsing agent
will actively ask the user to specify the right
parse tree.

2. Semantic interpretation

Based on the affiliation table of record types.
the parse tree generated from the bottom-up
parser is converted into a query graph. The rea-
sonability of the resulting query graph is then
verified based on the attribute variable table of
each record type. Affiliation table records the
corresponding database table that each record
type belongs to» e.g., record type "monofier’
belongs to STANDARD _ CIRCUIT table.

Query graph is created from the parse tree un-
der a recursive procedure. It is made up of the
nodes representing the involved database tables that
should be searched. Which database table involved
for a record type is decided by looking up its affili-
ation table. Similar to the structure of query graph
employed in Wang (20000, the attribute variables
to be displayed are underlined, the attribute vari-
ables pertinent to relational operations are bold and
underlined, and the relational operations are repre-
sented as edges. A node may be attached with one

156

HUANG Yan, YU Hongfeng et al.

or more selection conditions and an edge is at-
tached with a relational condition. The selection
condition and relational condition can be either
precise or fuzzy. For each query tree; a query
graph is uniquely created to indicate the semantic
interpretation. For example, the cuery graph for ”
Please list the monofier whose output voltage is
high and environment temperature is lower than the
environment temperature of ct54g81” is shown in

Fig.2.
Record type Record type
ismonofier is ot54g81

STANDARD_CIRCUIT
- STANDARD_CIRCUIT

citeuit name :
environment_temperature cnvironment_temperature

lower than

Fig.2 A query graph

As mentioned before; to deal with ambiguity,
the validity of a query graph will be verified based
on the attribute variables table of each record
type> which, as its name indicates> includes all
the attribute variables that a record type may con-
tain. A query graph is valid if and only if each
atiribute variable involved in the selection or rela-
tional conditions of a record type has an entrance
in the attribute variables table of that record type.
In the example of "1 want to know the working
temperature of CD1452 and Phase. Loop.Lock or
data selector with eight data input ports”, since
there is no entrance for "data input port” in the at-
iribute variables table of the record type Phase.
Loop.Lock> the parse tree that takes "Phase _ Lo-
op_ Lock or data selector with eight data input
ports” as a sub-condition is invalid. If more than
one query graph converted from parse trees are
valid> the parsing agent will actively ask the user
io designate the right parse tree, and the corre-
sponding query graph is selected out.

DEFUZZIFYING AGENT

Query graph can be conveniently interpreted
as fuzzy SQL statement exemplified by “SELECT
circuit. name FROM standard. circuit WHERE rec-

ord.type is noise reduction circuit AND S/N_radio
is very high AND environment._temperature is very
high”. Such fuzzy SQL statement cannot be di-
rectly executed by computers due to the fuzzy
scope or relational linguistic terms included in the
WHERE clause. The defuzzifying agent will build
a bridge between imprecise and precise to trans-
form a fuzzy SQL statement to the corresponding
regular SQL statement that can be recognized by
the search engine. This bridge is fuzzy rule that
can model fuzzy terms and this process is referred
to as defuzzification (Wang, 1994). In this pro-
cess> fuzzy term is expressed as a fuzzy set
which, along with its membership function and a
matching degree threshold, determine the precise
conditions corresponding to a fuzzy one. The defi-
nition of the membership functions is the keypoint
in this process. Heres we propose a two-step
adaptive customization approach to define mem-
bership functions. In the first step, the member-
ship function corresponding to a fuzzy set is
knowledge based customized, resulting a unified
membership function on the interval [— 1, + 1]
to allow for context-independent definition. In the
second steps the variability interval of the de-
scribed attribute is dynamically extracted from the
database and then mapped onto the unified [— 1,
+ 1] interval .

1. Fuzzy sets

For a fuzzy formula "x is F” such as "output
current is high”, F' is the restricting fuzzy set on
x» associating x with a possibility distribution .
That is» x can be partially matched with F for a
possibility that can be decided by a membership
function on the interval [0, 1]. Each fuzzy set is
characterized by a membership function which can
be defined as:

paCxd: X —[0,1] 1

where 0 indicates "not belong to” and 1 “absolute-
ly belong to”; and elements in X are mapped to a
close interval L0, 11, namely, O<)< 1.
The value of the membership function, such as O.
55 is called matching degree.
2. Membership functions

IC query languages accommodate a large
number of fuzzy terms that can be categorized into
three types: linguistic values (i.e.» high), lin-
guistic modifiers (i.e., very) and linguistic rela-

A natural language user interface for fuzzy scope queries

157

tions (i.e., lower than), all of which can be de-
scribed by fuzzy rules composed of fuzzy sets and
corresponding membership functions. In fact, in
Zadeh’ s paradigm of computing with words (Za-
deh et al., 1999), there is another kind of fuzzy
term called linguistic quantifiers. However, its
chance to appear in an IC query sentence is so
liitle that we leave it out of account.

In our approach, to define the membership
function of a particular linguistic value or relation
of the target attribute type and record types two
customizations must be applied. The first custom-
ization is performed based on knowledge, result-
ing in a unified membership function on the inter-
val [— 1, + 1J. This membership function is
context independent, that is, the same linguistic
values or relations of different atiribute type or
record type will correspond to the same unified
membership function. So far this customization
process has not provided interface for users to
customize according to their understandings. All
customizations are pre-defined based on common
sense. In the second customization> the minimum
and maximum values of the described attribute
within the comparable records are dynamically ex-
tracted from the database as the variability inter-
val which is then mapped onto the unified [— 1,
+ 1] interval. To this end, the membership
functions are context dependent. This process can
enhance the system’s ability to adapt to the
changeful 1C data. For linguistic modifier, it is
always followed by a linguistic value or relation.
We deal with it by applying concentration> dila-
tion or filtration operations to the known unified
membership function of the modified linguistic
value or relation. How to obtain the unified mem-
bership functions in the first customization step is
discussed below. With unified membership func-
tionss the second customization process can be
easily applied to them.

(1) Two basic functions

In our approach, two basic functions, S-func-
tion and II-function, will be employed to define
most of the membership functions. S-functions
shown in Fig.3a is defined as:

0 if x<<a
2
X —a .
SCxsa,f3>7)= 2(“/—01) ifa<r<p
H » ’ = _ 9
1—2(;_;’) ifB<xsy

1 if x>7v%

II-function> shown in Fig.3 b is defined as:
OCx: 3, 7) =

{S(x;y—ﬁ,y—ﬁ/z,y)

if xs=7y

if x>7% (3

(22 Unified membership functions for linguis-
tic values

Three kinds of unified membership functions
are possible for linguistic values:

1D The matching degree increases with the in-
crease of atiribute value, exemplified by the mem-
bership function characterizing the fuzzy set "high”
as shown in Fig.3c. In this case, we define the
membership function as an S-function, S Cxsa: 33
¥), where a is 0, Bis 0.5, and ¥ is 1.

2) The matching degree decreases with the
increase of attribute value, exemplified by the
membership function characterizing the fuzzy set ”
low” as shown in Fig.3d. In this case, we define
the membership function as a reflection of S-func-
tion, 1 -8 Cxsa3;B8:7)> where a is — 1, B is
—0.5, and ¥ is O.

3) The matching degree peaks when the at-
tribute value locates at a certain point; but de-
creases when the attribute value deviates from the
point> exemplified by the membership function
characterizing the fuzzy set “medium” as shown in
Fig.3e. In this case> we define the membership
function as a II-function, ITCx: 35 ¥), where 3
is 1/35 and ¥ is O.

(3) Unified membership functions for linguis-
tic relations

Linguistic relation is represented by a binary
fuzzy relation whose interpretation is similar to
that for a linguistic value. The main difference is
that in the case of linguistic value> only one uni-
verse of discourse (i.e., the set of possible val-
ues of a particular attribute) is employed, while
in the case of a binary fuzzy relation, two at-
tributes are involved. A natural approach is to as-
sume the universe of discourse to be the set of
possible values of the difference of the values of
two attributes. Then a linguistic relation, FR, is
equivalent to a fuzzy set FRS, that is> o (s
y) = pmsCx —). Therefore, the membership
function can be customized analogously for lin-
guistic value.

Three kinds of unified membership functions
are possible for linguistic relations:

158

HUANG Yan, YU Hongfeng et al.

S-function

r-Bry B
()

I1-function

Medium Higher than

-1-0.3 0 1 -1

Close to

Lower than | !

300 13 1 0

(e) (f)

Very high

430 13|
(&) (h)

Much higher than
r-
1 1

a0 U3 -
(k)

0
{m)

2/31 -1

0 231
(n)

Fig.3 Example membership functions
Ca) S-function; (b) [-functions (¢ highs (d) lows (e) mediums (£) higher than: (g lower than: (h) close tos (i)
very high; (j) slightly high: (k) much more close to; Ce) slightly close to; (m) much higher than: (n) slightly higher

than

1) The matching degree is either 1 (when the
difference of two attribute values is bigger than
zero) or 0 (when that difference is less than ze-
ro) exemplified by the membership function
characterizing the fuzzy set "higher than” as shown
in Fig.3f. In this case, we define the member-
ship function as a pulse function.

2) The matching degree is either O (when the
difference of two attribute values is bigger than
zero) or 1 (when that difference is less than ze-
exemplified by the membership function
characterizing the fuzzy set lower than as shown in
Fig.3g. In this case> we define the membership

I'O)7

function as a pulse function.

3) Similar to the case in Fig.3e, the match-
ing degree in this case peaks when the attribute
value locates at a certain point> but decreases
when the attribute value deviates from the point,
exemplified by the membership function charac-
ierizing the fuzzy set close to as shown in Fig.3h.

In this case; we define the membership function
as the II-function shown in Fig.3e.

(4) Unified membership functions for linguis-
tic condition with linguistic modifiers

Linguistic modifier is always followed by a
linguistic value or relation. We deal with it by
applying proper operations to the known unified
membership function of the modified linguistic
condition. Three different operations are possible
to apply .

1) In the case of ” concentrative linguistic
modifier + Fig.3 (¢»ds e h)” exemplified by the

" ” 7"
or much more CIOSB to’»

fuzzy set "very hig
concentration operation is applied to the unified
membership function of the modified linguistic
value, as shown in Fig.3 (i, k). This operation
is defined as: proon () = Cuy(add?,

2) In the case of “dilative linguistic modifier
+ Fig.3 Cerds es h)” exemplified by the fuzzy set
"slightly high” or "slightly close to”, dilation oper-

A natural language user interface for fuzzy scope queries

159

ation is applied to the unified membership func-
tion of the modified linguistic value or relation, as
shown in Fig.3j and 31. This operation is defined
as: /lcoMA)(x) = (#A C x))O.S .

3) In the case of "filterable linguistic modifier
+ Fig. 3 (f, g)" exemplified by the fuzzy set ”
much higher than” or "slightly higher than”, the
unified membership function of the modified lin-
guistic relation is filtered by an S-function as
shown in Fig. 3 (m>n). For "much higher than”,
the filter is S (3x/2, 0, 0.5, 1), while for
"slightly higher than”, the filter is 1 — S (3x/2,
0, 0.5, 1D

(5) Membership functions for combinational
linguistic conditions

In this cases conjunctive composition CAND)
or disjunctive composition (OR) of two or more
define the

membership function, Max-min composition rules

atomic conditions are involved. To

are employed. For the combinational fuzzy condi-
tion with the form of "C; AND C, AND ... AND
C.,”, min composition rule is applied and the

membership function is defined as:

H4C AND C,AND ... AND C, (x) = miﬂ(#cl (a0,

#Cz(x% .../xcn(x)). 4

For the combinational fuzzy condition with the
form of "C; OR C, OR ... OR C,”> max compo-
sition rule is applied and the membership function
is defined as:

/"CIORCz()R...ORC"(x) = max(/ucl(x), ;,ch(x)y

e (). (5>

3. Defuzzification of fuzzy conditions

The defuzzification of fuzzy conditions in-
volves construction of a precise SQL statement for
execution by converting the fuzzy conditions to
precise Boolean formulae based on the corre-
sponding membership functions. After defuzzifica-
tion, the fuzzy linguistic terms are eventually un-
derstood by computers. To implement the defuzzi-
fication process, a threshold 6 is defined stating
the minimum acceptable matching degree, i.e.
only the record whose matching degree is possibly
equal to or above 0 is within the search range.
Consequently, for a scope querys> a record is
within the search range only when [RCAT),,» R

CAT Dy] has an intersection with the x range that

satisfies p(x) =6, where RCAT), is the up-
per limit of the values of attribute AT of record R
and RCAT)y is the lower limit. The x range that
satisfies 14, (x) =0 can be obtained by comput-
ing the inverse function s, ~' (). Proper assign-
ment to is necessary since it avoids low search
efficiency and saves computing resources by pre-
venting the handling of records with very low
matching degrees. Once a precise SQL statement
is constructed, it is passed to the search engine
which will retrieve desired records.

4. Calculating matching degree

In this stage, the retrieved records will be
displayed in a ranked order based on their match-
ing degrees. The bigger the matching degree of a
record> the higher its ranking. To compute the
matching degree of a record with the input fuzzy
condition, the fuzzy rules as analyzed in the pre-
vious section are employed. In IC query, the at-
tribute values of a retrieved record are usually a
scope rather than a single value. We assume the
value distribution within that scope is even, and
calculate the matching degree of the record by in-
tegrating the membership function within that
scope .

For linguistic values the matching degree,
md(.,.), of an atomic condition AT = FV and
a record R is

md(AT = FV’ R) =

RCAT),,
[1 CRCAT))ACRCATY)

RCAT),,

RCAT) — RCAT)y;

(6>

where RCAT Dy is the upper limit of the values of
attribute AT of record Rs RCAT)|, is the lower
limit of the value of attribute AT of record R> ppy
is the membership function of the linguistic value
FV.

For linguistic relation, the compared objects
can be two attribute values of a record,
tribute value of a record and one numerical value,

one at-

or one attribute value of a record and one attribute
value of another record. Without loss of generali-
ty> only the case of two attribute values of a
record is discussed here. The matching degree,
mdC.,.), of an atomic condition FR C AV1,
AV2) and a record R is:

160

HUANG Yan, YU Hongfeng et al.

md(FRCAT 1, AT2), R) =
- ROAT2)

J R0 KA p2ms CRCAT 1D — RCAT2))dCRCAT 1) — RCAT2))

7

RCAT D, + RCAT2),, — RCATD),, — RCAT2),,,

where RCAT 1), and RCAT2)\, are the upper
limits of values of attributes AT'1 and AT2 in R,
RCAT1)» RCAT2),, are the lower limits of
AT'1 and AT2, gty is the membership function of
the linguistic relation FR.

For linguistic value or relation with modifiers,
the matching degree can be simply obtained by
replacing the membership functions in Eq. (4)
and Eq.(5) with the modified membership func-
tions shown in this section.
the

matching degree of each atomic condition is cal-

For combinational linguistic condition,

culated before applying Max-min composition
rules to them.

SUMMARY AND DISCUSSIONS

In this paper> we present a two-agent frame-
work to build a natural language querying inter-
face to IC database, which can process scope
queries as well as some relational queries of a sin-
gle English sentence that is grammatically cor-
rect. We discuss the two agents in detail: a pars-
ing agent that syntactically processes and semanti-
cally interprets a natural language sentence to
construct a fuzzy SQL statement; and a defuzzify-
ing agent that defuzzifies the imprecise part of a
fuzzy SQL statement into its equivalent precise
Boolean formula to create executable SQL state-
ment based on fuzzy rules and calculates the
matching degrees of retrieved records. The first
agent can also actively ask a user to specify the
right parse tree to disambiguate the parsing pro-
cess. A prototype interface has been implemented
using C+ + on Unix Solaris platform.

This framework is a general framework for
natural language query or understanding inter-
face> not restricted to the particular applications
of IC query. By replacing area-related grammars,
semantic interpretation techniques and member-
ship functions, this interface can be conveniently
used in other applications.

However, in the defuzzifying agent, the first
knowledge-based customization process is pre-
defined and stored on the server side. Although

this structure can ensure the correctness and con-
sistency of fuzzy rules it is by no means commo-
dious for users to expand fuzzy rules and is cum-
bersome for personalization of fuzzy terms. Future
work may involve providing users with interface to
customize fuzzy rules and store fuzzy rules on both
server and client side.

References

Allen, J.» 1995. Natural Language understanding. 2nd edi-
tion, The Benjamin/Cummipngs Publishing Company,
Inc., USA.

Bosc, P., Galibourg, M. and Hamon, G., 1998. Fuzzy
querying with SQL: extensions and implementations as-
pects. Fuzzy Sets Syst ., 28: 333 —349.

Kacprzyk, J. and Zadrozny, S., 1996. A fuzzy querying in-
terface for a WWW-server-based relational DBMS. 12P-
roceedings of IPMU’ 96 - Sixth International Conference
on Information Processing and Management of Uncertain-
ty in Knowledge-Based Systems, Granada, Spain, 1: p.
19-24.

Kacprzyk, J. and Zadrozny, S., 2001. Computing with word
in intelligent database querying: standalone and Internet-
based applications. Informaiion Sciences,» 134:71 — 109.

Pritchard-Schoch, T., 1993. Natural language comes of age.
Onine, 17(3): 33 -43.

Tahani, V., 1977. A conceptual framework for fuzzy query
processing: a step toward very intelligent data systems.
Inf'. Process. Manage, 13: 289 —303.

Van Rijsbergen, C.J. and Agosti» M., 1993. The context of
information retrieval . The Computer Journal, 35(3):
193.

Wang, F.G., 1994. Towards a natural language user inter-
face: an approach of fuzzy query. Int. J. Geographic.
Inform. Systems, 8: 143 —162.

Wang F.G., 2000. A fuzzy grammar and possibility theory-
based natural language user interface for spatial queries.
Fuzzy Sets and Systems, 113: 147 —159.

Zadeh, lotfi A., 1999. From computing with numbers to
computing with words---from manipulation of measure-
ments to manipulation of perceptions. IEEE Transactions
on Circuits and Systems> 45:105 — 119.

Zemankova, M. and Kacprzyk, J., 1993. Introduction: the
roles of fuzzy logic and management of uncertainty in
building intelligent information systems. Inform. Sys-
tems, 2: 311 — 317.

APPENDIX

1. < declarative sentence >

PRONOUN [AUXILIARY] VERB < condi-

A natural language user interface for fuzzy scope queries

161

tion list > DOT
2. < imperative sentence > :: =
[PLEASE] VERB < condition list > DOT
3. < wh interrogative sentence > :: =
{WHAT | WHICH | WHERE} BE < condi-
tion list> 7" |
{WHAT | WHICH} < record type list >
VERB < atomic condition list >
< QUESTION MARK >
4. < condition list> :: =
< sub-condition > |
< sub-condition > {AND | OR} < condition
list >
5. < sub-condition > :: =
< attribute list > OF < record type list > |
< record type list > < noun complement list
>
6. < noun complement list > :: =
< noun complement > |
< noun complement > {AND | OR} < noun
complement list >
7. < noun complement > :: =
< preposition phrase list > |
< adjective phrase list > | < relative clause
list >
8. < preposition phrase list > :: =
PREPOSITION < atomic condition list >
< adjective phrase list > :: =

O

< adjective phrase > |
< adjective phrase > {AND | OR} < adjec-
tive phrase list >
10. < adjective phrase > :: =
< FUZZY VALUE > PREPOSITION < at-
tribute list >
11. < relative clause list > :: =
< relative clause > |
< relative clause > {AND | OR} < rela-
tive clause list >

12.

13.

14.

15.

16.

17.

18.

< relative clause > :: =

{THAT | WHICH} VERB < atomic condi-
tion list > |

WHOSE < attribute list > BE < atomic
condition list >

< atomic condition list > :: =

< atomic condition > |

< atomic condition > {AND | OR}

< atomic condition >

< atomic condition > :: =

< fuzzy value descripion > [< AT-
TRIBUTE VARIABLE >] |

[DETERMINER] < ATTRIBUTE VARI-
ABLE > BE < fuzzy value description > |
[DETERMINER] [< ATTRIBUTE VARI-
ABLE >] < fuzzy relation description >

< attribute list > [OF < record type list
> 11

[DETERMINER] [< ATTRIBUTE VARI-
ABLE >] < fuzzy relation description >
< NUMBER >

< fuzzy value description > :: =

[< LINGUISTIC MODIFIER > | < FUZZY
VALUE >

< fuzzy relation description > :: =

[< LINGUISTIC MODIFIER >] < FUZZY
RELATION >

< attribute list > :: =

[DETERMINER] < ATTRIBUTE VARI-
ABLE > |

[DETERMINER] < ATTRIBUTE VARI-
ABLE > {AND | OR} < ATTRIBUTE
VARIABLE >

< record type list> :: =

[DETERMINER | < RECORD TYPE > |

[DETERMINER | < RECORD TYPE >
{AND | OR} < RECORD TYPE >

