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Abstract:

This paper presents an adaptive strategy for controlling chaotic systems. By employing the phase

space reconstruction technique in nonlinear dynamical systems theory, the proposed strategy transforms the

nonlinear system into canonical form, and employs a nonlinear observer to estimate the uncertainties and dis-

turbances of the nonlinear system, and then establishes a state-error-like feedback law. The developed control

scheme allows chaos control in spite of modeling errors and parametric variations. The effectiveness of the pro-

posed approach has been demonstrated through its applications to two well-known chaotic systems: Duffing os-

cillator and Réssler chaos.
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INTRODUCTION

Several chaotic systems have been developed
and thoroughly analyzed in recent decades. A
chaotic system is a nonlinear deterministic system
having complex and unpredictable behaviour.
The control of chaotic systems has received in-
creasing interest in recent years (Ot et al.
1990; Fradkov et al., 1996; Femat et al. -
1999; Cao> 20000 . In 1990, Ott, Grebogi and
Yorke (OGY) suggested a method for controlling
chaotic systems by stabilizing one of the many
unstable periodic orbits embedded in a chaotic
attractor, using small time-dependent perturba-
tions in the form of feedback to an accessible
system parameter; then its sensitive dependence
on initial conditions was exploited to achieve
control with minimum control effort COtt et al. »
19900 . Since then, many results have been re-
ported in the literature. For instance, Lyapunov-
based conirol methods, variable structure con-
irol, discrete-time control, adaptive control, and
robust asymptotic linearization.

Recently, adaptive and robust control of
chaos is an exciting problem under intensive re-
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search (Femat et al.» 1999; Cao, 2000). This
is because chaotic systems are sensitive to para-
metric variations; and as some existing control
procedures have feedback structures, they are
not robust against uncertainties and lead only to
local stability. More robust control strategies bor-
rowed from conventional engineering methods of
nonlinear control have been considered. These
methods include linear control feedbacks, sliding
mode control, extended differential geometric ap-
proach, adaptive control techniques, etc.

The concept of observer has found useful ap-
plications in the synchronization of chaotic sys-
tems, and can also be applied to control chaotic
systems with output dependent nonlinearity.
However, the observer design of a general non-
linear system is a difficult problem in control and
estimation theory (Jiang, 200la; Jiang et al.
2001b). A variety of methods were developed in
recent years for some nonlinear systems. Four
approaches are generally available for construc-
tion of nonlinear observers.

In this work, we study the robust stabiliza-
tion of chaotic systems and propose a new adap-
tive control strategy based on phase space recon-
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struction technique and nonlinear observers in
the nonlinear dynamic system theory. The main
idea is to lump the uncertainties and disturbances
in a nonlinear function which can be interpreted
as a new state in an externally observer system.
Thus, the new state is estimated by means of a
state observer, and plays a role in rejecting the
uncertainties and disturbances
strategy .

in the control

THE ROBUST CONTROL STRATEGY

Consider the following nonlinear systems
whose trajectories are contained in a chaotic at-
tractor:

1
2

xCe)=fxCe)) +uled
y(t)=h(x(t))

where x & R™ is the state vectors y is the output
variable, f: R — R" and h: R"™ — R are
smooth nonlinear functions, x € R™ is the con-
irol term to be designed.

1. Phase space reconstruction

When the dynamics of the system Eq.(1) is not
known, phase space reconstruction technique is
necessarily the first step to analyse a chaotic sig-
nal in terms of dynamical
(Packard et al., 1980).
phase space can be used for qualitative analysis
and quantitative statistical characterizations. A
reconstruction viewpoint on communication sys-

systems  theory

The reconstructed

iems via chaotic signals was developed by lioh ez
al., (1997). From the output signal y(¢) and
its derivatives of successively higher order; we
can reconsiruct the following state:

X =CyCe),y (), e,y ()T =
(h(x), L/h(x), “',L}-"_])h(x))']‘:
H(x) = (9/6\179227 "'792",)']‘

(3

where [ denotes the Lie derivative operator

(Isidori> 1989)

, 'y dCH R
D) = 3 TE R e,

i=1 2
A

It is easy to show that the reconstructed states X
satisfy the following differential equation:

X = AX = b$(X) = bu' (£) (4

where
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0 1 0 0
0 0 1 0
A= 1 i i (5>
0 0 0 1
0 0 0 0/
b=[0 - 0 1]'er

$(X) = Lrh(x) = LPRCH (X))

JHCx)

u(t)z( Ix

)eru’(t):b(f()u’(t)
(6
dHCx)

N
Ox ) is the generalized inverse of

where (
JHCx)
dx

—R and b(): R*—>R™, are smooth nonlinear

functions> and u’ C¢) is a scalar control term.

(Ben-Israel et al., 1974), ¢(D: R"

Takens (1980) proved that as long as n is suffi-
ciently large (for example; n >2m), generical-
ly, H is an embedding and d H/Jd x is of full
rank .

The control problem is described as: for any
initial conditions, given a target ftrajectory v,
(t)» design a control law u (#) such that the
output of the system y () tracks y,(¢), i.e.
limy () =0, where y(£) =CyCe) — 4,()).

t e

2. Nonlinear observer

The nonlinear system Eq.(4) can be rewrit-
ten in the following form:

= -
I
=y

1 2

R -
I
=y

2 3
]
]
'

92\,1:¢(£1’£27""£,I,)+lLl(t) (7)

o - - NEY .
where £, = £, %, = £," """ . First we assume
that the nonlinear function $() is confined by a

global Lipschitz condition, i.e.>

$(x) - < Lllx—% | yx. 2 E R
(8)

where L is a global Lipschitz constant. let the
state variables of the nonlinear observer be z;,
Zys """ Z,,.1. Since £, is available and under
the global Lipschitz condition Eq.(8), we can
construct the following nonlinear observer sys-

tem:

Zl =2y — gl[zl —921(1:)]
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2y = 23 — gz[Z] —921(15)]

Zn = Znel — g,,|:21 -2, (o]+w ()

Zo1= = guailz — £, ] Y

where g;> g5» ***» g,.1 are nonlinear functions
chosen so that the state variables of system Eq.
(9) can track the state variables of nonlinear

system Eq.(7), i.e.

Z]( t)_)ﬁ/é\]( t)’ 22( t)—>922( l')y e
d( t)y

where a(t) = $(£,, £,

7 Zp4

ey 8,0
There are many studies on choosing appropri-

&2 7T &ue MO
achieve the convergence of the nonlinear observer

Eq.(9) (levant, 1993;: 1998: Zhang et al. s
1998; Han, 1995; Jiang, 2001a). In this
work> we consider the existing approaches ( Lev-
ants 1993; 1998; Zhang et al., 1998; Han,
1995 and choose the nonlinear functions g;(i =

1, 2,
By 1 sign (x) to provide effective tracking ( the

ate nonlinear functions g,

1
5 n) as ;42 sign(x) and g,.; as

convergence of the nonlinear observer can be re-
ferred to in Levant (1993; 1998)). To illustrate
this> the following example is given.

Example:
quation, which has the same form as Eq. (4):

Given a chaotic Van der Pol’ s e-

%= flargst) + £, (10>

where fQx,5,1)= —x—5.00x> = 1z, £,(t)

=5.0 cos(2.4631); initial state is the origin.
Obviously, the system Eq. (10) takes the

form Eq. (7). The nonlinear observer Eq.(9) is

chosen as follows:

Z1=2,— Bz - xCe) 1 sign(z; — x (D)
Zy=23— B2l z - xCe) 1 sign(z; — x (D)

Z3=—B3sign(z1—x(t)) (11)

The performance of the nonlinear observer
Eq.(11) is given in Fig. 1, where x> x, are
denoted by solid line, while z,, z, are denoted
by dotted line. It is shown that the nonlinear ob-
server can effectively trace both state variables of
the system Eq.(7).

3. Nonlinear feedback control law

Let vy and v,(i =1, ***, n) be the refer-
ence input and its rth derivative of the system

1
0 5 10 15 20 25

Time (s)

Fig.1 Performance of the nonlinear observer Eq.(11)
(B;=10.0,§,=100.0, f;=10.0>

Eq(7)’ €1 = Vg — 210 €=UV — 2y 7Ty g, =

v,_1 — 2,3 then ;5 e, ***» and ¢, are the er-
rors between the reference input and observed
system output, and their differentials,

tively. Introduce a complementary control input,

respec-

1o(t)s described as follows:

welt)=1u' () + ale) 12>
then system Eq.(7) becomes:
£ = = (1), (13>

To guarantee the stability of the origin of the sys-
tem Eq. (130, uy( ) is designed to take the fol-
lowing feedback form:

LLO:]C1€1+k2€2+"'+k"€"+’0"’ (14)

where k;» k,» °°*» k, are constants to be cho-

sen. Putting Eq.(14) into Eq.(13), we have:

.;(}(") - v, — k](UO - Z])— kz(U] - Zz) -t = k,,
(Uny,l—z"):o. (15)

From the above nonlinear observer design, we
have z, () —>x, (1), z( t)?;cz( £)s sz,
()—>x,(1)s as t—> . Let y(¢) = x(¢) — o,
(1), then Eq.(15) becomes:

y U + ky T e by () =0, (16

If the stability of the origin of the system Eq.
(16) is guaranteed, then y(t)—>0, as t—> o .
So the control objective has been achieved. To
make the closed-loop system Eq.(16) exponen-
tially stable, k; are chosen so that "' + k" +
*** + kys + k; is a Hurwitz polynomial (Isidori,
1989) . It should be noted here that system Eq.
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(13D is controlled by uy(t) obtained from the
nonlinear combination of system state-errors.

In the proposed control law Eq.(12), where
given the reference signal, the nonlinear observer
achieves estimation of state variables of the con-
trolled system: e.g. z,Ct), z,C(z), =+, z,C1)
and the estimation of $Cx,C2), x,(2), ===y x,

()0, Gile.
be divided into two parts:

Zn 11 (z2). The control input can

D) 1
—2,,102) and uy(z) jointly play a role

W () =ugle) -z

n+1

where
in rejecting disturbances and controlling the sys-
tem.

Using the phase space reconstruction technique
and the states of the nonlinear observers Eq.(9),
the control law for system Eq.(1) becomes:

a0 = bCCu(1) — z,,()) 1)

The above analysis shows that, in theory,
control law Eq. (18) would guarantee the control
objective when n and parameters 3;> k; are suit-
ably chosen. However, in practice, this ap-
proach may have a disadvantage, i.e.> even
though H is an embedding when n is larger e-
noughs the larger the n, the higher the computa-
tional complexity. However, with the rapid de-
velopment of computer facilities, this disadvan-
tage can be easily overcome. In fact, in the fol-
lowing simulation study, it is not a serious prob-
lem.

SIMULATIONS

To demonstrate the performance of the con-
trol strategy, simulations with the Duffing oscil-
lator and Réssler chaotic system are provided.
For Duffing oscillator $Cxs %5 1) = — pyx — p”
— pox and £,(t) = geos( Q1) . This system can
be used to model various physical phenomena
such as the buckling of an elastic beam in a mag-
netic field. Here, the simulation parameter val-
ves are p;=0.4, p,=—-1.1, =1.0, 2=
1.8, and ¢ = 1. 8;: the Duffing oscillator dis-
plays chaotic behavior. The origin (0, 0) is an
equilibrium point of the Duffing oscillator for f.
(1) + u=0. However, such an equilibrium is a
saddle point. Let us choose y,(z) =0 as control
objective . The control parameters are taken as %,
=12.0> £k, =36.0, 3, =10.0, 3,=100.0 and
33 =10.0. Fig.2 shows the position and

velocity trajectories before and after the control is
activated at time ¢ = 20. The trajectories are sta-
bilized in the equilibrium point in spite of uncer-
tainties in the model. Fig.2 also shows the con-
trol signal u(¢), represented by the solid line.
Stabilization of the origin is achieved when the
control action u (¢ ) counteracts the external
force £,(t), represented by the dotted line (i.
e. uCt) = — f£,Ct)). Let us now consider the
case of tracking of trajectories. Our objective is
to control the chaotic Duffing oscillator to the pe-
riodic solution that it exhibits when ¢ =0.62. It
is a (finite-time) section of the chaotic trajecto-
ry. Fig.3 displays the dynamical behavior of the
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Fig.2 Control performance for the case of stabiliza-
tion of the origin
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Fig.3 Control performance for the case of stabiliza-
tion of the periodic motion ( g =0.62)
controlled position x;(z), and velocity x,(#),
which after a transient, attain the periodic be-

havior. In this case, the controller is also acti-
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vated at t+ = 20. For both cases, the controller
can achieve the control objectives very rapidly .

Rossler chaos is widely used to study the
control and synchronization of chaos. The circuit
equations can be written in dimensionless form as
follows:

A — X3 — X3
:f: = X+ ax, + U (19)
X3 c+x:(x; = b)
Y =% 200
where we take @ =0.2, b=5.7, ¢=0.2, so

that chaotic behaviour exists in this system. and
a typical chaotic behaviour is shown in Fig. 4.
By calculation: we have

X3
H(x) = X + ax,
ax; + (a® - 1)%, — 23

) 0 1 0

(?)_II == I s 0

dx 2

a a -1 -1

$(x) = — 223+ (a® = Dax; + (a® =2a)x, +
(b — adxs — ¢

The nonlinear observer Eq. (9) becomes:
Z1=zn—-gi(z - y)
Zz=z4— g3z — )
Za= — gz —y)

.z'a=z_:,—g2(z] —"y)

21

Fig.4 Chaotic orbits of the Rossler system

where g; is a chosen function described above.
The control for Rossler chaos is:

uCr) = (?}f)+ bu' (1) =

[0 0 = l]f( un(f) = Z4(£))
where 14(¢) is designed according to Eq.(14).

Figs .5 and 6 show the stabilization of the Rossler

system at the origin and a perodic orbit y,(¢) =
sin(¢ ). The initial conditions for the system
(19) were (x,(0)s x,(0)s x3(0))=C~1, 0,
—0.2) and for the nonlinear observer (9), (z,
(0)y 2,002, z3(0)s 2,(0)) = (0, 05 05 0).
The control feedback gain k) =1.0, ky =3.0,
k3;=3.0, and the high-gain estimation parame-
ters values 3, = 10.0, 3, =100.0, B3 =100.0,
4= 10.0: were chosen. For both cases, the
control input is activated at ¢t = 20. It can be
seen from Figs.5 and 6 that the control strategy
can achieve the control objective very rapidly.

50
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Fig.5 Control performance for the case of stabiliza-
tion of the origin

5- T T T T
= [}\/\/\/\‘
= e
0 5 10 15 20 25 30 35 40 45 50
= ‘;
310 15 20 25 30 33 40 345 30
R
S TS 30 25 30 35 40 45 50
S 0
T )0
20 . . . A , . . —
S 10 15 20 25 30 35 40 45 50

Time (s)

Fig.6 Control performance for the case of stabiliza-
tion of the periodic motion (y,(¢) =sin(¢))

(22> CONCLUSIONS

An adaptive strategy to control mnonlinear
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chaotic systems has been proposed. The control
scheme does not depend on the system states and
model, but employs the phase space reconstruc-
tion technique to transforms the system into
canonical form and then employs a nonlinear ob-
server to track the states and disturbances of the
system. The effectiveness of the proposed ap-
proach has been demonstrated through its appli-
cations to two well-known chaotic systems: Duff-
ing oscillator and Réssler chaos.
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