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Abstract:    Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) 
function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most 
popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at 
the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can 
involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the 
distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the 
proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.  
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INTRODUCTION 
 

Interest in data fusion has markedly increased 
over the last decade, especially for military applica-
tions; and is also widely used in other fields, such as 
image processing and analysis and classification or 
target tracking (Goodman et al., 1997; Linas and 
Waltz, 1990; Hall and Linas, 2001). Based on the 
framework of evidence theory, data fusion relies on 
the use of combination rules allowing the belief 
functions for the different propositions to be com-
bined. Dempster’s (1967) combination rule plays an 
important role in evidence theory; and has several 
important mathematical properties such as commuta-
tion and association. 

However, combining belief functions with this 
operator implies normalizing the results by scaling 
them proportionally to the conflicting mass in order to 
keep some basic properties. Zadeh (1986) underlined 
that this normalization involves counter-intuitive 

behaviors. In order to solve the problems of conflict 
management, Yager (1986), Smets (1990), Dubois 
(1998), and more recently Lefevre et al.(2002) pro-
posed other combination rules which have more or 
less satisfactory behaviors. Particularly, Dubois’ rule 
or Yager’s rule of combination holds that the con-
flicting mass must be distributed over all subsets. 
Smets (1993) proposed that the conflicting mass re-
sults from the non-exhaustivity of the frame of dis-
cernment. Murphy (2000) suggested incorporating 
“average belief” into Dempster’s combining rule, 
which handles highly conflicting evidence efficiently 
and has many attractive properties. However, simple 
averaging is not always adequate to get reasonable 
results, especially when the evidence has a high de-
gree of conflict, because it does not consider the as-
sociative relationship among the evidences collected 
from multi-sources. In this paper, based on the dis-
tance of evidence, a modified average approach to 
combine conflicting evidence is developed. 

This paper is organized as follows: The basic 
concepts of evidence theory are first briefly intro-
duced including the problem of conflict in Demp-
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ster’s rule of combination. Then, we introduce the 
distance measure between bodies of evidence and 
present a modified averaging approach to combining 
conflicting evidence. Following this, a numerical 
example is given to show the efficiency of the pro-
posed method and the result of the modified averag-
ing approach compared with that of other methods. 
Finally, a brief conclusion is drawn. 

 
 

REVIEW OF THE THEORY OF EVIDENCE 
 
In this section, we briefly review the basic con-

cepts of evidence theory and introduce related func-
tions and notations. The theory of evidence is initially 
based on Dempster’s work concerning lower and 
upper probability distribution families. From these 
mathematical foundations, Shafer (1976) showed the 
ability of the belief functions to model uncertain 
knowledge. The functions defined in the theory of 
evidence allow one to quantify the confidence that a 
particular event could be the one observed. Then, 
while new information arrives, the identification 
system integrates it using conditioning rules to pro-
vide a representation of the obviousness of the situa-
tion. In the following, terminology of theory of evi-
dence and the notation used in this paper are defined. 

 
Terminology 

In the theory of evidence, if Θ denotes the set of 
θN (θN∈Θ) corresponding to N identifiable objects, 
then Θ  is called the frame of discernment, defined as 
follows: 

 
Θ={θ1, θ2, …, θN}                                           (1) 

  
It is composed of N mutually exhaustive and exclu-
sive hypotheses. The power set of Θ is the set con-
taining the all the 2N possible subsets of Θ, repre-
sented by P(Θ): 
 
P(Θ)={∅,{θ1},{θ2},…,{θN},{θ1,θ2},{θ1,θ3}…,Θ} 

 (2) 
 
where ∅ denotes the empty set. The {θN} subsets 
containing only one element are called singletons. A 
key point of evidence theory is the Basic Probability 
Assignment (BPA). A BPA is a function from P(Θ) to 

[0, 1] defined by: 
 

m:P(Θ)→[0,1],      A|→m(A)                                   (3) 
 

and which satisfies the following conditions: 
 

( )
( ) 1, ( ) 0

A P
m A m

∈ Θ

=       ∅ =∑               (4) 

                       
where A is the element of P(Θ). If the condition 
m(∅)=0 is specified, it corresponds to the 
“closed-world assumption”. If it is not, it corresponds 
to an “open-world assumption” (Smets, 1990). The 
elements of P(Θ) that have non-zero mass are called 
focal elements. A body of evidence (BOE) is the set 
of all focal elements. And the union of all the focal 
elements is called the core of the m-function. Given a 
BPA m, a belief function Bel is defined as: 
 

: ( ) [0,1], ( ) ( )
B A

Bel P A Bel A m B
⊆

Θ →  = ∑6 (5)

              
and a plausibility function Pl is defined as: 
 

: ( ) [0,1], ( ) ( )
A B

Pl P A Pl A m B
∩ ≠∅

Θ →  = ∑6    (6)                         

 
Bel(A) measures the total belief that the hy-

potheses is true. While Pl(A) measures the total belief 
that can move into A. In particular, we have Bel(∅)=0, 
Bel(Θ)=1 and Pl(∅)=0, Pl(Θ)=1. Because the func-
tions m, Bel and Pl have a one-to-one correspondence, 
it is equivalent to talking about one of them, or about 
the corresponding body of evidence. 
 
Combination rule of evidence 

In the case of imperfect data, fusion is an inter-
esting solution to obtain more relevant information. 
Evidence theory offers appropriate aggregation tools. 
Two BPAs m1 and m2 can be combined to yield a new 
BPA m by a combination rule. Dempster’s rule of 
combination (also called the orthogonal sum), noted 
by m=m1⊕m2, is the first classical one within the 
framework of evidence theory as defined by Demp-
ster (1967): 

 

1 2( ) ( )
( )

1
B C A

m B m C
m A

K
∩ ==

−
∑                            (7) 
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where 1 2( ) ( )
B C

K m B m C
∩ =∅

= ∑                             (8) 

 
K is the mass that the combination assigned to the null 
subset and represents contradictory evidence, called 
conflict because it measures the degree f of the con-
flict between m1 and m2, K=0 corresponds to the ab-
sence of conflict between m1 and m2, whereas K=1 
implies complete contradiction between m1 and m2. 
The belief function resulting from the combination of 
J information sources SJ is defined as: 
 

1 2 j Jm m m m m= ⊕ ⊕ ⊕ ⊕ ⊕" "                   (9) 
 
In fact, the Dempster’s rule of combination is not 

the only rule to combine two BPAs. Smets (1993) 
proposed the conjunctive and disjunctive rules, which 
are also un-normalized rules that allow the empty set 
to have a non-null mass. 

 
Conflict in combining evidence 

In fact, when conflicting evidence is present, 
Dempster’s rule for combining beliefs often produces 
counter-intuitive results. A typical example given by 
Zadeh (1986) is as follows: 
Example 1    Consider a situation in which we have 
two belief structures m1 and m2 as follows: 
 

m1(a)=0.9, m1(b)=0.1,   m2(b)=0.1, m2(c)=0.9. 
 
Application of the Dempster’s rule yields: 
 

m(a)=m(c)=0,    m(b)=1. 
 

Thus it can be seen that while m1 and m2 offer 
little support to b, the results offer complete support to 
b. This appears somewhat counter-intuitive. Because 
of the illogical aspects mentioned above, conflict 
management in belief functions is a very important 
problem and had been studied in the past. In general, 
there are three types of problems concerning the 
classical Demspter’s combination rule: (1) D-S com-
bination can assign 100% certainty to a minority 
opinion, which is shown in Example 1 (Zadeh, 1986). 
(2) The “ignorance” interval disappears forever 
whenever a single piece of evidence imparts all its 
weight to a proposition and its negation, gives the 
false impression that precise probabilistic information 
underlies the belief (Pearl, 1990). (3) Elements of sets 

with larger cardinality can gain a disproportionate 
share of belief (Voorbraak, 1991). 

To solve these problems, several alternatives to 
the normalization process were proposed. Murphy 
(2000) carefully analyzed the proposed approaches, 
comprehensively compared their results, and argued 
that, of the presented alternatives, averaging best 
solves the normalization problems.  
 
Murphy’s averaging approach 

Murphy’s average rule of combination is very 
simple: just average all the BPAs to get a new BPA. 
Using the average approach, the results in Example 1 
are: 

 
m(a)=0.45,   m(b)=0.1,   m(c)=0.45.  
 
The results are more reasonable than that of 

Dempster’s. On the one hand, since m1 and m2 offer 
little support to b, m(b) is small as expected. On the 
other hand, the support of a and c are equal and both 
of them do not draw a clear conclusion in the step. 
The final decision should be made depending on the 
collection of additional evidence. 

This averaging approach has many attractive 
properties. However, it does not offer convergence 
toward certainty. This drawback can be shown in the 
following example introduced by Voorbraak (1991).  
Example 2    Consider a situation in which we have 
two belief structures m1 and m2 as follows: 
 

m1{a}= m1{b or c}=0.5,   m2{c or b}=m2{c}=0.5. 
 
Results after combining the two bodies of evidence: 
 

m{a}= m{b}= m{c}=1/3 
 

The equal distribution of belief is 
counter-intuitive because both {a} and {c} had indi-
vidually assigned mass, as well as a share with {b}; 
but {b} had only two shared masses. Because the 
problem occurs in the intersection operation, omitting 
the normalization step does not change the relative 
assignments. Thus, the proposed alternatives cannot 
handle the problem in this case. However, averaging 
the masses yields: 

 
m{a}=m{c}=m{a or b}=m{b or c}=0.25.  
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The results showed that, on the one hand, “av-
eraging” solves the problem presented by Voorbraak 
(1991). On the other hand, it does not offer conver-
gence toward certainty. To improve the performance 
of convergence, Murphy incorporated average belief 
into the combining rule. Thus, averaging followed by 
the D-S combination gives: 

 
m{a}=m{c}=0.3,     m{b}=0.2,  
m{a or b}=m{b or c}=0.1.  

 
This result assigns a higher mass to {a} and {c} 

than to {b}. Though the averaging approach effi-
ciently solves the problem of combining conflicting 
evidence, simple average is not always reasonable, 
especially in the case when the number of the evi-
dences is not enough to make a decision. The reason 
is that simple averaging does not consider the asso-
ciative relationship among the evidences collected 
from multi-sources. A modified averaging approach 
to combine conflicting evidence is developed below.  

 
 

THE MODIFIED AVERAGING APPROACH 
 
In this section, based on the Definition 1−5 of 

distance measure between bodies of evidence pre-
sented by Jousselme et al.(2001), a credibility degree 
coefficient is introduced to show the relative weight 
of each piece of evidence, then a modified (or 
weighted) averaging approach is developed. 

 
Distance of evidence (Jousselme et al., 2001) 

Unlike other’s viewpoints, Jousselme et al. give 
a geometrical interpretation for BPAs. The main idea 
is detailed as follows: Let us call P(Θ) the space 
generated by all subsets of  Θ. P(Θ)  is a vector space 
of any linear combination of the object of P(Θ).  
Definition 1    Let Θ be a frame of discernment con-
taining N mutually exclusive and exhaustive hy-
potheses, and let P(Θ)  be the space generated by all 
subsets of Θ. A basic probability assignments (BPA) 
is a vector m of P(Θ) with coordinates m(Ai)≥0 such 
that  
 

2

1
( ) 1,

N

i
i

m A
=

=∑  ( ),iA P∈ Θ  1, , 2= … Ni            (10)              

In this definition, we do not need to impose m(∅)=0. 
Definition 2    Let m1 and m2 be two BPAs on the 
same frame of discernment Θ, containing N mutually 
exclusive and exhaustive hypotheses. The distance 
between m1 and m2 is: 
 

BPA 1 2( , )d m m T
1 2 1 2

1 ( ) ( )
2

= − −m m D m m           (11) 

 
where m1 and m2 are the BPAs according to Definition 
1 and D  is a 2N×2N matrix whose elements are  

 

( , )
A B

D A B
A B

∩
=

∪
, , ( )A B P∈ Θ                (12) 

 
Here, the factor 1/2 is needed in Eq.(11) to normalize 
dBPA and to guarantee that 0≤dBPA(m1, m2)≤1. From 
Definition 2, another way to write dBPA is: 
 

BPA 1 2( , )d m m = 2 2
1 2 1 2

1 ( 2 , )
2

+ −m m m m    (13) 

 
where 〈m1, m2〉 is the scalar product defined by 
 

1 2,m m
2 2

1 2
1 1

( ) ( )
N N

i j
i j

i j i j

A B
m A m B

A B= =

∩
=

∪
∑∑            (14) 

 
while Ai, Aj∈P(Θ) for 2, 1,2, , 2 . ,Ni j =   =… m m m  
is then the square norm of m. 
 
Credibility of evidence 

To do the fusion, we want to know if the evi-
dence we will use is credible. Maybe one piece of 
evidence is more important than the other, and each 
piece of evidence has its own weight in the sum of 
evidence we had. For example, in a long time meas-
urement, some sensors may be more reliable than 
others because of their high stability, so the relative 
importance of each sensor may not be equal. There-
fore, how to assign the weight of evidence is very 
important, especially when the evidence that is col-
lected by multi-sensor array has a high degree of 
conflict. In this case, the system should determine, 
among the evidences, which one is more reliable and 
which one should we pay less attention to. A rea-
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sonable way to handle this problem is as follows: If a 
piece of evidence is supported by other evidences in 
the system, then the evidence should have a higher 
weight than that of a piece of evidence which has high 
conflicting degree with other evidences. Based on this 
rule, we give some definitions to describe the “credi-
bility degree” of evidence, which actually is a weight 
and showing the relative importance of each piece of 
evidence in the system. 
Definition 3    The similarity measure Simi,j between 
the two bodies of evidence mi and mj is defined as: 
 

, BPA
1 [cos ( , ) 1] , 1, ,
2i j i jSim d m m i j N= π + = … (15) 

 
Suppose the number of bodies of evidence is N. We 
can construct a Similarity Measure Matrix (SMM) of 
all the N bodies of evidence, which gives us insight 
into the agreement between every two bodies of evi-
dence Eq.(16).  
 
 

1,2 1, 1 1,

2,1 2, 1 2,

1,1 1,2 1,

,1 ,2 , 1

1
1

1
1

N N

N N

N N N N

N N N N

Sim Sim Sim
Sim Sim Sim

Sim Sim Sim
Sim Sim Sim

−

−

− − −

−

 
 
 
 =
 
 
  

SMM

"
"

# # #% #
"
"

 

(16) 
 

Definition 4    The support degree Sup of each piece 
of evidence mi is defined as Eq.(17). 
 

,
1

( ) , , 1,2, ,
N

i i j
j
j i

Sup m Sim i j N
=
≠

= =∑ "         (17) 

 

 

Definition 5    The credibility degree Crdi of each 
piece of evidence is defined as: 
 
 

1

( )
, 1,2, ,

( )

i
i N

i
i

Sup m
Crd i N

Sup m
=

= =

∑
"                (18) 

 

It can be easily seen that 1
N

i
i

Crd =∑ . According 

to Definition 4, for a given piece of evidence, the 

shorter the distance to other pieces of evidence, the 
more the support degree. If a piece of evidence is 
greatly supported by others, its credibility degree is 
high and this evidence has more effect on the final 
combinatorial results. Contrarily, if a piece of evi-
dence is always in conflict with other evidences to a 
high degree, its credibility degree is low and this 
evidence should have less effect on the final combi-
natorial results. Thus the credibility degree is actually 
a weight, which shows the relative importance of the 
collected evidence. The modified (or weight) average 
mass mM of the evidence is given as: 

 

1

( ) , 1,2, ,
N

M i i
i

m Crd m i N
=

= × =∑ "             (19) 

 
If there are N pieces of evidence, the classical 

Dempster’s rule is used to combine the weighted 
average of the masses N−1 times, which is the same as 
Murphy’s (2000) approach. We have proposed a 
weighted averaging approach to combining evidence. 
This presented approach will be summarized in five 
steps: 

Step 1: Within N pieces of evidence, calculate 
the distance between each piece of evidence with 
others. 

Step 2: Calculate Simi,j and Supi of each evi-
dence. 

Step 3: Calculate the weighted average masses 
of the evidence. 

Step 4: Use the classical Dempster’s rule to 
combine the weighted average masses N−1 times. 

Step 5: When get the (N+1)th evidence, go to 
Step 1 and repeat. 
 
 
NUMERICAL EXAMPLES 
 

In this section, two numerical examples are il-
lustrated. The first one shows how to combine the 
conflicting evidence and the second one shows the 
efficiency of the proposed method by comparing the 
results of different combining rules. 
Example 3    Three pieces of evidence m1, m2, m3 and 
their masses are as follows: 
 

m1: m1(A)=0.6,  m1(B)=0.1,  m1(C)=0.3 
m2: m2(A)=0.2,  m2(B)=0,  m2(C)=0.8 



Chen et al. / J Zhejiang Univ SCI   2005 6A(5):476-482 481

m3: m3(A)=0.7,  m3(B)=0.1,  m3(C)=0.2 
 
According to Eqs.(11)−(18), the credibility degree 
Crdi of each piece of evidence can be calculated as:  
 

Crd1=0.3947, Crd2=0.2501, Crd3=0.3552. 
 

And the weighted masses of the evidences m1, m2, m3 

are respectively as: 
 
mM(A)=0.3947×0.6+0.2501×0.2+0.3552×0.7=0.5355
mM(B)=0.3947×0.1+0.2501×0+0.3552×0.1=0.0750 
mM(C)=0.3947×0.3+0.2501×0.8+0.3552×0.2=0.3895  
 

As can be seen from the results above, evidence 
m1 and m3 are similar to each other. So the credibility 
degrees of m1 and m3 are higher than m2. Contrarily, 
the evidence m2 is highly conflicting with m1 and m3, 
which leads to the rather low degree of credibility 
Crd2, compared with the other two pieces of evidence 
in the system. After the weighted mass of the three 
pieces of evidence is obtained, classical Dempster’s 
rule is used to combine the weighted masses twice. So, 
the final combination results by the modified average 
approach are given as follows:  

 
m(A)=0.7207, m(B)=0.0020,  m(C)=0.2773 

 
The following example illustrates the efficiency 

of the proposed combination rule. Since Murphy 
(2000) has compared the simple averaging approach 
with other alternatives, in this paper, we just com-
pared the proposed method with the classical Demps- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ter’s combination rule and the averaging method 
presented by Murphy. 
Example 4    In a multi-sensor based automatic target 
recognition system: suppose the real target is A and 
the system has collected 5 pieces of evidence m1, m2, 
m3, m4, m5 as follows: 
 

m1: m1(A)=0.6,  m1(B)=0.2,  m1(C)=0.3 
m2: m2(A)=0,  m2(B)=0.9,  m2(C)=0.1 
m3: m3(A)=0.55,  m3(B)=0.1,  m3(C)=0.35 
m4: m4(A)=0.55,  m4(B)=0.1,  m4(C)=0.35 
m5: m5(A)=0.55,  m5(B)=0.1,  m5(C)=0.35 

 
The results by using different combination rules are 
shown in Table 1.  

As can be seen from Table 1, when conflicting 
evidence is present, the classical Dempster’s rule for 
combining beliefs produces results that do not reflect 
the actual distribution of beliefs. In this case, for the 
collection of the “bad” evidence m2, which may have 
been caused by many factors such as foul weather, 
spurious external or internal signal noise, drifting 
circuit board component values, or even an enemy’s 
jamming activity or the flaws of the sensor array itself, 
Dempster’s combination results show that, though 
more pieces of evidence, collected later, support tar-
get A, it is impossible that the target is A, which is 
contrary to the truth. With incremental evidence, both 
the simple averaging and weight averaging methodes 
provide reasonable results. However, when the number 
of evidences is not adequate to make a decision, the 
proposed method is superior to the simple averaging of 
the sums. For example, when the system  collects  only 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Results of using different combination rules of evidence 
 

 m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5 
D-S combination rule 
 

m(A)=0 
m(B)=0.8571 
m(C)=0.1429 
 

m(A)=0 
m(B)=0.6316 
m(C)=0.3648
 

m(A)=0 
m(B)=0.3288 
m(C)=0.6712 
 

m(A)=0 
m(B)=0.1228 
m(C)=0.8772 
 

Yager’s combination rule 
 

m(A)=0 
m(B)=0.18 
m(C)=0.03 
m(Θ)=0.79 
 

m(A)=0 
m(B)=0.018 
m(C)=0.0105 
m(Θ)=0.9715
 

m(A)=0 
m(B)=0.0018 
m(C)=0.0037 

  m(Θ)=0.9945 
 

m(A)=0 
m(B)=0.0002 
m(C)=0.0013 
m(Θ)=0.9985 
 

Murphy’s average combination rule 
 

m(A)=0.1543 
m(B)=0.7469 
m(C)=0.0988 
 

m(A)=0.3504 
m(B)=0.5231 
m(C)=0.1265
 

m(A)=0.6027 
m(B)=0.2627 
m(C)=0.1346 
 

m(A)=0.7958 
m(B)=0.0932 
m(C)=0.1110 
 

Modified average combination rule m(A)=0.1543 
m(B)=0.7469 
m(C)=0.0988 

m(A)=0.4626 
m(B)=0.3845 

  m(C)=0.1529 

m(A)=0.7419 
m(B)=0.1120 

  m(C)=0.1461 

m(A)=0.8827 
m(B)=0.0142 
m(C)=0.1031 
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three pieces of evidence m1, m2, m3, the presented 
approach draws a correct conclusion that the target is 
A, while the simple average still supports that the 
target is B. What is more, as can be seen from Table 1, 
the convergence performance of the modified method 
is better than that of the simple average. The main 
reason for these finding mentioned above is that, by 
making use of the distance of the evidences, the 
modified average approach decreases the weight of 
the “bad” evidence, so the “bad” evidence has less 
effect on the final combination of results.  
 
 
CONCLUSION 
 

Dempster’s combination operator is a poor so-
lution for the management of the conflict between the 
various information sources at the normalization step. 
Of the alternative methods that address the problems, 
averaging best solves the normalization problems and 
has much more attractive features. The modified av-
erage approach based on the distance between the 
evidence preserves all of the desirable properties of 
the simple average. In addition, compared with sim-
ple averaging, the proposed method reflects the as-
sociative relationship of the evidences and can effi-
ciently handle conflicting evidences with better con-
vergence performance. 
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