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Abstract:    This paper presents a type system, called Location System (L-S), to control the interferences in the ambient-like calculi. 
The L-S allows well-behaved (non-interfering) processes to run in parallel if they do not access shared location during their 
execution life cycle. This approach is designed for a variant of Mobile Ambient (MA), called Safe Mobile Resources (SR), but it 
can be also used in other ambient-like calculi which are also discussed in this paper. 
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MOTIVATION 

 
The calculus of Mobile Ambients (MA) 

(Cardelli and Gordon, 1998) was proposed to model 
the mobile computation based upon the notion of 
ambient, a bounded location where computation takes 
place. It can also perform movements and carry mul-
tiple processes and nested ambients within it: Primi-
tive “in” and “out” allows the ambient to cross the 
computation boundary, and primitive “open” allows 
the boundary to dissolve and then to unleash the in-
ternal processes. Later on, some variants (Guan et al., 
2000; Levi and Sangiorgi, 2000; Merro and Hennessy, 
2002) of ambients were developed to semantically 
enhance the security mechanism, some (Cardelli et al., 
1999; 2000; Levi and Sangiorgi, 2000; Guan et al., 
2001) to type various ambients, others (Bugliesi et al., 
2001; Godskesen et al., 2002) to enrich the use of 
ambients. 

For security mechanism, there are two kinds of 
methods to avoid illegitimate mobile interferences: 
One is to use a proper type system to prevent the bad 
(interfering) process to run further, SA (Levi and 

Sangiorgi, 2000) uses this approach; the other way is 
to modify the primitives, such as BA (Bugliesi et al., 
2001). The latter approach is calculus-specific and it 
cannot be easily applied to other calculi. The former 
one, with a few modifications, can be widely trans-
planted. But current implementation (Levi and San-
giorgi, 2000) for ambients has a drawback: The type 
system of SA managed to control the interferences by 
using the Single-Threaded (ST) type for ambient and 
process, which means each action in the process will 
wait for its thread right to run and at most one action 
can be fired at one time. It is strange that 
non-interfering (well-typed) processes in SA cannot 
execute in parallel, because only single threaded 
process is allowed. Moreover, the parallel composi-
tion operator loses its intrinsic signification of “par-
allel composition”. 

Our aim is to rectify the drawbacks incurred by 
ST type system of SA. So in this work, the Location 
System (L-S) was designed to take the responsibility 
of controlling the interferences. By using L-S, 
well-behaved processes can take advantage of parallel 
execution for better performance. The current L-S is 
based on Safe Mobile Resources (SR) (Fu and You, 
2003) which is also an ambient-like calculus and an 
immediate variant of Mobile Resources (MR) 
(Godskesen et al., 2002). 
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The rest of this paper is organized as follows. 
Section 2 reviews the syntax and reduction semantics 
of SR. Section 3 sums up all forms of interferences in 
SR. Section 4 presents the pure L-S which only re-
cords the location access information. Section 5 dis-
cusses the feasibility for L-S to be applied to some 
other kinds of ambient-like calculi and gives the 
conclusion. 
 
 
SR REVIEW 

 
The SR (Fu and You, 2003) calculus is a variant 

of MR (Godskesen et al., 2002), with strict reduction 
agreement by all participants. 

Let N be a countable set of names ranged over by 
a, b, ..., m, n. Generally, we use a, b to denote resource 
names, and m, n to denote ambient names; the names 
used in the process can be easily distinguished by 
contexts. We use x, y to range over the set of all re-
cursive variables V. The set of all processes is denoted 
by P (ranged over by p, q, ...) and the set of capabili-
ties Λ (ranged over by λ). 

Capabilities are the expressions that are not 
names or recursive variables. We write n(p) for all 
names of process p, and fn(p) for all free names of the 
process p, and n(λ) and fn(λ) for those of the capa-
bility λ. For free recursive variables, we use fv(p) to 
denote the set of all free recursive variables in p. 
Context is defined as standard. 

The SR BNF-like grammar is shown below: 
 

1 2:: | | | | | |
:: 0 | | | . | ( : ) | | rec . | [ ]

n n a a m m
p p p p n T p x x p n p
λ δ δ γ γ

λ
=
=  

 

 
There are seven different types of actions in SR: 

letting a process move from a nested ambient path to 
another nested ambient path ( 1 2δ δ ), allowing taken 
from or given to an ambient ( /n n ), a resource (a), 
consuming a resource in a nested ambient path ( aγ ), 
deleting an ambient ( n ), or allowing being deleted 

( n ). In SR, resource a is a special capability which 
does not cause any movement but a synchronization. 
Especially, it represents a consumable resource. As 
for precedence, λ.p|q stands for (λ.p)|q. 

For processes, nil process (0), parallel composi-

tion (p|p), restriction with type (n:T) and capability 
prefixing (λ.p) are standard. n[p] represents an am-
bient n with a process p inside it. x represents a re-
cursive process variable. rec x is the only binder for 
the recursive variable, and we use rec x.p to describe 
infinite behaviors for process. 

The reduction rules of SR are shown below: 
 
R-Mov:  

1 2 1 1 2 2. | ( [ . | ]) | ( . )n mn m p C n n q q D m rγ γγ γ ′  

1 2 1 2| (0) | ( | [ | ])n mp C D r n q qγ γ ′                →  

R-Act:  . | ( . ) | ( )a p C a q p C qγ γγ →  

R-Del:  . | ( [ . ]) | (0)n p C n n p p Cγ γγ →  

R-Par:  | |p p p q p q′ ′→ ⇒ →  
R-Res:  ( : ) ( : )p p n T p n T p′ ′→ ⇒ →  
R-Nst:  [ ] [ ]p p n p n p′ ′→ ⇒ →  
R-Str:  , ,p q q r r s p s≡ → ≡ ⇒ →  
R-Rec:  rec . {rec . / }x p p x p x→   
 

We require that every reduction process has no 
free recursive variables. Thus the above rules are 
defined on all processes that have no free recursive 
variables. 

Rule R-Mov allows a process to take an ambient 
from a nested location and then send it to another 
nested location. Because not all resources are required 
to leave an ambient when doing a move reduction, we 
use asymmetrical placing of the taken and given ca-
pabilities. Additionally, in this rule, path context is 
defined as 

 
( ) [( ) | ], ( ) [ ( ) | ]n nC n p C n C pγ γ⋅ ⋅    ⋅ ⋅  

 
R-Act allows a process to consume a resource 

inside a nested location and R-Del allows a process to 
delete an ambient inside a nested location. In the last 
rule R-Rec, p{rec x.p/x} denotes the substitutions for 
all free occurrences of x in p with the process rec x.p. 
Other rules are standard. Additionally, for rule R-Str, 
→ is preserved by the structural congruence ≡ which 
is defined below: 
 

p≡p; p|0≡p; (n:T)0≡0; (p|q)|r≡p|(q|r); 
p|q≡q|p; p≡q⇒n[p]≡n[q]; p≡q⇒λ.p≡λ.q; 
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p≡q∧q≡r⇒p≡r; p≡q⇒rec x.p≡rec x.q; 
n1≠n2⇒(n1:T1)(n2:T2)p≡(n2:T2)(n1:T1)p; 
p≡q⇒q≡p; n∉fn(p)⇒(n:T)p|q≡p|(n:T)q;  
p≡q⇒(n:T)p≡(n:T)q; p≡q⇒p|r≡q|r; 
m≠n⇒(n:T)m[p]≡m[(n:T)p] 

 
The rules for structural congruences and typing rules 
are defined on all processes, which is different from 
the definition of reduction rules. 
 
 
SR INTERFERENCES 

 
Because processes in SR are allowed to access 

resources in nested ambients, the calculus brings more 
complex forms of grave interferences than mobile 
ambients. The following example shows the tradi-
tional form of grave interferences in SR: 

 
. | [ [ ]] | . | [ | ]n m p n r n m q m m m  

 
In this process, n m wants to take ambient r from n 
to m, and m wants to remove the ambient m. Then 
we have two nondeterministic consequences while the 
process reduces (where n[ ] is an abbreviation for 
n[0]): one is [] [ []]p n m.q m m r    and the other is 
n m.p|n[r[ n]]|q. The first result can continue to 
reduce to p|n[]|q. The two results are totally logically 
different from each other. Such kind of interference 
occurs among the parallel processes that want to op-
erate the same ambient. 

The new form of grave interferences comes into 
being while direct access capability is used to access 
nested ambients: 

 

1 . | [ [ | ]]r nma p n m n a  
 2 1. | [ ] | [ ]r n n m q n r m m′ ′ ′ ′ ′  
 

nma in process r1 will consume the name a inside 
ambient m which is nested in n. It is clear that r1 can 
only reduce to p|n[m[ n]]. But when r1 is put in an 
environment as shown in process r2, n′nm m′ in 
process r2 wants to take name a from m to m′. If r2 

makes the reduction step by the movement of a, then 
nma will fail to consume a in m. The resource is lost 
when the process is put in improper environment. In 

contrast with the previous example of grave inter-
ference, here the same ambient can be shared through 
the nested environment. 

Let ∆ be a set of capabilities λ1, λ2, …, λn and 
r1[λ1], r2[λ2], …, rn[λn], and we write p∆ if  
 

p = λ1.p1|…|λn.pn|r1[λ1.p1′|p1″]|…| rn[λn.pn′|pn″] 
 
for some p1, p2, …, pn, p1′, p2′, …, pn′, and r1, r2, …, rn 
where λi is not of the form n while λi′ is of the form 

n or a. 
Definition 1    An SR interference occurs in a process 
p if p≡C(q) where the form of q is one of the follow-
ing: 
 

1 2 1 2 1

1 2

{ } { } { }
1 2 1 3| ( | ( [ ]))n n np C p C n pγ γ γ

γ γ
  

2 1 3 21 2 1 1 1

1 2

{ }{ } { , [ ]}
1 2 1 3| ( | ( [ ]) |n nn n m np C p C n pγ γγ γ

γ γ  
2

3

{ }
2 4( [ ]))nC n pγ

1 2 1 3 2 2 1 1 1

1 2

{ } { } { , [ ]}
1 2 1 3| ( | ( [ ])) |n n n n m np C p C n pγ γ γ γ

γ γ  
2

3

{ }
2 4( [ ])nC n pγ  

1 2 1 4 3 2 1 3 2 1

1 2

{ } { } { [ ]}
1 2 1 3| ( | ( [ ]) |n n n n m np C p C n pγ γ γ γ γ

γ γ  
32

3 4

{ }{ }
2 4 3 5( [ ])) | ( [ ])nnC n p C n pγ γ  

 
In the next section, we will introduce the location 

system, and Theorem 3 is provided to ensure that all 
processes in SR do not contain the forms of SR in-
terferences defined above. 
 
 
LOCATION SYSTEM (L-S) 

 
In this section, we give a formal definition of the 

L-S. The location type is rather simple, and the type 
value just indicates which locations the typed process 
will access. We use ∆n to represent a solo location 
type for a specific name n. And the set {∆n, ∆m, …} 
represents the location type for the qualified expres-
sion in SR. The grammar for the location types is 
formally defined as below: 

 
S ::= ∆n   solo location  
T ::= Φ│{∆n}∪T   empty location/location type 
 
The solo location type S denotes a single location, 
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where S ranges over the set Tp which is defined as the 
universal location set: Tp={∆n|n∈N}. And Ta=2Tp 
denotes the set of all location types (ranged over by T). 
The union operation ∪ in the type grammar is stan-
dard. 

Under L-S type system, capabilities, ambients, 
and processes all have the same kind of types. Actu-
ally, we can easily know what the type value denotes 
(e.g. if Γ n:Tn, then Tn is an ambient type). An envi-
ronment Γ is composed of a sequence of environment 
names (such as Γ′=n:Tn,  x:Tx). For capability, location 
type denotes which location it will access; for ambient, 
location type denotes which locations the running 
process inside it will access; for process, location type 
denotes which locations it will access. 

There are three kinds of typing judgments in L-S. 
Γ ◊ means that Γ is a good type environment; Γ λ:T 

means that λ can be typed as T under Γ; Let J range 
over the set N∪P, Γ J:T means ambient and process 
can have type T under Γ. The typing rules are divided 
into the following three parts: 

Part 1. Typing rules for good environment and 
names: 

 
Φ ◊         Γ ◊ ∧ n∉dom(Γ)⇒Γ, n:T ◊ 

Γ ◊∧x∉dom(Γ)⇒, x:T ◊ 

Γ, n:T ◊⇒Γ, n:T n:T 
 

Part 2. Typing rules for capabilities: 
 

Γ n:Tn⇒Γ n:Φ     Γ n:Tn⇒Γ n:Φ 

Γ m1:T1∧Γ m2:T2⇒Γ m1 m2 :{∆m1} 

Γ m1 m2 :T∧(∀n∈fn(γ1)∪fn(γ2)⇒Γ n:Tn)  

                                                   ⇒ Γ γ1m1 γ2m2:T 

Γ a:T∧(∀n∈fn(γ)⇒Γ n:Tn)⇒ Γ γā:Φ  

Γ m:Tm∧(∀n∈fn(γ)⇒Γ n:Tn)⇒Γ γm:{∆m} 
 

Part 3. Typing rules for process: 
 

Γ ◊⇒Γ 0:Φ      Γ, x:T ◊⇒Γ x:T 

Γ, n:T p: T ′⇒Γ (n:T)p:T ′−{∆n} 

Γ, x:T p:T⇒Γ rec x.p:T 

Γ λ:T1∧Γ p:T2⇒Γ λ.p:T1∪T2 

Γ p:T1∧Γ q:T2∧T1∩T2≠Φ⇒Γ p|q:T1∪T2 

Γ n:T∧Γ p:T⇒Γ n[p]:T 

Γ p:T ′∧T⊆T ′⇒Γ p:T ′ 
 

To control the interferences, we achieve the goal 
by preventing parallel compositions of any processes 
that will access the same location. In SR, γ1m1 γ2m2 
and m are considered to have the feature of accessing 
other locations: in the former, parameter m1 denotes 
the target location one wants to access, so does m in 
the latter. Therefore, in the typing rules of Part 2, all 
other capabilities are typed as empty. For example, 

n is typed as ∆n irrespective of the type of n; 
n1m1 n2m2 is typed as ∆m1 irrespective of the types of 
n1, n2, m1 and m2; n is typed as Φ. 

In typing rules of Part 3, the Par rule (6th) 
guarantees both of the two processes cannot interfere 
with each other by the side condition T1∩T2=Φ which 
means those parallel processes do not access the same 
location. And after the operation of parallel composi-
tion, the whole process is able to access all the loca-
tions which the previous two will access. That is why 
we type the result as T1∪T2. The Res rule (2nd), re-
moves the location types for local names when per-
forming the restriction operation. The 3rd and 4th 
rules are used to type the recursive processes and 
variables. It is natural to type the process and the 
recursive variable with the same type. The ambient 
operation preserves the type of the result process 
(second to last rule). The last rule is for process sub-
typing which complies with the subset relation. The 
subtyping rule allows the current type to be cast to a 
larger type for a process. 

As an example, let Γ p:Tp, q:Tq, we can derive 

Γ n m.p:{∆n}∪Tp and Γ n m.q:{∆n}∪Tq. But 
n m.p|n m.q is untypable, because both processes 
will access at least one shared location n, which is 
rejected by the par rule. 

The soundness of the L-S is ensured by the fol-
lowing subject reduction theorems. 
Theorem 2    If Γ p:T and p→p′, then Γ p′:T ′ with  

T ′⊆T. 
Proof    The proof is shown by induction on the deri-
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derivation of p→p′. 
The following theorem assures that under L-S all 

processes run in a good behavior. 
Theorem 3    If Γ′ p:T then no SR interferences occur 
in p. 
Proof    By reduction to absurdity, we can show that 
the process is not typable for any of the cases in 
Definition 1. 

For example: 
 

n m.p|n[r[ n.q]]|m[ m] →p|n[ ]|m[r[q]] 
 
By assuming Γ p:Tp, q:Tq and Tp∩Tq=Φ, the type of 

the left process can be deduced as Tp∪Tq∪{∆n} under 
Γ. By the Theorem 2, we know that the right process 
is also well typed. 

We can also reason that the type of the example 
in Section 3, the 3rd form of SR interferences, cannot 
be typed by L-S. 

The L-S is an independent type system, it can be 
regarded as orthogonal with any other different type 
systems and easily combined with the type system of 
mobility ( , ) (Cardelli et al., 1999), threadness (0, 

1, ω) (Guan et al., 2001) and evolving (U[T]) (Guan et 
al., 2001)  types for related ambient-like calculi. For 
example, a process p may be typed as ( 1, {∆n, ∆m}) 
[T] which means the current process is mobile and 
single-threaded, will access location n and m, and will 
evolve into a process typed as T. 

 
 

DISSCUSSION 
 
Typing MA (Cardelli and Gordon, 1998) with 

locations? Since in n, out n and open n these capa-
bilities respectively carry a parameter which repre-
sents the target ambient, it appears each of them can 
be typed as ∆n. But it is not the truth that we can ob-
tain the solution for controlling interference in MA. 
This is because in/out are both subjective mobile 
primitives, the parameter represents the target loca-
tion but not the mobile ambient (itself). Therefore 
from the type values we cannot determine which 
process may suffer the interferences caused by the 
shared mobile ambient. For example, suppose an MA 

process 
 
p h[n[in m.q1|out h.q2]|m[q3]]             (1) 
 

This process can cause interferences because ambient 
n has different moving direction where n may be 
typed as {∆m, ∆h} as it contains in m and out h actions. 
However, there is no valuable information to indicate 
the shared mobile ambient n in this type value. Thus it 
is hard to control the interferences by using location 
types in MA. 

Typing SA (Levi and Sangiorgi, 2000) with lo-
cations? As we know, SA adds co-capability for each 
capability in MA. But this modification only guaran-
tees that agreement should be made between both 
participants when attempting reduction. These addi-
tional co-capabilities provide no help to indicate any 
information about the mobile locations. For example, 
now the process (1) becomes in SA: 

 
p h[n[in m.q1|out h.q2]|co-out h|m[co-in m.q3]] 

                                                                                 (2) 
 

We can easily notice that none of those pa-
rameters in capability in/out/co-in/co-out contains the 
information of mobile ambient n. This is the same 
result we had in the previous section. 

Typing ROAM (Guan et al., 2000) with loca-
tions. Contrary to those calculi as mentioned above, 
ROAM provides us a good stage to use location types 
because the parameter of each (co-) capability repre-
sents another participant. Therefore we can obtain 
enough type information for mobile ambients to con-
trol the interference. For example, process (2) now 
becomes in ROAM: 
 

p h[n[in m.q1|out h.q2]|co-out n|m[co-in n.q3]] 
(3) 

 
As we can see, in ambient h, co-out n indicates only 
ambient n can move out, in n in ambient m indicates 
only ambient n can move in. Then we give the fol-
lowing typing rules for capabilities in ROAM (Other 
rules are similar to SR): 
 

Γ n:T⇒Γ in n:Φ  Γ n:T⇒Γ out n:Φ 

Γ n:T⇒Γ co-in n:{∆n} 
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Γ n:T⇒Γ co-out n:{∆n} 

Γ n:T⇒Γ open n:{∆n}  

Γ n:T⇒Γ co-open n:Φ 
 

For process (3), suppose Γ co-out n:{∆n} and Γ q3:T. 

Then we have Γ m[co-in n.q3]:T∪{∆n} which cannot 
be parallel with co-out n because the side condition of 
the process par rule requires that the two type values 
are disjoint. Then process (3) cannot be typed by this 
type system and will be regarded as a program error 

Further views to control interferences. The SA 
approach and ours have one feature in common. Both 
of them prohibit two processes from being parallel 
with each other through the Par rule for process if 
both of the processes will have the rights to access the 
same ambient. But this kind of approach cannot co-
exist with Replication rule. This is the reason why SA 
uses recursive constructs for infinite behaviors for 
processes, and hence in SR we use the same con-
structs. Though ROAM uses replication constructs to 
describe infinite behaviors for processes, it is easy to 
make few modifications to apply the L-S. 

The distinction of type system between SA and 
SR is threadness. The SA interference-free process 
must be typed as single-threaded which means the 
execution process should strictly follows the execu-
tion sequence generated by the type system. However, 
by using L-S, parallel execution is allowed in 
well-behaved processes. Thus, process execution will 
speed up dramatically. 

As for open capability in mobile ambients, if an 
ambient is opened, the internal process will be 
unleashed. This may cause an “interference-free” 
process to reduce to an interference-causing process 
such that it will break the typing theorem of sound-
ness. To prevent this, process Amb rule should pre-
serve the type value when performing the ambient 
enclosing operation. Therefore, the previous “interfe- 

 
 
 
 
 
 
 
 

rence-free” process cannot be typed with location 
types. 

Although we do not provide any theorem and 
proofs for ROAM and MR to claim the soundness of 
applying location type system to them, in terms of the 
above analysis, we strongly believe that our solution 
can serve as a general typing architecture to control 
interference in ambient-like calculi if (1) the primi-
tives provide enough information for the mobile tar-
get and (2) recursive constructs are used to describe 
infinite process behavior instead of replication. 

As discussed above, all of our works are based 
on pure ambient-like calculus. For future works, L-S 
will be introduced to the non-pure ambient-like cal-
culus with message passing. We expect the channel 
can also be typed by L-S. 
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