
Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 63

                                                        
 
 
 

Tools to make C programs safe: a deeper study* 
 

WANG Ji-min (王继民)†1, PING Ling-di (平玲娣)1, PAN Xue-zeng (潘雪增)1  

SHEN Hai-bin (沈海斌)2, YAN Xiao-lang (严晓浪)2 
(1School of Computer Science, Zhejiang University, Hangzhou 310027, China) 

(2Interdisciplinary Research Center on System on the Chip, Zhengjiang University, Hangzhou 310027, China) 
†E-mail: bigjim@zju.edu.cn 

Received Oct. 19, 2003;  revision accepted Jan. 12, 2004 
 

Abstract:    The C programming language is expressive and flexible, but not safe; as its expressive power and flexibility are 
obtained through unsafe language features, and improper use of these features can lead to program bugs whose causes are hard to 
identify. Since C is widely used, and it is impractical to rewrite all existing C programs in safe languages, so ways must be found to 
make C programs safe. This paper deals with the unsafe features of C and presents a survey on existing solutions to make C pro-
grams safe. We have studied binary-level instrumentation tools, source checkers, source-level instrumentation tools and safe 
dialects of C, and present a comparison of different solutions, summarized the strengths and weaknesses of different classes of 
solutions, and show measures that could possibly improve the accuracy or alleviate the overhead of existing solutions. 
 
Key words: Unsafe feature, C language, Instrumentation tools, Safe dialect 
doi:10.1631/jzus.2005.A0063                     Document code:  A                    CLC number:  TP314 
 
 
INTRODUCTION 
 

The C programming language is expressive and 
flexible, and provides precise and low level control 
over the program data. However, the expressive 
power and flexibility of C are obtained through unsafe 
language features, including unrestricted use of 
pointers (pointer arithmetic and conversion between 
pointers and integers), unchecked type casts, explicit 
memory management, etc. Improper use of these 
features can result in unexpected program behaviors, 
the causes of which are often hard to identify because 
these bugs cannot be reliably reproduced (Burrows et 
al., 2003). 

Safe languages such as Java, ML, and Modula-3 
have built-in facilities to ensure safety, which make 
them good candidates to be used to construct system 
applications. However, they are not suitable solutions 

for everyone. For one thing, as there exist innumer-
able lines of C code in current operating systems and 
all kinds of applications, it is not a sensible idea to 
abandon the existing C programs and rewrite them 
from scratch using safe language. For another, the 
safe languages may not be capable of the task because 
they do not offer the programmer control over low 
level data operations (Jim et al., 2002). Thus we must 
find an alternative solution to this problem, keep the 
high performance of C language, and at the same time, 
make it safe. 

Many solutions have been proposed recently, 
with different aspects of the safety problems taken 
into account. This paper aims to provide a survey on 
the recent development in this area.  

 
 

UNSAFE FEATURES OF C 
 

Errors in compiled C programs can be classified 
into two classes: memory access errors and type er-
rors. A memory access error occurs when a program 

Journal of Zhejiang University SCIENCE  
ISSN 1009-3095  
http://www.zju.edu.cn/jzus        
E-mail: jzus@zju.edu.cn 

 
 
*Project (No. 2003AA1Z1060) supported by the National Hi-Tech 
Research and Development Program (863) of China 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 64

accesses an invalid memory location; a type error 
occurs when an operation is performed on operands 
whose types are incompatible with the operation 
(Burrows et al., 2003). It is believed that the reasons 
why these errors show up in C programs reach deeper 
than just poor training and effort: they have their roots 
in the design of C itself (Jim et al., 2002). 

 

Memory access related 
(1) Unchecked memory access 
Not a single memory access is checked auto-

matically in C. C leaves it to the OS to judge whether 
it violates memory safety and then whether the exe-
cuting program should be terminated. Memory ac-
cesses are checked by the OS only at the boundary 
between images of programs and between OS and 
program images. Memory access errors that do not go 
beyond the boundary are simply let alone but may 
damage the program data and cause the program to 
terminate unexpectedly, leaving little or no useful 
information to the programmer. These errors may not 
be reliably reproduced and their causes are hard to 
isolate and identify. 

(2) Unrestricted pointer arithmetic 
Unrestricted pointer arithmetic may generate 

pointers to any location of the memory. If a pointer to 
a buffer goes out of bounds, and is dereferenced, the 
program data or even the program code may be 
damaged. This is the notorious “buffer overflow”. 
Buffer overflows are often caused by misuse of 
pointer arithmetic. Arrays in C are treated just as 
pointers, so array access by a bad subscript can also 
generate such an error. Off-by-one errors are of this 
kind. 

(3) Explicit memory management 
The programmer can explicitly allocate a piece 

of memory when needed, and free it when the need is 
over. However, it often leads to memory leaks or 
second-free errors (trying to free a piece of memory 
more than once) when the free calls does not match 
the allocation calls. 

(4) Null-terminated representation of strings 
Strings in C are represented as null-terminated 

byte arrays. The length of a string is not stored ex-
plicitly in the string but is calculated dynamically by 
finding the terminating zero. This often leads to string 
manipulation errors (Dor et al., 2001). 60% of the 
UNIX failures reported by the fuzz study (Miller et al., 
1995) in 1995 were due to string manipulation errors. 

Type related 
(1) Arbitrary type casts 
C allows arbitrary usage of type casts. Casts 

between integers and pointers, and between various 
types of pointers are commonplace in C. There are 
also cases where the type of the operand does not 
match the operation, yet the compiler either knows 
nothing about this or is made dumb by an explicit type 
cast. Type errors often cause dynamic errors. 

(2) Variable argument functions 
In such a function, the compiler does not know 

what type each argument should be, so takes whatever 
for granted, even does not know the precise number of 
arguments each function call should have. Statements 
like 

int i, j; 
scanf(“%d %d”, i, j); 

and 
printf(“%s”); 

will get no error messages during compiling. Misuse 
of these functions can cause the notorious “format 
string vulnerabilities” (Bouchareine, 2000; Scut, 
2001). 

(3) Union 
Different members of a union mean different 

representations of the same piece of memory. Writing 
one member of the union and reading another some-
times can cause complicated errors: 

typedef union { 
char c[4]; 
float f; 

}_u; 
_u u; 
u.c[0] = 1; 
printf(“%f”,u.f); 
/* uninitialized memory accessed! */ 

(4) Function pointers 
C provides function pointers but provides no 

guarantee that the function pointer exactly matches 
the function in arguments and returned types. If 
wrong arguments are passed to a function through the 
mismatched function pointer, or wrong type of data 
are returned, errors may show up. 

 
 

EXISTING SOLUTIONS 
 

Binary-level instrumentation tools 
Binary-level instrumentation tools can be used to 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 65

check or inspect almost all runnable programs in the 
system. No recompilation is needed−even the source 
is not needed. There are no compatibility problems 
between the programs and libraries they use−the 
analysis tool treats them alike, and reports all detected 
errors, regardless of what namespace they come from. 

Purify (Hasting and Joyce, 1992) maintains a 
two-bit state code for each byte of user memory. This 
two-bit state code records the current state of the 
corresponding byte. At the same time, Purify modifies 
the program by inserting a function call instruction 
into the program’s object code before every load and 
store, and the called function will perform the mem-
ory safety check. To catch buffer overflow violations, 
Purify allocates a small “red-zone” at the beginning 
and end of each block returned by malloc and marks it 
as unallocated (unwritable and unreadable). Valgrind 
(Seward, 2003) creates a synthetic CPU at program 
start up, translates the program code first into 
self-defined intermediate code block by block, in-
struments it and optimizes it, then translates it back 
into x86 code, and executes it on this CPU. The in-
termediate code is instrumented to do necessary 
checking, so it can detect memory access errors. 
Valgrind maintains two types of state code to record 
the validity of memory and uses these bits to detect 
memory access errors. To detect memory manage-
ment related errors and memory leaks, Valgrind pro-
vides its own version of memory management func-
tions such as malloc and free. Hobbes (Burrows et al., 
2003) is implemented as an interpreter. It fetches 
instructions from the target instruction stream and 
performs the corresponding operation. Hobbes main-
tains a shadow memory for the main memory, in 
which the memory status (initialized or not) and 
type-related information are recorded. Each instruc-
tion fetched will be type checked by a specific in-
struction analysis routine based on the information 
kept in the shadow memory.  

 
Static source check tools 

A static check tool statically checks C programs 
to find safety vulnerabilities and coding mistakes. It 
depends on no more than the program source and 
behaves just like a C compiler, but can find far more 
errors.  

Flawfinder (David, A., 2003) and ITS4 (Viega et 
al., 2000) used a built-in database of C/C++ functions 

with well-known problems to help the programmer 
improve his program. BOON (Wagner et al., 2000; 
David, W., 2003) treats C strings as abstract data type 
and models buffers as pairs of integer ranges. It first 
parses the source program, associates necessary range 
variables to each program variable and generates an 
integer range constraint for each statement of the 
input program, then constructs a directed graph from 
the constraints and uses a solver to traverse the graph, 
checking the safety property of each string, and re-
porting possible buffer overflows. SpLint (Larochelle 
and Evans, 2001; Evans, 1996; 2003) is used to detect 
anomalies in C programs. By simply analyzing the 
unmodified source code, Splint can detect many 
logical errors and it can be even more powerful by 
exploiting annotations added to libraries and pro-
grams. PREfix (Bush et al., 2000) analyzes a program 
by simulating the execution of individual functions on 
an underlying virtual machine. It first parses the 
source code into abstract syntax trees, then for each 
achievable path through the function, it traverses the 
function’s abstract syntax tree and evaluates the 
relevant statements and expressions in the tree. The 
behavior of a function is embodied by a model and 
when the simulator encounters a function call, it 
emulates the called function by using the function’s 
model.  

 
Source level instrumentation tools 

Source level instrumentation tools insert neces-
sary checking statements into the program source or 
add extensions to C syntax to achieve program safety. 
They rely on the program source to function properly, 
and the safety checking is often performed at 
run-time. 

Safe-C (Austin et al., 1994) changes the repre-
sentation of a pointer to a 5-tuple: value, base, size, 
storageClass and capability. It can detect temporal 
memory access errors as well as spatial memory ac-
cess errors. Because pointers are not the normal size, 
they need “encapsulation” when doing system calls 
and calling non-instrumented functions. Jones and 
Kelly presented a backwards-compatible bounds 
checking method and implemented it in GCC (Jones 
and Kelly, 1997). In their implementation of GCC, all 
known valid storage objects are maintained in a table, 
and one can use the table to map a pointer to a de-
scriptor of the object into which it points, which 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 66

contains the base, extent and additional information to 
improve error reporting. Because a pointer in new 
representation is of the same size as an ordinary one, 
checked code can inter-operate without restriction 
with unchecked one. Loginov et al. instrumentation 
tool (Loginov et al., 2001) also employs unchanged 
representation of pointers. It maintains a mirror of 
user memory at run time, each byte of user memory 
maps to a four-bit nibble in the mirror, indicating the 
dynamic type of the memory. This tool can catch type 
errors as well as memory access errors. Pointers in 
CCured (Necula et al., 2002; 2003; Condit et al., 2003) 
are divided into three categories: safe pointers, se-
quence pointers and dynamic (or wild) pointers. Each 
has its own capability (e.g. can it be subject to pointer 
arithmetic? can it be cast to integer?), and this capa-
bility can be used in static or run-time analysis. 
Tagged union is also provided in CCured to prevent 
bad union access.  

 
Safe dialects of C 

Some tools change the syntax of C and try to 
make it a safe language. The new language is safer but 
is not compatible with the original C and existing C 
programs must be modified to compile in the new 
environment. This is not always a good idea since 
some programs contain millions of lines of C code 
and it may take a long time to transplant them to the 
new C dialect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cyclone (Jim et al., 2002; Grossman et al., 2002) 
improves security of C by imposing restrictions on the 
original C and adding extensions to it. There are three 
kinds of pointers in Cyclone: ordinary pointers (*), 
never-NULL pointers (@) and fat pointers (?). Pointer 
arithmetic is allowed only on fat pointers. Pointer 
safety is ensured by inserting null checks before 
dereferencing never-NULL pointers and ordinary 
pointers and by inserting bounds checks before 
dereferencing fat pointers. Cyclone extends the union 
type by adding a tag to each case of the union. 
Type-varying arguments in Cyclone are treated as 
tagged-unions.  
 
 
A DEEPER STUDY 
 

We applied all available tools mentioned above 
to a set of small programs to evaluate the performance 
of these tools; the result is shown in Table 1 through 
Table 3. All tested tools are the latest version avail-
able on the Internet: PurifyPlus 2003a.06.00, CCured 
1.2.1, Valgrind 2.0.0, Cyclone 0.6, SpLint 3.1.1, 
boundschecking-gcc (Jones and Kelly tool) 
3.3.1-1.01. All testing programs are compiled with 
gcc 3.3.1 and optimized with its -O2 option. All data 
are collected on a 1.7 GHz Celeron4 with 512 MB of 
memory, running Mandrake Linux 9.2 (kernel 2.4.22), 
except Purify, since PurifyPlus 2003a.06.00 for Linux  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Performance measurements for different sorting algorithms and the maze problem 
 

Base time      Purify       Valgrind       CCured      Jones  Cyclone   Loginov 
Program Linux   SunOS        Time     Ratio         Time    Ratio          Time     Ratio       Time     Ratio     Time     Ratio       Time    Ratio

Insertion1 1.99 12.44 313.45 25.20 55.77 28.03 26.89 13.51 117.90 59.25 8.15 4.10 598.92 300.96

Insertion2 2.05 8.31 165.60 19.93 58.36 28.47 26.97 13.16 77.98 38.04 6.02 2.94 545.83 266.26

Quick 0.01 0.02 0.29 14.50 0.14 14.00 0.04 4.00 0.12 12.00 0.02 2.00 0.93 93.00

Shell 2.80 17.34 388.02 22.38 62.54 22.34 22.11 7.90 168.02 60.01 8.36 2.99 648.14 231.48

Selection 3.48 16.78 263.39 15.70 75.94 21.82 27.42 7.88 79.13 22.74 6.35 1.82 412.96 118.67

Bubble 9.83 33.45 630.44 18.85 163.27 16.61 92.55 9.42 321.29 32.68 28.74 2.92 1808.24 183.95

Merge1 0.01 0.03 0.59 19.67 0.29 29.00 0.10 10.00 0.28 28.00 0.03 3.00 1.43 143.00

Merge2 0.98 0.15 9.11 60.73 91.78 93.65 113.43 115.74 1.05 1.07 1.02 1.04 40.75 41.58

Heap 0.02 0.01 0.58 58.00 0.36 18.00 0.09 4.50 0.26 13.00 0.03 1.50 1.91 95.50

Maze 3.47 16.02 64.66 4.04 60.58 17.46 13.87 4.00 51.86 14.95 N/A N/A 104.50 30.12

Slowdown −    −        4.04−60.73         14.00−93.65         4.00−115.74        1.07−60.01     1.04−4.10      30.12−300.96

Median −    −      25.90         28.94      19.01      28.17      2.48    150.45 
 

All times are in seconds. The ratio columns indicate performance slowdowns relative to the base time. All tools run on Linux except purify, so we list 
two base times in the table 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 67

has problems while running on the Linux platform. 
Purify runs on a dual-processor (Ultra Sparc-II 450 
MHz) Sun Ultra 60 workstation with 2 GB of memory, 
running SunOS 5.8. 

Execution time    First we applied all available 
source instrumentation tools and binary-level 
instrumentation tools to implement different sorting 
algorithms and the maze problem (Cyclone is also 
included since it is easy to translate these C programs 
into cyclone language), and then recorded the execu-
tion time of each tested program. The result is shown 
in Table 1. Among the sorting algorithms, “Inser-
tion1” is direct insertion sorting algorithm, “Inser-
tion2” is binary insertion sorting algorithm, “Merge1” 
is the iterative version of mergence sorting algorithm, 
“Merge2” is the recursive version of mergence sorting 
algorithm, and others are self-explaining.  

It does matter to interpret the code or execute it 
directly. Purify incurs a slowdown of about 26 times 
over the base time, Jones and Kelly tool incurs a 
slowdown of about 28, and Valgrind incurs a slow-
down of about 29. There is no other apparent differ-
ence among them. However, Hobbes, which inter-
prets programs, incurs a slowdown of 72 (MemCheck) 
or 141 (TypeCheck) (Burrows et al., 2003). To some 
extent, the way how the code is executed decides the 
performance of the tool. The overall performance of 
CCured is not much better than that of these three 
tools, however, if we leave “Merge2” aside, things 
will change greatly: the median slowdown incurred 
by CCured will be 8.26 times over the base time. 
Valgrind also has this problem. This may imply that 
CCured and Valgrind can be improved by changing 
the way they instrument recursive functions. Among 
all tested tools, Loginov et al. tool performed worst as 
it did type checking as well as memory checking, 
while other tools did memory checking only. Cyclone 
had the best performance among all the tools, which 
may attributed to its restrictions on C and built-in safe 
features. 

Memory overhead    To study the memory 
overhead of these tools, we recorded the maximum 
size of memory occupied by the tested program each 
time we applied a tool to the program and run it (the 
result is shown in Table 2). Valgrind incurred the 
greatest memory overhead because it maintains a 
one-bit state code for each bit of memory. Purify 
maintains a two-bit state code for each byte of mem-

ory, and Loginov et al. tool maintains four bits for 
each byte of memory, so their memory overhead was 
also high. The fat representation of pointers of 
CCured incurs an increase of about 2 times over the 
base size. 

Error detection    We wrote a small test suite to 
evaluate the error detection ability of different tools. 
The test suite was composed of a number of C pro-
gram files, each containing one or more errors caused 
by improper use of unsafe features of C. The result is 
listed in Table 3 showing that binary-level instru-
mentation tools and source instrumentation tools are 
more sensitive to buffer overflows, and generally do a 
better job in detecting buffer overflows and memory 
management errors than source checkers. However, 
none of these tools detected the error of reading un-
initialized locals or reading uninitialized non-buffer 
objects on heap. SpLint did a better job this time. As 
for function pointer related errors and vararg related 
errors, almost all tools saw nothing wrong about them 
and could not offer any help to the programmer. 

 
 

CONCLUSION 
 

It is necessary to make the C programming lan-
guage safe since many important software systems are 
written in C, and there are still more to come. The 
unsafe features of C should be resolved with the help 
of safety tools which should be able to detect memory 
access errors as well as type errors accurately and 
quickly; and the overhead introduced to the original 
program should be as low as possible. 

Source check tools work quickly and introduce 
no overhead to the checked program. By checking the 
source they can detect many logical programming 
errors such as unreachable code and infinite loops. 
However, they do not have access to the dynamic 
program information so they cannot detect dynamic 
memory access errors, and often give too many mis-
leading error reports. Binary-level instrumentation 
tools do not depend on the program source to work, 
which makes them applicable to a variety of programs. 
However, they cannot optimize memory checks and 
type checks since they do not have access to extra 
information provided by the source, so the overhead 
introduced by these tools is generally high. What is 
more, working at binary level limits them to a single 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 68

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2  Memory overhead measurements for different sorting algorithms and the maze problem 
 

 

Base size Purify Valgrind CCured Jones Loginov 
Program 

Linux SunOS Size Ratio Size Ratio Size Ratio Size Ratio Size Ratio

Insertion1 852 1232 6056 4.92 10772 12.64 1212 1.42 944 1.11 3556 4.17

Insertion2 852 1232 6056 4.92 10776 12.65 1216 1.43 952 1.12 3560 4.18

Quick 860 1232 6072 4.93 10776 12.53 1216 1.41 960 1.12 3564 4.14

Shell 860 1232 6072 4.93 10776 12.53 1216 1.41 948 1.10 3556 4.13

Selection 852 1232 6072 4.93 10776 12.65 1216 1.43 948 1.11 3560 4.18

Bubble 860 1232 6056 4.92 10772 12.53 1212 1.41 948 1.10 3556 4.13

Merge1 1052 1416 6256 4.42 10964 10.42 1216 1.16 1148 1.09 3752 3.57

Merge2 1044 4544 9400 2.07 20344 19.49 8488 8.13 1144 1.10 7372 7.06

Heap 860 1232 6072 4.93 10776 12.53 1216 1.41 948 1.10 3560 4.14

Maze 16752 33456 45120 1.35 79016 4.72 33328 1.99 33572 2.00 35592 2.12

Augmentation − − 1.35−4.93 4.72−19.49 1.16−8.13 1.09−2.00 2.12−7.06 

Median − − 4.23 12.27 2.12 1.20 4.18 
 

All sizes are in kB. The ratio columns indicate memory occupation augmentation relative to the base size. All tools run on Linux except Purify,  
so two base sizes are listed in the table 

Table 3  The result of applying different tools to a test suite 
 
 

Error description Purify Valgrind CCured SpLint Jones Loginov
Reading uninitialized locals − − − + − + 
Reading uninitialized integer on heap − − − + − + 
Reading uninitialized string on heap + + − + − + 
Writing overflowed buffer on stack − − + − + + 
Writing overflowed buffer on heap + + + * + + 
Writing to unallocated memory + − − + + + 
Returning stack object + + + + + + 
Overwriting ending zero of string − − − − − − 
Function pointer with wrong number of arguments − − − − − + 
Function pointer with wrong returning type − − − − − + 
Vararg with wrong type of arguments − − − + − + 
Vararg with wrong number of arguments − + + + − − 
Bad union access/part of an object is uninitialized − − − − − + 
Bad union access/a complete uninitialized object + − − + − − 
Memory leak + + − * − − 
Second free + + + * + − 
Casting integer literal to pointers − − − + − + 
Casting floating pointers to integer pointers − − + + − + 

 

“Error description” describes a kind of error contained in one or more programs; “+” indicates that the corresponding tool detects this kind of 
 error correctly; “−” indicates that the corresponding tool cannot detect this kind of error correctly; “*” indicates that the corresponding tool 
 detects this kind of error correctly in some programs, while failing to detect it in others 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 69

OS platform since binaries of different OS platforms 
are generally different. Source-level instrumentation 
tools have full access to the program information, 
which makes it possible for them to detect all memory 
access errors and type errors, and the overhead can be 
reasonable if full optimization is made and only nec-
essary checks are performed. Another merit of source 
level instrumentation tools is that they can be used on 
different OS platforms. Safe dialects of C also have 
the merits that the source-level instrumentation tools 
have. By imposing restrictions on the original C and 
by introducing new safely features to it, they can even 
achieve better performance. However, they are not 
compatible with the original C, so they cannot be used 
to “purify” existing C programs, or at least efforts 
must be made to transform existing programs to the 
new environment.  

Future safety tools will still focus on accuracy 
and overhead. To improve accuracy of memory ac-
cess checking, we must perform the analysis at bit 
level. Currently almost all checking tools work at byte 
level, but not at bit level (Valgrind sets a one-bit state 
code for each bit of user memory and registers, but the 
definedness of memory and registers is not really 
maintained at bit level). The reason why they do not 
do that is unique: if status and type information are 
maintained at bit level, the memory overhead of the 
checking tool will be intolerably high. However, bit 
fields do exist in the C Language, and their status and 
type information cannot be represented completely 
and precisely at byte level. The solution is to divide 
and conquer: represent extra information of integers, 
pointers, floating numbers and non-bit-fields mem-
bers of structures at byte level, and represent bit-fields 
members of structures at bit level. So where to store 
these extra information? Use a shadow memory to 
store the byte-level information, and set up direct 
mapping between the shadow memory and the main 
memory, so the extra information can be quickly 
addressed. Allocate another piece of memory−which 
we call reference memory−to store the bit-level in-
formation. Extra information on bit fields may be 
indexed by its address to accelerate the accessing 
speed. The state code of bit fields in the shadow 
memory is set to a special value, indicating that the 
needed information is stored in reference memory. 
We need two addressing to access the extra informa-
tion of bit fields, however, these accesses are minor 

among all memory accesses, and the overhead is tol-
erable. 

To improve the accuracy of type checking, a 
model must be set up to address clearly what is a type 
error and what is not. However, this is not easy be-
cause the type system of C is so subtle. For example: 

1 typedef union { 
2  char c[4]; 
3  float f; 
4 }_u; 
5 _u u; 
6 u.f = 1.234; 
7 printf(“%c”, u.c[3]); 
Should the access of u.c[3] in line 7 be reported 

as a type error? Neither “Yes” nor “No” is the perfect 
answer. So false alarms and wrong error reports are 
inevitable. What we can do is to detect as many errors 
as we can, and minimize the number of false alarms 
and wrong error reports. Studies of C type systems 
(Smith and Volpano, 1998; Siff et al., 1999; Chandra 
and Reps, 1999) can offer us great help. 

To minimize the overhead introduced to the 
original program, an optimization must be made to 
minimize the checks added to the program, which 
may require a deeper study on the C program behavior. 
There are also studies on this issue (Jagannathan and 
Wright, 1995; Bodik et al., 2000; Arnold and Ryder, 
2001). 
 
References 
Arnold, M., Ryder, B.G., 2001. A Framework for Reducing the 

Cost of Instrumented Code. Proceedings of the Confer-
ence on Programming Language Design and Implemen-
tation(PLDI), Salt Lake City, p.168-179. 

Austin, T.M., Breach, S.E., Sohi, G.S., 1994. Efficient Detec-
tion of All Pointer and Array Access Errors. Proceedings 
of the Conference on Programming Language Design and 
Implementation (PLDI), p.290-301. 

Bodik, R., Gupta, R., Sarkar, V., 2000. ABCD: Eliminating 
Array Bounds Checks on Demand. SIGPLAN Conference 
on Programming Language Design and Implementa-
tion(PLDI), p.321-333. 

Bouchareine, P., 2000. Format String Vulnerability. Bugtraq. 
http://www.hert.org/papers/format.html 

Burrows, M., Freund, S.N., Wiener, J.L., 2003. Run-time Type 
Checking for Binary Programs. International Conference 
on Compiler Construction. 

Bush, W.R., Pincus, J.D., Sielaff, D.J., 2000. A static analyzer 
for finding dynamic programming errors. Software, 
Practice, and Experience, 30(7):775-802. 

Chandra, S., Reps, T., 1999. Physical Type Checking for C. 



Wang et al. / J Zhejiang Univ SCI   2005 6A(1):63-70 70

Proceedings of the ACM SIGPLAN-SIGSOFT Workshop 
on Program Analysis for Software Tools and Engineering, 
volume 24.5 of Software Engineering Notes (SEN), 
p.66-75. 

Condit, J., Harren, M., McPeak, S., Necula, G.C., Weimer, W., 
2003. CCured in the Real World. Proceedings of the 
Conference on Programming Language Design and Im-
plementation (PLDI). 

David, A., 2003. Flawfinder Documentation. http://www.dwh- 
eeler.com/flawfinder/. 

David, W., 2003. Boon  Home  Page.  http://www.cs.berkeley. 
edu/~daw/boon/. 

Dor, N., Rodeh, M., Sagiv, M., 2001. Cleanness Checking of 
String Manipulations in C Programs via Integer Analysis. 
8th International Symposium on Static Analysis (SAS), 
p.194-212. 

Evans, D., 1996. Static Detection of Dynamic Memory Errors. 
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI). 

Evans, D., 2003. SpLint Documentation. http://www.splint. 
org/. 

Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y.L., 
Cheney, J., 2002. Region-based Memory Management in 
Cyclone. ACM Conference on Programming Language 
Design and Implementation, Berlin, Germany, p.282-293. 

Hasting, R., Joyce, B., 1992. Purify: Fast Detection of Memory 
Leaks and Access Errors. Proceedings of the Winter 
USENIX Conference. 

Jagannathan, S., Wright, A., 1995. Effective Flow Analysis for 
Avoiding Run-time Checks. Proceedings of the Second 
International Static Analysis Symposium, 983:207-224. 

Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., 
Wang, Y.L., 2002. Cyclone: A Safe Dialect of C. 
USENIX Annual Technical Conference, Monterey, CA, 
p.275-288. 

Jones, R.W.M., Kelly, P.H.J., 1997. Backwards-Compatible 
Bounds Checking for Arrays and Pointers in C Programs. 
Proceedings of Third International Workshop on Automa- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ted Debugging, p.13-26. 
Larochelle, D., Evans, D., 2001. Statically Detecting likely 

Buffer Overflow Vulnerabilities. 10th USENIX Security 
Symposium. Washington D.C. 

Loginov, A., Yong, S.H., Horwitz, S., Reps, T., 2001. Debug-
ging via Run-time Type Checking. Proceedings of the 
Conference on Fundamental Approaches to Software 
Engineering, p.217-232. 

Miller, B.P., Koski, D., Lee, C.P., Maganty, V., Murthy, R., 
Natarajan, A., Steidl, J., 1995. Fuzz Revisited: A 
Re-examination of the Reliability of UNIX Utilities and 
Services. Technical Report. 

Necula, G.C., McPeak, S., Weimer, W., 2002. CCured: 
Type-safe Retrofitting of Legacy Code. Proceedings of 
the Symposium on Principles of Programming Languages, 
p.128-139. 

Necula, G., McPeak, S., Weimer, W., Harren, M., Condit, J., 
2003. CCured Documentation. http://manju.cs.berkel- 
y.edu/ccured/. 

Scut, 2001. Exploiting Format String Vulnerabilities. 
http://teso.scene.at/articles/formatstring/. 

Seward, J., 2003. Valgrind, An Open-source Memory De-
bugger for x86-GNU/Linux. Technical Report, 
http://valgrind.kde.org/. 

Siff, M., Chandra, S., Ball, T., Kunchithapadam, K., Reps, T., 
1999. Coping with type casts in C. Lecture Notes in 
Computer Science, 1687:180-198. 

Smith, G., Volpano, D., 1998. A sound polymorphic type 
system for a dialect of C. Science of Computer Pro-
gramming, 32(13):49-72. 

Viega, J., Bloch, J.T., Kohno, Y., McGraw, G., 2000. ITS4: A 
Static Vulnerability Scanner for C and C++ Code. Pro-
ceedings of the Annual Computer Security Applications 
Conference. 

Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A., 2000. A 
First Step toward Automated Detection of Buffer Overrun 
Vulnerabilities. Network Distributed Systems security 
Symposium, p.1-15. 

 

Welcome visiting our journal website:  http://www.zju.edu.cn/jzus 
Welcome contributions & subscription from all over the world 
The editor would welcome your view or comments on any item in the 

journal, or related matters 
Please write to:  Helen Zhang, Managing Editor of JZUS 

E-mail: jzus@zju.edu.cn  Tel/Fax: 86-571-87952276 

 
 


