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Abstract:    Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural 
network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad-
vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for 
the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These 
conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The 
approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs). 
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INTRODUCTION 
 

Associative memory model is a kind of com-
monly used neural network model with the ability of 
information memory and association. Bidirectional 
associative memory (BAM) proposed by Kosko 
(1987) is a generalization of Cohen-Grossberg’s 
model from single layer to two layers. Since then, 
researches on BAM had yielded rich results, espe-
cially on the stability of neural network models and 
the improved ones (Liao, 2000; Fu et al., 2000; Cao 
and Wang, 2002; Zhang et al., 1993; Xu et al., 1992; 
Jing, 1997). However, all these results were usually in 
the form of complicated formulas making them dif-
ficult for engineering application. As modern robust 
linear control has a standard representation, called the 
linear fractional transformation (LFT), for describing 
models and uncertainty, neural networks may also 

have a standard representation. We propose that 
standard neural network model (SNNM) be consid-
ered as such a standard representation. By virtue of 
the similar methods in robust control, most neural 
network models, of which nonlinear activation func-
tions have bounded output, can be transformed into 
SNNMs to be analyzed in a unified way. By using 
Lyapunov method, the global asymptotic stability of 
the equilibrium points of SNNMs is verified when the 
equilibrium points locate at the origin. The stable 
conditions are formulated as linear matrix inequalities 
(LMIs), which are easily verified and are less con-
servative. Then, we transform the continuous BAM 
neural networks into the SNNMs. By solving some 
LMIs, we know whether the equilibrium points of the 
continuous BAM neural networks are globally as-
ymptotically stable or not. The approach proposed 
here will provide a new way for stability analysis and 
yield some conditions of stability that are better than 
the previously published results, which is significant 
for the design and application of the continuous BAM 
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neural networks. 
 
 

STATEMENT OF PROBLEMS 
 

The continuous BAM neural network can be 
described by the following nonlinear differential 
equations (Jing, 1997): 

 
( ) ( ) ( ( ))
( ) ( ) ( ( ))
t t t
t t t

= − + +
 = − + +

x Ax Wf y I
y By Vg x J

                  (1) 

 
where x(t)=(x1(t), x2(t), …, xn(t))T∈ℜn and y(t)=(y1(t), 
y2(t), …, ym(t))T∈ℜm are state vectors, f(y(t))= 
(f1(y1(t)), f2(y2(t)), …, fm(ym(t)))T and g(x(t))=(g1(x1(t)), 
g2(x2(t)), …, gn(xn(t)))T are function vectors, gi (i=1, 
…, n) and fj (j=1, …, m) are continuously differenti-
able and monotonically increasing sigmod functions 
defined from ℜ→ℜ,  and fi(0)=gj(0)=0, I=(I1, I2, …, 
In)T and J=(J1, J2, …, Jm)T are external input vectors, Ii 
(i=1, …, n) and Jj (j=1, …, m) are constants. W, V are 
real matrices of n×m, m×n, respectively, A=diag(a1, 
a2, …, an)>0, B=diag(b1, b2, …, bn)>0. 

Let z(t)=(x1(t), x2(t), …, xn(t), y1(t), y2(t), …, 
ym(t))T∈ℜn+m, φ(z(t))=(g1(x1(t)), g2(x2(t)), …, gn(xn(t)),  
f1(y1(t)), f2(y2(t)), …, fm(ym(t)))T, then, Eq.(1) can be 
rewritten as 

 
( )z t =Rz(t)＋Sφ(z(t))＋H                      (2) 

 

where R=diag(−A, −B) (i=1, …, n+m), 
 

=  
 

0
0

W
S

V
, 

H=(I, J)T. If gi (i=1, …, n), fj (j=1, …, m) are hyper-
bolic tangents or tanh, φi(zi(t)) (i=1, …, n+m) satisfies 
φi(zi(t))∈[−1,1], φi(zi(t))/zi(t)∈[0,1] and dφi(zi(t))/dzi(t) 
∈[0, 1]. 

In this paper, we assume that the training of 
continuous BAM neural network is finished before 
we analyze it. Thus, the weights are not changeable in 
the process of stability analysis. Because there are 
many detailed discussions on the existence and 
uniqueness of the equilibrium points of BAM neural 
networks (Xu et al., 1992; Jing, 1997), we assume that 
there exists a unique equilibrium point and that it is 
changed by the different input H. Now the problem 

under consideration is what are sufficient conditions 
on weights matrices R and S which guarantee that all 
the trajectories of system Eq.(2) converge to the 
(unique) equilibrium point? 

 
 

STANDARD NEURAL NETWORK MODEL 
 

In robust control, in order to describe models and 
uncertainty, we transform the system into a standard 
form called LFT. Similar to the LFT, and referring to 
the paper written by Moore and Anderson (1968), we 
can analyze the stability and performance of the 
neural network by transforming it into a standard 
form called standard neural network model (SNNM). 
The SNNM represents a neural network model as the 
interconnection of a linear dynamic system and static 
nonlinear operators composed of bounded activation 
functions. Here, we discuss only the continuous 
SNNM, since there are similar architecture and results 
for corresponding discrete-time model (Liu and 
Zhang, 2003). The continuous SNNM structure is 
shown in Fig.1. The block Φ is a block diagonal op-
erator composed of nonlinear activation function 
φi(ξi(t)), which will typically be continuous, differen-
tiable, monotonically increasing, slope-restricted, and 
have bounded output. The matrix N represents a linear 
mapping between the inputs and outputs of the inte-
grator ∫ (or time delay z−1I in the discrete time case) 
and the operator Φ. The vectors ξ(t) and φ(ξ(t)) are the 
input and output of the nonlinear operator Φ respec-
tively. 

 
 
 
 
 
 
 

 
If N in Fig.1 is partitioned as  
 

 
=  

 

A B
N

C D
 

 
where  A∈ℜn×n,  B∈ℜn×L,  C∈ℜL×n,  D∈ℜL×L,  x∈ℜn,  
φ∈ℜL, and L∈ℜ is the number of nonlinear activation 

Fig.1  Continuous standard neural network model 
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functions (that is, the total number of neurons in the 
hidden layers and output layer of the neural network), 
then, the continuous SNNM can be depicted as a 
linear difference inclusion (LDI): 
 

             
( ) ( ) ( ( ))
( ) ( ) ( ( ))
( ( )) ( ( ))

t t t
t t t

t t

= +
 = +
 =

x Ax B
Cx D

φ ξ
ξ φ ξ
φ ξ ξΦ

                           (3) 

 
The unique equilibrium point of SNNM Eq.(3) is 
xeq=0. If D=0 and the activation functions satisfy the 
sector conditions φi(ξi(t))/ξi(t)∈[qi, ui], i.e., 
[φi(ξi(t))−qiξi(t)] ⋅[φi(ξi(t))−uiξi(t)]≤0, i=1, …, L, the 
following theorem is true. 
Theorem 1    The equilibrium point of the continuous 
SNNM Eq.(3) is asymptotically stable, if there exist a 
symmetric positive definite matrix P, and diagonal 
semi-positive definite matrix Λ and Τ, such that the 
following LMI holds: 

 

11 12

21 22

0 
< 

 

G G
G G

                                  (4) 

 
where  

11 2Τ Τ= + −G A P PA C TQUC , 

12 ( )Τ Τ Τ= + + +ΛG PB A C C Q U T , 

21 ( )Τ= + + +ΛG B P CA T Q U C , 

22 2Τ Τ= + −G CB B C TΛ Λ , 
Q=diag(q1, q2, …, qL),  
U=diag(u1, u2, …, uL).  

 
Proof    For simplicity, we denote x(t) as x, ξi(t) as ξi,  
 
 

 
 

 
 
 
 
 
 
 
 
 

φi(ξi(t)) as φi, φ(ξ(t)) as φ. Consider  SNNM Eq.(3) 
and the Lur’e-Postnikov Lyapunov function (Boyd et 
al., 1994): 
 

0
1

( ) 2 ( )di
L

i i
i

ξ
λ φ σ σ

 Τ

 
=

= + ∑ ∫V x x Px  

 
P>0, λi≥0, thus, ∀x≠0, V(x)>0 and V(x)=0 iff x=0. 
The derivative of V(x) with respect to t is 
 

T

1

d ( ) 2( )( )
d

L

i i i
i

V
t

λ φ
=

= + +∑x x P C Ax Bφ  

T T T T T( ) ( )= + + +x A P PA x x PB A C φΛ  
T T

T T T

( )
0 0

( )
0 0

+ +

< ∀ ≠
+ + = =

B P CA x
x

CB B C
x

φ

φ φ

Λ

Λ Λ
    (5) 

                                                                           
The sector conditions, ( )( ) 0i i i i i iq uφ ξ φ ξ− − ≤ , can be 
rewritten as follows: 
 

( )( ) 0i i i i i iq uφ φ− − ≤C x C x  
 

which is equivalent to: 
 

2 T T2 2 ( ) 2 0i i i i i i i i iq u q uφ φ− + + ≤C x x C C x        (6) 
 

where Ci is the ith row of matrix C. Rewriting Eqs.(5) 
and (6) in matrix notation as follows: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1

T T

1 1

1 1

1 1

0 0 0 ( ) 0 0
0 0 0 0 0 0

0 0 0 0 0 0
( ) 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0
i

i i i
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L L
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φ φ
φ φ

φ φ
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 

T

x xC C
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where Λ=diag(λ1, λ2, …, λL), T=diag(τ1, τ2, …, τL) 
and Λ≥0, T≥0. 

Although the proof in Theorem 1 is similar to 
that of the book (Boyd et al., 1994) in page 120, sector 
boundary in Theorem 1 is any real number and is not 
limited to [0,1] as in the book (Boyd et al., 1994). So 
the results in the book (Boyd et al., 1994) are the 
special case of Theorem 1. When qi=0, ui=1, i=1, …, 
L, Eq.(4) equals to Eq.(8.6) in the book (Boyd et al., 
1994). In the same way, when qi=0, ui=k1, i=1, …, L, 
Eq.(4) equals to Eq.(9) in the paper (Suykens et al., 
1998). 
 
 
STABILITY ANALYSIS 
 

To apply Theorem 1 to stability analysis of the 
continuous BAM neural network, it is necessary to 
transform the BAM neural network Eq.(2) to the 
SNNM Eq.(3). We move the equilibrium point to the 
origin and have 

 
( )tz ＝Rz(t)＋Sφ(ξ(t))＋H, ξ(t)＝z(t)        (7) 

 
If zeq is the unique equilibrium point of system 

Eq.(7), it satisfies 
 

0＝Rzeq＋Sφ(zeq)＋H 
 

Taking the affine transformation z′(t)=z(t)−zeq to 
system Eq.(7), we get 
 

( )t′z =Rz′(t)+Sη(σ(t)), η(σ(t))=φ(σ(t)+zeq)−φ(zeq), 
σ(t)=z′(t)                                                  (8) 

 
System Eq.(8) has the same form as system Eq.(7), 
but the equilibrium point of this system is at the orig- 

 
 
 
 
 
 
 
 
 
in. The components of the nonlinear activation func-
tion η ηi(σi(t))=φi(σi(t)+zeqi)−φi(zeqi) (i=1, …, n+m) 
are different if zeqi are different. But ηi keeps some 
properties of φi. In system Eq.(8), if φi is taken to be 
hyperbolic tangent, or tanh, ηi(σi(t))=tanh(σi(t)+zeqi)− 
tanh(zeqi). If zeq=0, the sectors for each function ηi are 
[0, 1]. When zeq≠0, their sector is the subset of the 
former. 

Let ϕi(s)=tanh(s+zeqi)−tanh(zeqi), the upper 
bounds of the sectors can be calculated by  

 
ui= max{ϕi(s)/s:s≠0}, U=diag{ui}.  
 
According to Eq.(7) and Theorem 1 in Xu et 

al.(1992), it follows that the absolute values of each 
coordinate of the vector Rz(t)+Sφ(ξ(t)) are less or 
equal to 1 if system Eq.(7) has an asymptotically 
stable equilibrium point. Therefore one can obtain 
|ξi|≤1+|Hi|=ri for all i=1, …, n+m. Thus, |s+zeqi|≤ri, 
|zeqi|<ri. The lower bounds for the sectors can be es-
tablished by the following Lemma 1. 
Lemma 1    If  |s+zeqi|≤ri, then ϕi(s)/s≥qi=(tanh(ri) 
−tanh(|zeqi|))/(ri−|zeqi|),  Q=diag{qi}[if |zeqi|=ri, qi 

=d(tanh(s))/ds (s=ri)]. 
The proof of Lemma 1 can be referred to the 

proof of the Lemma 1 in the paper of Barabanov and 
Prokhorov (2002). 

Therefore, system Eq.(8) is transformed into the 
form of SNNM (3), where A=R, B=S, C=E(n+m)×(n+m), 
D=0, L=n+m. Also, the nonlinear activation function 
ηi(σi(k)) satisfies sector condition [qi, ui]. Thereby, we 
can use Theorem 1 to analyze the global asymptotic 
stability for system Eq.(8) [equivalently, system 
Eq.(1)]. 

Here, we summarize the steps of our approach 
for stability analysis of the continuous BAM neural 
network Eq.(1). 

1. The continuous BAM neural network Eq.(1) 

 
 

T T T T T
1 2

0 T T T
1

2 ( )
( )

( ) 2

L

i i i
i

τ
=

   + + − +
− + =  −   + + − +   
∑ A P PA PB A C C TQUC C Q U T

T T T
B P CA CB B C T Q U C T

Λ
Λ Λ Λ

 

2 ( )
0

( )    2

Τ Τ Τ Τ Τ

Τ Τ Τ

 + −  + + +
= < 

+ + + + −  

A P PA C TQUC PB A C C Q U T
B P CA T Q U C CB B C T

Λ

Λ Λ Λ
 

and using S-procedure (Boyd et al., 1994), we have 
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should be transformed into the form of system Eq.(7). 
2. It is necessary to find an equilibrium point zeq 

of system Eq.(7). If the stationary point of the BAM 
neural network Eq.(1) is determined during training, it 
becomes an equilibrium point of system Eq.(7). Oth-
erwise, one can use a simple procedure of calculating 
a few trajectories of the system until the state vector 
converges to the equilibrium point. 

3. The state vector should be shifted in such a 
way that the equilibrium point of system Eq.(7) 
moves to the origin. Thus, system EQ.(7) is changed 
to system Eq.(8). The nonlinear activation functions 
should be altered correspondingly.  

4. For each transformed transfer function [which 
has a form ϕi(s)=tanh(s+zeqi)−tanh(zeqi)] it is neces-
sary to calculate the upper bound of a sector in which 
the plot of this function lies. It may be done using the 
MATLAB’s function fiminbnd for calculating the 
minima of −ϕi(s)/s, and then the upper bound of 
ϕi(s)/s. We can use Lemma 1 to find the lower bound 
of ϕi(s)/s. Therefore we get Q and U. 

5. The MATLAB LMI Toolbox  (Gahinet et al., 
1995) can be used to solve the LMI Eq.(4) to confirm 
if the BAM neural network (1) is stable. Note that: if 
the LMI Eq.(4) has no feasible solutions, the stability 
of the BAM neural network Eq.(1) cannot be judged. 
We may analyze its stability by other complicated 
method. 

 
 

AN EXAMPLE 
 

Now we analyze the global asymptotic stability 
of a continuous BAM neural network with 4 neurons. 
The dynamic equations can be written as: 

 

1 1 1

2

2 2 1

2

1 1 1

2

2 2

( ) 1.1 ( ) 0.51tanh( ( ))
0.51tanh( ( )) 1.0

( ) 1.2 ( ) 0.62 tanh( ( ))
0.42 tanh( ( )) 1.0

( ) 1.3 ( ) 0.73tanh( ( ))
0.33tanh( ( )) 2.0

( ) 1.4 (

x t x t y t
y t

x t x t y t
y t

y t y t x t
x t

y t y

= − −
+ +

= − −
− −

= − −
+ +

= −

          

          

          

1

2

) 0.84 tanh( ( ))
0.24 tanh( ( )) 2.0

t x t
x t












+
 − −          

               (9) 

 
The connection weights of system Eq.(9) satisfy 

Theorem 1 in the paper (Xu et al., 1992), so system 
Eq.(9) has an asymptotically stable equilibrium point. 
Transform system Eq.(9) into the form of system 
Eq.(7),  where 
 

z(t)=(x1(t), x2(t), y1(t), y2(t))T,    
 

R=diag(−1.1, −1.2, −1.3, −1.4),  
 

H=(1.0, −1.0, 2.0, −2.0)T, 
 

 S=

0 0 0.51 0.51
0 0 0.62 0.42

0.73 0.33 0 0
0.84 0.24 0 0

− 
 − − 
 −
 − 

,  

 
then the unique equilibrium point is located at 
zeq=(0.1175, −0.9906, 1.3786, −1.2226)T. After cal-
culating the bounds of a sector U=diag{0.9966, 
0.8188, 0.7165, 0.7565}, Q=diag{0.4500, 0.2045, 
0.0706, 0.0870}, we invoke the LMI solver of 
MATLAB LMI Toolbox (Gahinet et al., 1995) to 
solve the LMI Eq.(4). The solver returns the follow-
ing feasible solutions: 
 

12.0297 0.9018 2.6243 2.8848
0.9018 15.1772 0.1911 0.4149

2.6243 0.1911 14.1812 4.5603
2.8848 0.4149 4.5603 12.8903

− − 
 − − − =
 −
 − − 

P ,  

 
diag{30.7315,26.5162,20.6634,20.1531}=Λ , 

 
diag{24.7151,27.2510,31.4940,30.2454}=T . 

 
P is positive definite matrix. Λ and Τ are all diagonal 
and positive definite matrices. From Theorem 1, we 
conclude that the equilibrium point zeq is globally 
asymptotically stable. The state trajectory is shown in 
Fig.2. Our result is independent of the initial value. 
Theorem 1, Theorem 2 and Theorem 3 in Xu et 
al.(1992) and Theorem 2, Theorem 3 and Theorem 4 
in Jing (1997) can only be used to analyze the locally 
asymptotic stability, however, if we can find the pa-
rameter P, Λ and Τ which satisfy some LMIs, it is 
easy to judge the global asymptotic stability of the 
BAM neural networks. 
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CONCLUSION AND FUTURE DIRECTIONS 
 

Although there are many researches on the as-
ymptotic stability of the continuous BAM neural 
networks, in this paper we proposed a novel neural 
network model called standard neural network model 
(SNNM) which simplifies the procedure for analyzing 
the stability of the BAM neural network. We trans-
form the continuous BAM neural network into 
SNNM form. Theorem 1 can be used to judge the 
global asymptotic stability of SNNM and then of the 
continuous BAM neural network. Our approach is 
easily verifiable, less conservative, meaningful to the 
design and application of the BAM neural network, 
and can be applied to other forms of neural networks, 
such as BAM neural networks with delays. Since 
Theorem 1 gives only the sufficient condition of 
global asymptotic stability for SNNM, if we could not 
get the feasible solutions of the LMI, we could not 
judge whether the system is unstable or not. Reducing 
the intensity of the hetero-association or the sector, 
we may get the feasible solutions of the LMI. How-
ever, it would also weaken the performance of the 
continuous BAM neural networks. A direction of our 
research is how to achieve a reasonable compromise 
between stability and performance of the BAM neural 
networks. On the other hand, our  approach  is  only 

 
 
 
 

restricted to the sector condition. For particular acti-
vation functions (e.g. tanh), however, we could miti-
gate the conservatism for the stable conditions by 
using their other properties (e.g. restricted slope). It is 
another direction we will research in future.  
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Fig.2  The state trajectories of the continuous BAM
neural network with 4 neurons 
x1(t), x2(t), y1(t) and y2(t) are initialized arbitrarily at t=0 s,
t=5 s and t=10 s respectively 
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