
Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 414

Using location types to control interferences in mobile resources*

FU Cheng (傅 城), YOU Jin-yuan (尤晋元)
(Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

E-mail: fucheng@cs.sjtu.edu.cn; you-jy@cs.sjtu.edu.cn
Received Jan. 20, 2004; revision accepted Mar. 30, 2004

Abstract: This paper presents a type system, called Location System (L-S), to control the interferences in the ambient-like calculi.
The L-S allows well-behaved (non-interfering) processes to run in parallel if they do not access shared location during their
execution life cycle. This approach is designed for a variant of Mobile Ambient (MA), called Safe Mobile Resources (SR), but it
can be also used in other ambient-like calculi which are also discussed in this paper.

Key words: Concurrency, Mobile Ambient, Type System
doi:10.1631/jzus.2005.A0414 Document code: A CLC number: TP393

MOTIVATION

The calculus of Mobile Ambients (MA)

(Cardelli and Gordon, 1998) was proposed to model
the mobile computation based upon the notion of
ambient, a bounded location where computation takes
place. It can also perform movements and carry mul-
tiple processes and nested ambients within it: Primi-
tive “in” and “out” allows the ambient to cross the
computation boundary, and primitive “open” allows
the boundary to dissolve and then to unleash the in-
ternal processes. Later on, some variants (Guan et al.,
2000; Levi and Sangiorgi, 2000; Merro and Hennessy,
2002) of ambients were developed to semantically
enhance the security mechanism, some (Cardelli et al.,
1999; 2000; Levi and Sangiorgi, 2000; Guan et al.,
2001) to type various ambients, others (Bugliesi et al.,
2001; Godskesen et al., 2002) to enrich the use of
ambients.

For security mechanism, there are two kinds of
methods to avoid illegitimate mobile interferences:
One is to use a proper type system to prevent the bad
(interfering) process to run further, SA (Levi and

Sangiorgi, 2000) uses this approach; the other way is
to modify the primitives, such as BA (Bugliesi et al.,
2001). The latter approach is calculus-specific and it
cannot be easily applied to other calculi. The former
one, with a few modifications, can be widely trans-
planted. But current implementation (Levi and San-
giorgi, 2000) for ambients has a drawback: The type
system of SA managed to control the interferences by
using the Single-Threaded (ST) type for ambient and
process, which means each action in the process will
wait for its thread right to run and at most one action
can be fired at one time. It is strange that
non-interfering (well-typed) processes in SA cannot
execute in parallel, because only single threaded
process is allowed. Moreover, the parallel composi-
tion operator loses its intrinsic signification of “par-
allel composition”.

Our aim is to rectify the drawbacks incurred by
ST type system of SA. So in this work, the Location
System (L-S) was designed to take the responsibility
of controlling the interferences. By using L-S,
well-behaved processes can take advantage of parallel
execution for better performance. The current L-S is
based on Safe Mobile Resources (SR) (Fu and You,
2003) which is also an ambient-like calculus and an
immediate variant of Mobile Resources (MR)
(Godskesen et al., 2002).

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

*Project supported by the National Natural Science Foundation of
China (No. 60173033) and the Shanghai Science and Technology
Development Foundation (No. 03DZ15027), China

Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 415

The rest of this paper is organized as follows.
Section 2 reviews the syntax and reduction semantics
of SR. Section 3 sums up all forms of interferences in
SR. Section 4 presents the pure L-S which only re-
cords the location access information. Section 5 dis-
cusses the feasibility for L-S to be applied to some
other kinds of ambient-like calculi and gives the
conclusion.

SR REVIEW

The SR (Fu and You, 2003) calculus is a variant

of MR (Godskesen et al., 2002), with strict reduction
agreement by all participants.

Let N be a countable set of names ranged over by
a, b, ..., m, n. Generally, we use a, b to denote resource
names, and m, n to denote ambient names; the names
used in the process can be easily distinguished by
contexts. We use x, y to range over the set of all re-
cursive variables V. The set of all processes is denoted
by P (ranged over by p, q, ...) and the set of capabili-
ties Λ (ranged over by λ).

Capabilities are the expressions that are not
names or recursive variables. We write n(p) for all
names of process p, and fn(p) for all free names of the
process p, and n(λ) and fn(λ) for those of the capa-
bility λ. For free recursive variables, we use fv(p) to
denote the set of all free recursive variables in p.
Context is defined as standard.

The SR BNF-like grammar is shown below:

1 2:: | | | | | |
:: 0 | | | . | (:) | | rec . | []

n n a a m m
p p p p n T p x x p n p
λ δ δ γ γ

λ
=
=

There are seven different types of actions in SR:

letting a process move from a nested ambient path to
another nested ambient path (1 2δ δ), allowing taken
from or given to an ambient (/n n), a resource (a),
consuming a resource in a nested ambient path (aγ),
deleting an ambient (n), or allowing being deleted

(n). In SR, resource a is a special capability which
does not cause any movement but a synchronization.
Especially, it represents a consumable resource. As
for precedence, λ.p|q stands for (λ.p)|q.

For processes, nil process (0), parallel composi-

tion (p|p), restriction with type (n:T) and capability
prefixing (λ.p) are standard. n[p] represents an am-
bient n with a process p inside it. x represents a re-
cursive process variable. rec x is the only binder for
the recursive variable, and we use rec x.p to describe
infinite behaviors for process.

The reduction rules of SR are shown below:

R-Mov:

1 2 1 1 2 2. | ([. |]) | (.)n mn m p C n n q q D m rγ γγ γ ′

1 2 1 2| (0) | (| [|])n mp C D r n q qγ γ ′ →

R-Act: . | (.) | ()a p C a q p C qγ γγ →

R-Del: . | ([.]) | (0)n p C n n p p Cγ γγ →

R-Par: | |p p p q p q′ ′→ ⇒ →
R-Res: (:) (:)p p n T p n T p′ ′→ ⇒ →
R-Nst: [] []p p n p n p′ ′→ ⇒ →
R-Str: , ,p q q r r s p s≡ → ≡ ⇒ →
R-Rec: rec . {rec . / }x p p x p x→

We require that every reduction process has no
free recursive variables. Thus the above rules are
defined on all processes that have no free recursive
variables.

Rule R-Mov allows a process to take an ambient
from a nested location and then send it to another
nested location. Because not all resources are required
to leave an ambient when doing a move reduction, we
use asymmetrical placing of the taken and given ca-
pabilities. Additionally, in this rule, path context is
defined as

() [() |], () [() |]n nC n p C n C pγ γ⋅ ⋅ ⋅ ⋅

R-Act allows a process to consume a resource

inside a nested location and R-Del allows a process to
delete an ambient inside a nested location. In the last
rule R-Rec, p{rec x.p/x} denotes the substitutions for
all free occurrences of x in p with the process rec x.p.
Other rules are standard. Additionally, for rule R-Str,
→ is preserved by the structural congruence ≡ which
is defined below:

p≡p; p|0≡p; (n:T)0≡0; (p|q)|r≡p|(q|r);
p|q≡q|p; p≡q⇒n[p]≡n[q]; p≡q⇒λ.p≡λ.q;

Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 416

p≡q∧q≡r⇒p≡r; p≡q⇒rec x.p≡rec x.q;
n1≠n2⇒(n1:T1)(n2:T2)p≡(n2:T2)(n1:T1)p;
p≡q⇒q≡p; n∉fn(p)⇒(n:T)p|q≡p|(n:T)q;
p≡q⇒(n:T)p≡(n:T)q; p≡q⇒p|r≡q|r;
m≠n⇒(n:T)m[p]≡m[(n:T)p]

The rules for structural congruences and typing rules
are defined on all processes, which is different from
the definition of reduction rules.

SR INTERFERENCES

Because processes in SR are allowed to access

resources in nested ambients, the calculus brings more
complex forms of grave interferences than mobile
ambients. The following example shows the tradi-
tional form of grave interferences in SR:

. | [[]] | . | [|]n m p n r n m q m m m

In this process, n m wants to take ambient r from n
to m, and m wants to remove the ambient m. Then
we have two nondeterministic consequences while the
process reduces (where n[] is an abbreviation for
n[0]): one is [] [[]]p n m.q m m r and the other is
n m.p|n[r[n]]|q. The first result can continue to
reduce to p|n[]|q. The two results are totally logically
different from each other. Such kind of interference
occurs among the parallel processes that want to op-
erate the same ambient.

The new form of grave interferences comes into
being while direct access capability is used to access
nested ambients:

1 . | [[|]]r nma p n m n a
 2 1. | [] | []r n n m q n r m m′ ′ ′ ′ ′

nma in process r1 will consume the name a inside
ambient m which is nested in n. It is clear that r1 can
only reduce to p|n[m[n]]. But when r1 is put in an
environment as shown in process r2, n′nm m′ in
process r2 wants to take name a from m to m′. If r2

makes the reduction step by the movement of a, then
nma will fail to consume a in m. The resource is lost
when the process is put in improper environment. In

contrast with the previous example of grave inter-
ference, here the same ambient can be shared through
the nested environment.

Let ∆ be a set of capabilities λ1, λ2, …, λn and
r1[λ1], r2[λ2], …, rn[λn], and we write p∆ if

p = λ1.p1|…|λn.pn|r1[λ1.p1′|p1″]|…| rn[λn.pn′|pn″]

for some p1, p2, …, pn, p1′, p2′, …, pn′, and r1, r2, …, rn
where λi is not of the form n while λi′ is of the form

n or a.
Definition 1 An SR interference occurs in a process
p if p≡C(q) where the form of q is one of the follow-
ing:

1 2 1 2 1

1 2

{ } { } { }
1 2 1 3| (| ([]))n n np C p C n pγ γ γ

γ γ

2 1 3 21 2 1 1 1

1 2

{ }{ } { , []}
1 2 1 3| (| ([]) |n nn n m np C p C n pγ γγ γ

γ γ
2

3

{ }
2 4([]))nC n pγ

1 2 1 3 2 2 1 1 1

1 2

{ } { } { , []}
1 2 1 3| (| ([])) |n n n n m np C p C n pγ γ γ γ

γ γ
2

3

{ }
2 4([])nC n pγ

1 2 1 4 3 2 1 3 2 1

1 2

{ } { } { []}
1 2 1 3| (| ([]) |n n n n m np C p C n pγ γ γ γ γ

γ γ
32

3 4

{ }{ }
2 4 3 5([])) | ([])nnC n p C n pγ γ

In the next section, we will introduce the location

system, and Theorem 3 is provided to ensure that all
processes in SR do not contain the forms of SR in-
terferences defined above.

LOCATION SYSTEM (L-S)

In this section, we give a formal definition of the

L-S. The location type is rather simple, and the type
value just indicates which locations the typed process
will access. We use ∆n to represent a solo location
type for a specific name n. And the set {∆n, ∆m, …}
represents the location type for the qualified expres-
sion in SR. The grammar for the location types is
formally defined as below:

S ::= ∆n solo location
T ::= Φ│{∆n}∪T empty location/location type

The solo location type S denotes a single location,

Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 417

where S ranges over the set Tp which is defined as the
universal location set: Tp={∆n|n∈N}. And Ta=2Tp
denotes the set of all location types (ranged over by T).
The union operation ∪ in the type grammar is stan-
dard.

Under L-S type system, capabilities, ambients,
and processes all have the same kind of types. Actu-
ally, we can easily know what the type value denotes
(e.g. if Γ n:Tn, then Tn is an ambient type). An envi-
ronment Γ is composed of a sequence of environment
names (such as Γ′=n:Tn, x:Tx). For capability, location
type denotes which location it will access; for ambient,
location type denotes which locations the running
process inside it will access; for process, location type
denotes which locations it will access.

There are three kinds of typing judgments in L-S.
Γ ◊ means that Γ is a good type environment; Γ λ:T

means that λ can be typed as T under Γ; Let J range
over the set N∪P, Γ J:T means ambient and process
can have type T under Γ. The typing rules are divided
into the following three parts:

Part 1. Typing rules for good environment and
names:

Φ ◊ Γ ◊ ∧ n∉dom(Γ)⇒Γ, n:T ◊

Γ ◊∧x∉dom(Γ)⇒, x:T ◊

Γ, n:T ◊⇒Γ, n:T n:T

Part 2. Typing rules for capabilities:

Γ n:Tn⇒Γ n:Φ Γ n:Tn⇒Γ n:Φ

Γ m1:T1∧Γ m2:T2⇒Γ m1 m2 :{∆m1}

Γ m1 m2 :T∧(∀n∈fn(γ1)∪fn(γ2)⇒Γ n:Tn)

 ⇒ Γ γ1m1 γ2m2:T

Γ a:T∧(∀n∈fn(γ)⇒Γ n:Tn)⇒ Γ γā:Φ

Γ m:Tm∧(∀n∈fn(γ)⇒Γ n:Tn)⇒Γ γm:{∆m}

Part 3. Typing rules for process:

Γ ◊⇒Γ 0:Φ Γ, x:T ◊⇒Γ x:T

Γ, n:T p: T ′⇒Γ (n:T)p:T ′−{∆n}

Γ, x:T p:T⇒Γ rec x.p:T

Γ λ:T1∧Γ p:T2⇒Γ λ.p:T1∪T2

Γ p:T1∧Γ q:T2∧T1∩T2≠Φ⇒Γ p|q:T1∪T2

Γ n:T∧Γ p:T⇒Γ n[p]:T

Γ p:T ′∧T⊆T ′⇒Γ p:T ′

To control the interferences, we achieve the goal
by preventing parallel compositions of any processes
that will access the same location. In SR, γ1m1 γ2m2
and m are considered to have the feature of accessing
other locations: in the former, parameter m1 denotes
the target location one wants to access, so does m in
the latter. Therefore, in the typing rules of Part 2, all
other capabilities are typed as empty. For example,

n is typed as ∆n irrespective of the type of n;
n1m1 n2m2 is typed as ∆m1 irrespective of the types of
n1, n2, m1 and m2; n is typed as Φ.

In typing rules of Part 3, the Par rule (6th)
guarantees both of the two processes cannot interfere
with each other by the side condition T1∩T2=Φ which
means those parallel processes do not access the same
location. And after the operation of parallel composi-
tion, the whole process is able to access all the loca-
tions which the previous two will access. That is why
we type the result as T1∪T2. The Res rule (2nd), re-
moves the location types for local names when per-
forming the restriction operation. The 3rd and 4th
rules are used to type the recursive processes and
variables. It is natural to type the process and the
recursive variable with the same type. The ambient
operation preserves the type of the result process
(second to last rule). The last rule is for process sub-
typing which complies with the subset relation. The
subtyping rule allows the current type to be cast to a
larger type for a process.

As an example, let Γ p:Tp, q:Tq, we can derive

Γ n m.p:{∆n}∪Tp and Γ n m.q:{∆n}∪Tq. But
n m.p|n m.q is untypable, because both processes
will access at least one shared location n, which is
rejected by the par rule.

The soundness of the L-S is ensured by the fol-
lowing subject reduction theorems.
Theorem 2 If Γ p:T and p→p′, then Γ p′:T ′ with

T ′⊆T.
Proof The proof is shown by induction on the deri-

Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 418

derivation of p→p′.
The following theorem assures that under L-S all

processes run in a good behavior.
Theorem 3 If Γ′ p:T then no SR interferences occur
in p.
Proof By reduction to absurdity, we can show that
the process is not typable for any of the cases in
Definition 1.

For example:

n m.p|n[r[n.q]]|m[m] →p|n[]|m[r[q]]

By assuming Γ p:Tp, q:Tq and Tp∩Tq=Φ, the type of

the left process can be deduced as Tp∪Tq∪{∆n} under
Γ. By the Theorem 2, we know that the right process
is also well typed.

We can also reason that the type of the example
in Section 3, the 3rd form of SR interferences, cannot
be typed by L-S.

The L-S is an independent type system, it can be
regarded as orthogonal with any other different type
systems and easily combined with the type system of
mobility (,) (Cardelli et al., 1999), threadness (0,

1, ω) (Guan et al., 2001) and evolving (U[T]) (Guan et
al., 2001) types for related ambient-like calculi. For
example, a process p may be typed as (1, {∆n, ∆m})
[T] which means the current process is mobile and
single-threaded, will access location n and m, and will
evolve into a process typed as T.

DISSCUSSION

Typing MA (Cardelli and Gordon, 1998) with

locations? Since in n, out n and open n these capa-
bilities respectively carry a parameter which repre-
sents the target ambient, it appears each of them can
be typed as ∆n. But it is not the truth that we can ob-
tain the solution for controlling interference in MA.
This is because in/out are both subjective mobile
primitives, the parameter represents the target loca-
tion but not the mobile ambient (itself). Therefore
from the type values we cannot determine which
process may suffer the interferences caused by the
shared mobile ambient. For example, suppose an MA

process

p h[n[in m.q1|out h.q2]|m[q3]] (1)

This process can cause interferences because ambient
n has different moving direction where n may be
typed as {∆m, ∆h} as it contains in m and out h actions.
However, there is no valuable information to indicate
the shared mobile ambient n in this type value. Thus it
is hard to control the interferences by using location
types in MA.

Typing SA (Levi and Sangiorgi, 2000) with lo-
cations? As we know, SA adds co-capability for each
capability in MA. But this modification only guaran-
tees that agreement should be made between both
participants when attempting reduction. These addi-
tional co-capabilities provide no help to indicate any
information about the mobile locations. For example,
now the process (1) becomes in SA:

p h[n[in m.q1|out h.q2]|co-out h|m[co-in m.q3]]

 (2)

We can easily notice that none of those pa-
rameters in capability in/out/co-in/co-out contains the
information of mobile ambient n. This is the same
result we had in the previous section.

Typing ROAM (Guan et al., 2000) with loca-
tions. Contrary to those calculi as mentioned above,
ROAM provides us a good stage to use location types
because the parameter of each (co-) capability repre-
sents another participant. Therefore we can obtain
enough type information for mobile ambients to con-
trol the interference. For example, process (2) now
becomes in ROAM:

p h[n[in m.q1|out h.q2]|co-out n|m[co-in n.q3]]
(3)

As we can see, in ambient h, co-out n indicates only
ambient n can move out, in n in ambient m indicates
only ambient n can move in. Then we give the fol-
lowing typing rules for capabilities in ROAM (Other
rules are similar to SR):

Γ n:T⇒Γ in n:Φ Γ n:T⇒Γ out n:Φ

Γ n:T⇒Γ co-in n:{∆n}

Fu et al. / J Zhejiang Univ SCI 2005 6A(5):414-419 419

Γ n:T⇒Γ co-out n:{∆n}

Γ n:T⇒Γ open n:{∆n}

Γ n:T⇒Γ co-open n:Φ

For process (3), suppose Γ co-out n:{∆n} and Γ q3:T.

Then we have Γ m[co-in n.q3]:T∪{∆n} which cannot
be parallel with co-out n because the side condition of
the process par rule requires that the two type values
are disjoint. Then process (3) cannot be typed by this
type system and will be regarded as a program error

Further views to control interferences. The SA
approach and ours have one feature in common. Both
of them prohibit two processes from being parallel
with each other through the Par rule for process if
both of the processes will have the rights to access the
same ambient. But this kind of approach cannot co-
exist with Replication rule. This is the reason why SA
uses recursive constructs for infinite behaviors for
processes, and hence in SR we use the same con-
structs. Though ROAM uses replication constructs to
describe infinite behaviors for processes, it is easy to
make few modifications to apply the L-S.

The distinction of type system between SA and
SR is threadness. The SA interference-free process
must be typed as single-threaded which means the
execution process should strictly follows the execu-
tion sequence generated by the type system. However,
by using L-S, parallel execution is allowed in
well-behaved processes. Thus, process execution will
speed up dramatically.

As for open capability in mobile ambients, if an
ambient is opened, the internal process will be
unleashed. This may cause an “interference-free”
process to reduce to an interference-causing process
such that it will break the typing theorem of sound-
ness. To prevent this, process Amb rule should pre-
serve the type value when performing the ambient
enclosing operation. Therefore, the previous “interfe-

rence-free” process cannot be typed with location
types.

Although we do not provide any theorem and
proofs for ROAM and MR to claim the soundness of
applying location type system to them, in terms of the
above analysis, we strongly believe that our solution
can serve as a general typing architecture to control
interference in ambient-like calculi if (1) the primi-
tives provide enough information for the mobile tar-
get and (2) recursive constructs are used to describe
infinite process behavior instead of replication.

As discussed above, all of our works are based
on pure ambient-like calculus. For future works, L-S
will be introduced to the non-pure ambient-like cal-
culus with message passing. We expect the channel
can also be typed by L-S.

References
Bugliesi, M., Castagna, G., Crafa, S., 2001. Boxed Ambients.

Proc. TACS 2001, Lecture Notes in Computer Science,
Springer, 2215:38-63.

Cardelli, L., Gordon, A.D., 1998. Mobile Ambients. In: Nivat,
M. (Ed.), Proc. FoSSaCS’98, Lecture Notes in Computer
Science, Springer, 1378:140-155.

Cardelli, L., Ghelli, G., Gordon, A.D., 1999. Mobility Types
for Mobile Ambients. Technical Report MSR-TR-99-32,
Microsoft Research.

Cardelli, L., Ghelli, G., Gordon, A.D., 2000. Ambient Groups
and Mobility Types. IFIP TCS, p.333-347.

Fu, C., You, J.Y., 2003. Application Modeling Based on Typed
Resources. Proc. GCC 2003, Lecture Notes in Computer
Science, Springer, 3033:628-635.

Godskesen, J.C., Hildebrandt, T., Sassone, V., 2002. A Cal-
culus of Mobile Resources. Proc. CONCUR’02, Lecture
Notes in Computer Science, Springer, 2412:272-287.

Guan, X.D., Yang, Y.L., You, J.Y., 2000. Making Ambients
more Robust. Proc. ICS 2000, PHEI Press, p.377-384.

Guan, X.D., Yang, Y.L., You, J.Y., 2001. Typing evolving
ambients. Information Processing Letters, 80(5):265-270.

Levi, F., Sangiorgi, D., 2000. Controlling Interference in Am-
bients. Short Version Appeared in Proc. 27th POPL,
ACM Press.

Merro, M., Hennessy, M., 2002. Bisimulation Congruences in
Safe Ambients. Proc. POPL’02, ACM Press, p.71-80.

