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Abstract:    This paper presents an overview of the recent progress of potential theory method in the analysis of mixed 
boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. 
This method was used to derive a series of exact three dimensional solutions which should be of great theoretical signifi-
cance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error 
method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated 
problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, 
from which, however, the results for the isotropic case can be readily obtained. 
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INTRODUCTION 
 

The term “potential theory” should be rooted 
in the mathematical treatment of the poten-
tial-energy functions used in physics to study 
gravitation and electromagnetism. Potential theory 
has become a profound branch of mathematics with 
much abstract content; it still has the essential 
function for solving boundary value problems re-
lated to our physical world. In particular, the po-
tential theory methods have played an important 
role in solving problems related to elasticity theory. 
In fact, every effort has been made to reduce the 
governing equations of elasticity to those expressed 
in terms of potential (harmonic) functions only 
(Wang, 2002). Thus, the original elasticity problem 
is transformed to a problem in potential theory. 

There are two representative monographs in this 
respect, which have influenced greatly later re-
searchers who devoted themselves to the mixed 
boundary value problems in elasticity. Muskhel-
ishvili (1953) developed a systematic method for 
two-dimensional (2D) problems based on the the-
ory of Cauchy integrals. Sneddon (1966), on the 
other hand, focused on the theory of dual/triple 
integral equations and the theory of dual series 
equations, etc. The application of potential theory 
methods in solving crack problems in elasticity was 
illustrated extensively by Sneddon and Lowengrub 
(1969). Here, however, we will pay our attention to 
the potential theory method originally proposed by 
Fabrikant (1989; 1991) for three-dimensional (3D) 
elasticity problems. 

After nearly twenty years of research, Fabri-
kant published his first monograph, named “Ap-
plications of Potential Theory in Mechanics: A 
Selection of New Results” in 1989 (Fabrikant, 
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1989). In this book, Fabrikant first discussed the 
limitations of the conventional methods such as 
Green’s functions and the integral transform 
method. The rigorous mathematical development of 
potential theory method was then presented and 
many mixed boundary value problems associated 
with contact mechanics and crack mechanics in 
transversely isotropic elasticity, were then solved 
systematically using his new treatment. His second 
book published two years later, deals with more 
advanced mixed boundary value problems not 
confined to elasticity, as revealed by the title 
“Mixed Boundary Value Problem of Potential 
Theory and Their Applications in Engineering”. 
These two books provide a fundamental tool for 
solving mixed boundary value problems. As stated 
in Fabrikant (1989), the main advantage of the new 
method is its ability to deal with non-classical 
problems that usually cannot be easily solved by 
other known methods. Fabrikant’s work on poten-
tial theory was further extended afterwards by 
himself (Fabrikant, 2000; 2001). Using his results, 
other researchers found that exact solutions of some 
more complicated problems could be obtained 
(Hanson, 1992b; 1994). In recent years, the present 
authors generalized Fabrikant’s method for solving 
mixed boundary value problems of multi-field 
coupled media (Chen, 1999c; Ding and Chen, 2001; 
Chen et al., 2004b). Various exact three-dimensional 
solutions were obtained, which enable us to gain 
deeper insight into the effect of coupling phe-
nomena on material behavior and structural re-
sponse. 

This article is aimed at presenting the 
state-of-the-art of recent developments of the 
potential theory method along the lines of Fabrikant. 
The paper is organized as follows. First, the key 
idea of Fabrikant’s method is explained, and some 
recent relevant studies on transversely isotropic 
elasticity are briefly reviewed. The authors’ work 
on multi-field media then constitutes the main body 
of this article, arranged in two different sections. 
Some important results are repeated here. The pa-
per concludes with some remarks concerning ad-
ditional information and future directions. 

Throughout this paper, we use the following 

terminology. If crack problem is considered, then 
the term “normal crack” means that the crack is 
subjected to normal loading at its surfaces, which is 
symmetric with respect to the crack plane; while the 
term “tangential crack” corresponds to a tangential 
loading applied antisymmetrically with respect to 
the crack plane. If contact problem is considered, 
the term “smooth contact” stands for the case when 
only normal displacement is prescribed and the 
tangential stresses vanish in the domain of contact; 
the term “tangential contact” stands for the case 
when only the tangential displacements are pre-
scribed and the normal stress vanishes in the do-
main of contact; and the term “adhesive contact” 
for the case that both normal and tangential dis-
placements are prescribed in the domain of contact. 
In the following, a indicates either the radius of a 
circular crack or the radius of a circular contact area. 
It is emphasized that for the mixed boundary value 
problem of a transversely isotropic half-space, the 
potential theory method to be presented only ap-
plies to the case when the plane of isotropy is par-
allel to the plane surface.  
 
 
FABRIKANT’S POTENTIAL THEORY METH- 
OD FOR ELASTICITY 

 
The key point of Fabrikant’s method is to ex-

press the reciprocal of the distance between two 
points as (Fabrikant, 1989) 
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where M(r,φ,z) and N(r0,φ0) are two points in the 
space (N is on z=0),  
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It seems rather cumbersome to rewrite the 

simple expression 1/R in such a complicated inte-
gral form. However, this new form greatly facili-
tates the acquirement of exact analytical solutions 
of mixed boundary value problems. In particular, 
the two new parameters l1 and l2 as introduced in 
Eq.(2) can make the expression of solutions neater 
and more compact. As an illustration, let us con-
sider the problem of a potential function V, which 
satisfies the Laplace equation in the half-space z≥0 
and vanishes at infinity, subject to the following 
mixed boundary conditions on z=0: 

 
V=v(r, φ), for r≤a, 0≤φ≤2π, 

0V
z

∂
=

∂
, for r>a, 0≤φ≤2π.                               (4) 

 
According to the potential theory (Courant and 

Hilbert, 1953), the function V can be written as the 
potential of a simple layer as 
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Using Eq.(1) and the boundary conditions in 

Eq.(4), we can obtain the governing integral equa-
tion (Fabrikant, 1986) 
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where L(⋅) is an operator (Poisson operator) defined 
as 
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It can be seen that the left-hand side of Eq.(6) 
contains a sequence of two Abel-type operators and 
one Poisson operator. By applying proper combi-
nations of Abel operator and Poisson operator to 
both sides of Eq.(6), Fabrikant (1986; 1989) ob-
tained 
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where 2 2 2 2
1 0( ) /h a l a a r a= − − . The first equal-

ity in Eq.(8) is very useful when an explicit 
evaluation of the integrals is possible. For example, 
when v(r,φ)=vnrncos(nφ), here vn is a constant, the 
potential function V can be obtained as 
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where Γ is the Gamma function and  
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is the hypergeometric function. It can be readily 
seen that the expression for V(r,φ,z) in the full space 
is obtained in terms of elementary functions. 

The above key procedure was applied with 
appropriate extensions by Fabrikant to analyze 
various mixed boundary value problems in me-
chanics and other engineering areas (Fabrikant, 
1989; 1991). In particular, he obtained many exact 
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and complete three-dimensional solutions of crack 
and contact problems in terms of elementary func-
tions for transversely isotropic elastic materials. 
These include the solution of a penny-shaped or 
external circular crack under symmetric normal 
point forces or antisymmetric tangential point 
forces that are applied at the crack surface; the 
solution of upright or inclined circular punch with a 
flat end on an elastic half-space, and the solution of 
the problem of a tangential loading underneath a 
smooth circular punch, etc. Apart from the exact 
solutions, efficient approximate analyses were also 
suggested, again based on the new method, to in-
vestigate the more complicated problems such as 
close interaction of pressurized coplanar circular 
cracks, flat crack of general shape, flat punch of 
arbitrary planform, interaction between punches, 
curved punch, rough punch, and interaction be-
tween loading and bonded punch, etc. It is noted 
that Fabrikant’s results are usually derived for 
materials characterizing transverse isotropy, while 
the results for isotropic materials are obtained by 
using the L’Hospital’s rule. 

New solutions and insightful findings have 
been being reported continuously by Fabrikant in 
the latest decade. This indicates that his creative 
method has laid a solid foundation for future re-
search. Here, we just mention several of his recent 
papers. In 1997, he considered three major types of 
contact problems (smooth contact, tangential con-
tact and adhesive contact), for which relationships 
between the resultant forces and moments were 
established (Fabrikant, 1997a). Along with the 
generalized method of images, the cases of flat 
cracks of arbitrary shape inside a transversely iso-
tropic elastic half-space and inside a layer were 
considered (Fabrikant, 1997b). It was shown that 
the solutions of normal and tangential crack prob-
lems have an intrinsic relationship; the significance 
of this finding is clear: the normal problem is sim-
pler and through the established relationship one 
can avoid solving the more complicated tangential 
problem (Fabrikant, 1998a). Fabrikant (1998b) 
derived the expression for elastic field variation due 
to the variation of domain of crack or contact, and 
an interesting term “crack and contact calculus” 

was put forward. A full space solution of the 
problem of a penny-shaped crack interacting with 
two arbitrarily located normal forces was derived in 
Fabrikant (1999), while the case for two tangential 
forces was considered in another paper (Fabrikant, 
2000). Exact solution for the external tangential 
contact problem was derived in Fabrikant (2001). 
Recently, he considered the contact problem for a 
transversely isotropic elastic layer by using the 
generalized images method (Fabrikant, 2004).  

The unique results obtained by Fabrikant were 
also employed by other researchers to deal with 
problems involving more complicated effects. 
Hanson (1992a) obtained a Green’s function for a 
point shear dislocation coplanar with a 
penny-shaped crack. Hanson (1992b; 1992c; 1994) 
extended Fabrikant’s contact analysis to include the 
sliding friction of Coulomb type for conical, 
spherical or cylindrical circular indentation. Han-
son (1993) and Hanson and Johnson (1993) also 
discussed the particular cases for isotropy. It is 
noted that for the normal contact problems, Hanson 
provided an alternative way to derive the solutions 
by integrating the point force solution for a 
half-space over the contact region. This method is 
straightforward but the contact pressure under the 
punch should be known a priori. Hanson (1992d) 
obtained closed form analytical expressions in 
terms of elementary functions for the potential 
functions for an infinitesimal prismatic coplanar 
dislocation loop interacting with a circular crack.  
Yong and Hanson (1992) showed that the coupled 
two-dimensional integral equations relevant to 
mixed boundary value problems with annular type 
regions could be converted to two non-coupled 
integral equations, whose solutions were then ob-
tained in series form. Yong and Hanson (1994a) 
proposed an efficient numerical method for study-
ing the circular crack system containing a 
penny-shaped crack and a concentric, coplanar 
external crack under arbitrary normal loading in a 
transversely isotropic body. Yong and Hanson 
(1994b) developed a method, which is based on 
point set theory and properties of orthogonal func-
tions, for determining exact solutions for 
three-dimensional crack and contact problems with 
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complicated geometric configurations. For ellipti-
cal Hertzian contact, Hanson and Puja (1997a) 
derived the elastic field in transversely isotropic 
half-space in closed-form expressions for both 
normal and shear loading. The elastic field in a 
transversely isotropic half-space caused by a cir-
cular flat bonded punch under torsion loading was 
presented by Hanson and Puja (1997b). Analytical 
expressions were derived for the elastic fields in a 
transversely isotropic half-space with various 
loadings applied over a circular area on the surface 
(Hanson and Puja, 1998a) and two special cases 
were investigated in Hanson and Puja (1998b). 
Karapetian and Hanson (1994) presented an 
evaluation of crack opening displacement and 
stress intensity factors for the problem of a con-
centrated load outside a circular crack. Karapetian 
and Kachanov (1996) derived exact solutions in 
elementary functions for the stress intensity factors 
of circular cracks interacting with various stress 
sources including dipoles, moments, centers of 
dilatation and rotation. Later, they extended their 
results (Karapetian and Kachanov, 1996) to the 
case of a half-plane crack (Kachanov and Kara-
petian, 1997). Karapetian and Kachanov (1998) 
further obtained Green’s functions (in integral form) 
for a transversely isotropic space containing a cir-
cular crack by using the principle of superposition. 
Xiao et al.(1995) considered the interaction be-
tween two skew-parallel penny-shaped cracks in a 
3-D transversely isotropic solid and obtained a 
closed-form solution for the stress intensity factors 
by the approach of series expansion in terms of the 
distance between the centers of the cracks. Kac-
zyński and Matysiak (2003) studied thermal 
stresses due to a plane crack lying on an interface in 
a microperiodic two-layered composite under uni-
form heat flow. Popova and Gorbatikh (2004) 
discussed the problem of a planar frictional sliding 
that initiates in the vicinity of reduced friction, and 
then uniformly propagates under the increased 
shear load as a penny-shaped zone. 
 
 
POTENTIAL THEORY METHOD FOR 
PIEZOELECTRIC MATERIALS 

General solution 
The general solution for transversely isotropic 

piezoelectric materials was first presented by Wang 
and Zheng (1995) by extending the derivation for 
transversely isotropic elasticity (Elliott, 1948). 
Ding et al.(1996) suggested a rigorous mathe-
matical derivation using the operator theory and 
obtained a simpler general solution, which can be 
rewritten in a complex form (Chen, 1999c; Ding 
and Chen, 2001) 
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where Λ=∂/∂x+i∂/∂y, U=u+iv, u(v,w) and Φ are 
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where, σ1=σx+σy, σ2=σx−σy+2iτxy, τz=τxz+iτyz and 
D=Dx+iDy,  σi(τij) are the normal stress (shear stress) 
components, Di are components of electric dis-
placement, cij, eij and εij are elastic, piezoelectric 
and dielectric constants, respectively, and γij are 
constants defined in Chen (1999c). 

It is noted here that the general solution given 
in Eqs.(11) and (13) is only valid for distinct 
eigenvalues 2( ),is while for other cases, different 
forms should be adopted (Ding et al., 1997a; Ding 
and Chen, 2001). In this paper, we will just pay our 
attention to the case of distinct eigenvalues. 

It is clear that the solution presented above is 
expressed in terms of (quasi) harmonic functions or 
potential functions. Hence, it becomes natural to 
solve related problems in the category of potential 
theory. Chen (1999c) showed that Fabrikant’s 
method could be readily applied in analyzing mixed 
boundary value problems of transversely isotropic 
piezoelectric materials. This can be achieved by 
introducing a new potential function which corre-
sponds to the electric field. We will present the 
basic analysis procedure for the normal and tan-
gential crack problems as well as contact problems 
in the following subsections. 

 
Normal crack problems 

Suppose that a transversely isotropic piezo-
electric space is weakened by a flat crack S in the 
plane z=0, with arbitrary pressure p and surface 
charge q applied symmetrically to the upper and 
lower crack faces. The above crack problem can be 
transformed into a mixed boundary value problem 
for a half-space z≥0. Chen and Shioya (1999a) 
assumed that 
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in which ω and ϕ stand for the crack face dis-
placement and electric potential, respectively, 
R(M,N) is the distance between the points M(r,φ,z) 
and N(ρ,ψ,0). From the boundary conditions at z=0, 
the constants ci and di in Eq.(14) were determined 
and the governing equations were finally derived as 
(Chen and Shioya, 1999a) 
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where gi and A are constants defined in Chen and 
Shioya (1999a). The above two equations have the 
same structure as the corresponding equation ob-
tained by Fabrikant (1989) for transversely iso-
tropic elasticity, and hence the results presented 
therein can be utilized directly. If a penny-shaped 
crack of radius a is considered, then for any poly-
nomial form distributions of p and q, all elasto-
electric field variables can be expressed in ele-
mentary functions. In particular, the fundamental 
solution was derived by Chen and Shioya (1999a) 
for point loading also in terms of elementary func-
tions. If the point force P and point electric charge 
Q are applied at the points (r1,φ1,0) and (r2,φ2,0), the 
intensity factors can be written as (Chen and Shioya, 
1999a) 
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This expression is very simple and had not 
been derived by other researchers before (Wang, 
1992; Huang, 1997). It clearly shows that both 
factors are independent of material constants and 
are only related to the corresponding field variables 
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applied at the crack faces. The stress intensity 
factor (SIF) and electric displacement intensity 
factor (EDIF) for arbitrarily distributed loadings 
can be obtained simply through integration over the 
crack surface (Chen and Shioya, 1999a). 

Chen and Shioya (1999b) also presented the 
fundamental solution of an external circular crack. 
For a penny-shaped crack subjected to far-field 
uniform mechanical and electric loading, Chen et 
al.(2000) derived the exact solution in terms of 
elementary functions by using the principle of su-
perposition. The exact solution for a semi-infinite 
crack was derived from the solution obtained in 
Chen and Shioya (1999a) by using a limit procedure 
(Chen, 1999a), which was originally suggested by 
Fabrikant et al.(1993). 
 
Tangential crack problems 

For a flat crack subjected to a complex shear 
loading τ that is antisymmetric with respect to the 
crack plane, it can be assumed (Chen and Shioya, 
2000)  
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Here U(N) represents the crack surface complex 
displacement. Like the normal crack problem, the 
constants ci in Eq.(18) were determined from the 
boundary conditions and the following governing 
equation was also derived  
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where G1 and G2 are two constants defined in Chen 
and Shioya (2000). Again, Eq.(20) is exactly the 

same as that for elasticity (Fabrikant, 1989) and can 
be solved when the crack domain is circular. The 
exact solution for a penny-shaped crack subjected 
to uniform shear loading was presented in Chen and 
Ding (1999a), whose results showed good agree-
ment with those obtained by Kogan et al.(1996). 
The fundamental solution for a penny-shaped crack 
subjected to an antisymmetric point shear force was 
obtained in Chen and Shioya (2000) with the mode 
II and III SIFs being 
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Here it is assumed that the point complex shear 
force T=Tx+iTy is applied at the point (r0,φ0,0). 
Unlike the normal crack, the mode II and III SIFs 
depend on the material properties. Having obtained 
Eq.(21), the SIFs for an arbitrarily distributed shear 
loading can be obtained through integration and in 
fact, for the uniform shear loading, the result in 
Chen and Ding (1999a) was recovered. 

The exact solution of the problem of an ex-
ternal circular crack subjected to an antisymmetric 
shear loading was obtained by Chen et al.(2001a). 
Hou et al.(2001b) presented the corresponding 
solution for a half-plane crack. 
 
Other crack problems 

Based on the Green’s functions for two-phase 
piezoelectric materials (Ding et al., 1997a), Chen et 
al.(1999a) presented integral equations for general 
boundary value problems of a transversely isotropic 
half-space. As an example, the exact solution of the 
normal crack problem was derived in a way dif-
ferent from Chen and Shioya (1999a). Further, 
Chen et al.(2001b) derived an exact solution for a 
penny-shaped crack subjected to point normal 
loading that is antisymmetric with respect to the 
crack plane by virtue of Fabrikant’s results. In 
connection with the principle of superposition, Hou 
et al.(2001a) obtained the solution for the case 



Chen et al. / J Zhejiang Univ SCI   2004 5(9):1009-1021 1016

when a concentrated normal force is applied to one 
crack surface while the other surface is stress-free. 
The interaction between arbitrarily located point 
forces and a circular crack was considered by Hou 
et al.(2001c) by extending the work of Karapetian 
and Hanson (1994). Hou et al.(2002) presented the 
Green’s functions for an infinite transversely iso-
tropic piezoelectric space containing a circular 
crack. A systematic study was carried out by Hou 
(2000) for various interaction problems. 

It is noted that Karapetian et al.(2000) pre-
sented exact solutions for normal and tangential 
crack problems using a method almost identical 
with that proposed by Chen et al.(Chen and Shioya, 
1999a; 2000; Chen, 1999a). Later, Karapetian et 
al.(2002) established a correspondence principle 
between elastic and piezoelectric problems for 
transversely isotropic materials, using which the 
solution for piezoelectric materials can be directly 
derived if the corresponding solution for elastic 
materials is known and written in a proper form. 
 
Contact problems 

Fabrikant’s potential theory method for elastic 
contact mechanics has also been extended suc-
cessfully for piezoelectric materials. For the normal 
contact problem with surface displacement ω and 
electric potential ϕ prescribed within the contact 
area S, the potential functions Fi still take the form 
as shown in Eq.(14), but with 
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where σ0(N) and D0(N) stand for values of σz and Dz 
at point N. The satisfaction of the boundary condi-
tions leads to the determination of the arbitrary 
constants ci and di in Eq.(14) as well as the fol-
lowing governing equation (Chen, 2000a): 
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where gi and A are different from those in Eq.(16) 
(Chen, 2000a). Again, the above equation has the 
same structure as that for elastic contact problems 
(Fabrikant, 1989) and hence Fabrikant’s results can 
be utilized. For an electrically inductive spherical 
rigid indenter of radius R and constant electric 
potential Φ0, Chen and Ding (1999b) got the 
expressions for G and H as 
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Here a is the circular contact region which can be 
determined immediately if the total force applied 
on the indenter is known. The expressions for the 
full-space electro-elastic field can then be obtained 
from Eq.(24) by simple differentiation, with all 
results being in terms of elementary functions. It is 
noted that, due to the discontinuity of the electric 
potential across the contact border, singularities 
arise in the stress field and electric displacement 
field, resulting in the following SIF and EDIF at the 
edge of the contact area:  
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Chen (1999b) presented exact and complete 

expressions for the electro-elastic field for the 
problem of a tilted circular flat punch indenting a 
transversely isotropic half-space, while Chen et 
al.(1999b) derived the exact solution for a rigid 
conical punch. For the tilted circular flat punch, the 
singularities come from the discontinuity of electric 
potential as well as the discontinuity of normal 
displacement across the contact border, while for 
the conical indentation; another type of singularity 
(logarithmic) emerges because of the sharp apex of 
the indenter. 

It was noted earlier that the solution to elastic 
contact problem can also be obtained by integrating 
the point force solution (Hanson, 1992b; 1992c; 
1993; 1994; Hanson and Johnson, 1993). This so-
lution methodology has been extended to the case 
of transversely isotropic piezoelectric materials 
(Ding et al., 1999; 2000; Hou, 2000). In particular, 
Ding et al.(2000) considered the general contact 
mechanics of two piezoelectric bodies and drew the 
conclusion that the contact stress and contact elec-
tric displacement have the same distribution as that 
for the elastic contact. The contact problems in-
cluding Coulomb type of friction were also con-
sidered. The elliptical Hertzian contact for piezo-
electric bodies was considered by Ding et al.(1999). 
This work was recently extended to the case for 
magneto-electro-elastic materials (Hou et al., 
2003). 
 
 
POTENTIAL THEORY METHOD FOR MULTI- 
FIELD MATERIALS WITH THERMAL EFFECT 

 
Although the potential theory method pro-

posed by Fabrikant (1989; 1991) for pure elasticity 
has been widely applied in analyzing various 
boundary value problems in contact and fracture 
mechanics, it is very surprising that no work in-
volving thermal effect can be found yet by this 
paper’s authors. This may boil down to the lack of a 
general solution for transversely isotropic ther-

moelasticity that is expressed in terms of (quasi) 
harmonic functions only. The general solution 
employed by Podil’chuk and Sokolovskii (1994) 
involves four potential functions, three of them are 
quasi-harmonic and the remaining one satisfies a 
differential equation with inhomogeneous term. 
Ding et al.(1997b) also presented a general solution 
consisting of a particular solution and a general 
solution. The particular solution can be solved from 
the heat conduction equation and the corresponding 
boundary conditions. The general solution is iden-
tical to those of the purely elastic one. In either the 
general solution employed by Podil’chuk and 
Sokolovskii (1994) or the one proposed by Ding et 
al.(1997b), the temperature field should be solved 
independently and a priori. For transient problems, 
Ashida et al.(1993) proposed a general solution 
technique in which the temperature filed also 
should be solved in advance. Employing such 
general solutions, however, we cannot use the many 
splendid results obtained by Fabrikant (1989; 
1991). 

To overcome the difficulty, Chen and Ding 
(2003) derived a general solution that does not 
include the particular solution by using the operator 
theory. The key point is to solve the steady state 
Fourier equation governing the temperature field 
simultaneously with the equilibrium equations. The 
general solution for transversely isotropic elasticity 
with thermal effect thus reads as (Chen and Ding, 
2003) 
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where Fi are the quasi-harmonic functions satisfy-
ing Eq.(12). It is noted that the definition of mate-
rial constants in Eq.(26) is different from those in 
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Eqs.(11) and (13), and the reader is referred to Chen 
and Ding (2003) and Chen et al.(2004a) for details. 
The general solution in Eq.(26) is also valid for 
distinct eigenvalues si. 

Consider an infinite transversely isotropic 
elastic body containing a flat crack S, the crack 
plane being parallel with the plane of isotropy. If 
the crack surfaces have symmetric temperature 
distribution Θ(x,y), we can still assume the potential 
functions Fi in the form of Eq.(14). However, the 
two functions G and H now  
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where ω and ϑ are the crack surface displacement 
and temperature gradient, respectively. Similarly, 
the constants in Eq.(14) were determined from the 
boundary conditions and the following governing 
equations were derived simultaneously (Chen and 
Ding, 2003) 
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where 3 11 33/s k k= ; here kij are the coefficients of 

thermal conductivity. The expressions for gij are 
given in Chen and Ding (2003). It can be seen that 
the first equation in Eq.(28) is similar to the gov-
erning equation for elastic contact mechanics while 
the second equation is similar to the one for elastic 
crack mechanics (Fabrikant, 1989). Thus, the re-
sults of Fabrikant can be employed again for the 
followed analysis. For a penny-shaped crack with 
uniform temperature T0 applied over the crack sur-
face, Chen and Ding (2003) derived 
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From Eq.(29) the full-space thermo-elastic field 
can be obtained through simple differentiation and 
all results are expressed in terms of elementary 
functions. The SIF was then derived as 
 

3 12 02 2 ,k as g Tσ = −                             (30) 
 
which agrees well with that obtained by Tsai (1983). 
Note that the definition of kσ in Eq.(17) is some-
what different from that in Chen and Ding (2003). 
The fundamental solution for the problem of a 
penny-shaped crack subjected to a pair of point 
temperature loads Θ0 symmetrically applied at the 
point (r0,φ0,0) was derived by Chen et al.(2004a). 
The expression for SIF is as follows 
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Then the SIF for an arbitrarily distributed tem-
perature can be obtained by integrating Eq.(31) 
over the crack surface. 

The general solution for thermo-piezo-elasti- 
city was derived by Chen (2000b), who also ob-
tained the exact solutions for a penny-shaped crack 
subjected to uniform temperature loading on the 
crack surface. The general solution for thermo-ma- 
gneto-electro-elastic materials was presented by 
Chen et al.(2004b).  
 
 
CONCLUDING REMARKS 

 
This paper presented a state-of-the-art survey 

of the recent advance in potential theory method 
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which was originally proposed by Fabrikant. Much 
emphasis was put on the studies on multi-field 
coupled media that had been carried out by the 
authors themselves. It should be noted that, how-
ever, compared to the results for pure elasticity, the 
results for multi-field coupled theory are still very 
limited. For examples, most results were obtained 
for simple configurations (circular, half-plane or 
external circular region); the interaction between 
several punches and/or cracks has not yet been 
considered, the more complicated problems such as 
those studied by Kaczyński and Matysiak (2003) 
and Popova and Gorbatikh (2004) are still re-
maining untouched. Thus, continuous attention 
should be paid to these and other new topics. 

In the case of isotropic elasticity, the two ei-
genvalues are equal for which Fabrikant (1989; 
1991) adopted the L’Hospital rule to obtain the 
corresponding solutions. However, this method 
involves tedious mathematical manipulation. For 
multi-field coupled media, the task becomes even 
more awesome. In the appendices of Chen and 
Shioya (1999a) and Chen (2000a), an alternative 
way has been proposed that can overcome this dif-
ficulty. However, it has not been deeply explored 
yet. 

When the thermal effect is taken into 
consideration, the problem becomes more complex. 
As shown in Chen et al.(2004), although the gov-
erning equations have the same structures as those 
studied by Fabrikant (1989, 1991), lengthy 
mathematical manipulation are involved in 
obtaining the solutions because of the different 
right-hand side content.  
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