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Abstract:    This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear 
differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for 
synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, 
an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were 
carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in 
spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be 
achieved and that the message can be recovered in spite of the strictly different model. 
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INTRODUCTION 
 

Synchronization of chaotic systems and its ap-
plication to secure communication has recently re-
ceived much attention. Several chaos synchronization 
schemes have been successfully established (Liao and 
Huang, 1999; Jiang, 2002; Zhao et al., 2004). How-
ever, to our best knowledge, most of the chaos syn-
chronization strategies have been studied in similar 
oscillators. In fact, from the perspective of hardware 
implementation, the resistance and capacitance of the 
resistors and the capacitors, respectively, in the 
transmitter circuit will always differ slightly from 
those in the receiver circuit. Hence, the two and cha-
otic circuits will not be identical due to the mismatch 
in the system’s parameters. Therefore, the synchro-
nization of two chaotic systems with parametric un-
certainties or different structure is an important issue. 

Femat proposed an extended form and several 
schemes have been reported (Femat and Alva-
rez-Ramírez, 1997; Femat et al., 2000; Femat and 
Jauregui-Ortiz, 2001) based on extend state observer 
theory to resolve the problem. On the other hand, Liao 
and Tsai (2000) resolved the chaos synchronization of 
a class of nonlinear systems with disturbances and 
unknown parameters by deriving an adaptive ob-
server-based driven system via a scalar transmitted 
signal. 

Sliding mode control is a nonlinear control 
scheme widely used for controlling uncertain 
nonlinear systems (Liao and Huang, 1997; Yau et al., 
2000). In view of the above developments, this work 
is aimed at studying the synchronization of two cha-
otic systems with parametric uncertainties or different 
structure based on the sliding mode control scheme 
and the extended state observer theory. In this paper, 
the structure of the extended state observer presented 
by Femat and Alvarez-Ramírez (1997), Femat et 
al.(2000), and Femat and Jauregui-Ortiz (2001) is 
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generalized and the minimum phase assumption is 
considered. The two-channel transmission method 
(Jiang, 2002) was used in the numeric simulation to 
verify the application in secure communication of this 
chaos synchronization method.  
 
 
CANONICAL FORM OF NONLINEAR SYSTEM  
 

Consider the following nonlinear system  
 

       ( ) ( ) ,     ( )u y h= + =x f x g x x                          (1) 
 
where x∈Rn; y, u∈R; f, g are n dimensions smooth 
vector field; h(x) is smooth function. 

Define Lie derivative of function h(x) with re-
spect to f as Lfh(x), and 0 ( ) ( ),L h h=f x x  1 ( )kL h+ =f x  

( ( ))L L hf xf
k . 

Definition 1 (relative degree)    Let us assume that 
x0∈X, V is the neighborhood of x0 and constant r>0, 
system Eq.(1) has relative degree r at x0 if  

(i) ( ) 0,  ,  0 1;kL L h k r= ∀ ∈ ≤ < −g f x x V  

(ii) 1 ( ) 0,  rL L h− ≠ ∀ ∈g f x x V . 

Proposition (Feng and Fei, 1998)    Suppose system 
Eq.(1) has a relative degree r≤n at x0, it is always 
possible to find n−r functions φr+1, φr+2, …, φn that the 
mapping 1

1( ) [ ( ), ( ), , ( ), , ,r
rx h L h L h φ−

+= f fx x xΦ  

]nφ  has a Jacobin matrix which is nonsingular at x0, 
and it is always possible to choose φr+1, φr+2, …, φn in 
such that Lgφi(x)=0 for all r+1≤i≤n. This implies that 
there exists a globally invertible coordinate trans-
formation (z, v)=Φ(x) such that the system Eq.(1) can 
be globally transformed into the canonical form  
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1

, 1,2, , 1
( , ) ( , )

( , )

i i
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z z i r
z u

q
y z

α β
+=   = −

= +
=
=

z v z v
v z v

                              (2) 

 
where 1( , ) ( ), ( , ) ( ),r rL h L L hα β −= =f g fz v x z v x v=[φr+1, 

φr+2, …, φn]. The system is fully linearizable when r=n. 
The system is partly linearizable when r<n and 

(0, )q=v v  is called zero dynamics of system Eq.(2).  

BASE THEORY 
 
Normalization of the chaotic discrepancy 

 Consider the following chaotic transmitter: 
 

1 1 1 1 1 1( ; ),       ( )y h= =X f X Xπ                    (3) 
 

and the following receiver: 
 

2 2 2 2 2 2( ; ) ,       ( )u y h= + =X f X g Xπ              (4) 
 
where X1, X2∈Rn are state vectors; π1, π2∈Rm are 
parameter sets; g∈Rn is a smooth vector field; u is the 
control; y1 is the output of system Eq.(3). 

By defining x=X1−X2, the following uncertain 
dynamical error system can be obtained: 

 
,      ( )u y h= ∆ − =x f g x                             (5) 

 
where ∆f=f1(X1; π1)−f2(X2; π2).  

We make the following assumptions. 
Assumption A1    The order of systems Eq.(3) and 
Eq.(4) is the same. 
Assumption A2    Systems Eq.(3) and Eq.(4) have 
different structure or identical structure but with pa-
rametric variations. 
Assumption A3    System Eq.(5) is minimum phase, 
i.e., the subsystem of the zero dynamics, (0, )=v q v  
where v∈Rn−r, is asymptotically stable. 

Now the synchronization problem becomes: Is 
there any smooth function u  such that the uncertain 
nonlinear system Eq.(5) is asymptotically stable at the 
origin? 

There are uncertain model mismatches between 
the transmitter and the receiver, which implies that the 
discrepancy model is unknown. 
Definition 2 (nominal function)    Function β0(x) is 
called the nominal function of function β(x) if β(x) is 
an uncertain function, and β(x)=β0(x)β1(x), while β0(x) 
is a certain function, and sign[β(x)]=sign[β0(x)]. 

The following lemma (Femat and 
Alvarez-Ramírez, 1997; Femat and Jauregui-Ortiz, 
2001) is essential to our paper. 
Lemma    Let us assume that there exists a coordina-
tion transformation (z, v)=Φ(x) such that the uncertain 
nonlinear system Eq.(5) can be transformed into the 
canonical form Eq.(2). Now suppose that γ is the 
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nominal function of function β(z, v). Let us define δ(z, 
v)=β(z, v)−γ, η=Θ(z, v, u), Θ(z, v, u)=α(z, v)+δ(z, v)u. 
Then there exists an invariant manifold such that the 
nonlinear system Eq.(2) can be rewritten in the fol-
lowing form:  

 

1, 1,2, , 1

( , , , , )

i i

r

z z i r
z u

u u
η γ

η η

+=   = −
 = +
 = Γ z v

                         (6.1) 

            ( , )=v q z v                                                  (6.2) 
 

1

1
1

where ( , , , , ) [ ( , , )] [ ]
r

i i
i

u u z uη η γ
−

+
=

      Γ = ∂ Θ + +∑z v z v  

( , , ) ( , ) ( , , ) ( , );r u u uδ⋅∂ Θ +  + ∂ Θvz v z v z v q z v  y=z1 is 
the output. 

System Eq.(6) is dynamically equivalent to sys-
tem Eq.(5). Now the synchronization problem be-
comes: Is there any smooth function u such that sys-
tem Eq.(6) is asymptotically stable at the origin? 

 
Sliding surface design and associated control law 

Subsystem Eq.(6.1) and Eq.(6.2) can be de-
coupled fully when subsystem Eq.(6.1) becomes a 
linear stability system under the control, hence the 
whole system is asymptotically stable at the origin 
according to Assumption A3, and the synchronization 
of systems Eq.(3) and Eq.(4) is achieved. 

The proposed design method for sliding mode 
control is as follows. 

Let zr+1=η+γu, subsystem Eq.(6.1) becomes: 
 

1

1

1

, 1,2, , 1i i

r r

r

z z i r
z z
z uη γ

+

+

+

=   = −

=
= +

                     (7) 

 
Based on the control law proposed by Yau et al. 

(2000), the sliding surface can be defined as 
 

1

1 0( 1)
1

d 0
r

r r i i
i

S z z c z t
+

+ +
=

= − + =∑∫                       (8) 

 
where z0(r+1) denotes the initial state of zr+1.  Eq.(8) can 
also be formulated as 
 

1

1
1

r

r i i
i

z c z
+

+
=

= −∑                                       (9) 

with initial condition zr+1(0)=z0(r+1) and the sliding 
mode dynamics can be described by the following 
system of equations 
 

1

1

1
1

, 1,2, ,j j

r

r i i
i

z z j r

z c z

+

+

+
=
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= −∑
                        (10) 

 
By defining Z=[z1 z2 … zr+1]T, Eq.(10) can be de-
scribed in matrix equation form as 
 

=Z AZ                                          (11) 
 

where 

1 2 1

0 1 0 0
0 0 1 0

rc c c +

 
 
 =
 
 
− − −  

A . 

The design parameters ci (i=1, 2, …, r+1) can be 
determined by choosing the eigenvalues A such that 
the corresponding characteristic polynomial Pr+1(s) 
=sr+1+cr+1sr+…+c2s+c1 is Hurwitz. Thus, system 
Eq.(11) is asymptotically stable. The sliding surface is 
a stable surface. 

The reaching law can be chosen such that (Liao 
and Huang, 1997)  
 

sgn( )S S Sα β= −                                           (12) 
 

where 0≤α<1 and β>0. 
From Eqs.(7), (8) and (12), we have 
 

1

1

1 sgn( )
r

i i
i

u S S c zα β η
γ

+

=

 
= − − − 
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This results in 
 

1

0
1

1 sgn( ) d
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i i
i

u S S c z tα β η
γ

+

=
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In general, the initial state of the control u is zero. 
After substituting Eq.(13) into Eq.(7), the close-loop 
system dynamics can be described as 
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1

1
1

sgn( )
r

r i i
i

z S S c zα β
+

+
=

= − − ∑              (15) 

 
Let the Lyapunov function of the system be 

V=S2/2, then its first derivative with respect to time is 
 

( sgn( ))V S S Sα β= − ≤ |S|(|S|−β)          (16) 
 

From Eq.(8), we know that S is bounded. Therefore, if 
β≥|S|, then 0V ≤ , that is, there exist sliding mode 
dynamics. In many situations, β≥|S| can be satisfied 
by choosing a large enough switching gain β. Thus, 
the error system Eq.(7) reaches the neighborhood of 
the sliding surface S=0 and remains within a band 
(Liao and Huang, 1997) under the control, the 
synchronization of systems Eq.(3) and Eq.(4) is 
ensured. The controller Eq.(14) requires a priori knowl-
edge about the augmented state η. According to As-
sumption A2, that is an unrealistic situation. Conse-
quently, estimated values of the states (z, η) are re-
quired for practical implementation. Choose a con-
tinuously differential nonlinear function m(x) such 
that m′=dm(x)/dx≠0 and m(0)=0. Apply extended state 
observer theory to design the following Luenber-
ger-like state estimator to reconstruct the states (z, η) 
from the measurement of z1 (Zhao, 2004): 

 

ˆiz 1ˆiz += 1 1
1 1

ˆ( ),   1,2,..., 1
ˆ( )

i ik
L m z z i r

m z z
− − = −

′ −
  

ˆiz 1 1
1 1

ˆ ˆ( )
ˆ( )

r rkL m z z u
m z z

η γ= − − +
′ −

 

1 1
1 1

1 1

ˆ ˆ( )
ˆ( )

r rkL m z z
m z z

η + += − −
′ −

                         (17) 

 
where ˆ( ,z ˆ)η are estimated values of (z, η), respec-
tively. The parameters ki, i=1, 2, …, r+1 are chosen 
such that they are coefficients of Hurwitz polynomial 
Pr+1(s)=sr+1+k1sr+…+krs+kr+1, and L>0 be the 
high-gain estimation parameter. Therefore, the con-
troller is: 
 

0
1

1 sgn( )
rt

i
i

u S S cα β
γ =


= − −


∑∫ 1 ˆˆ (i iz c η+−  

ˆ) du tγ η


       + −                                         (18)


ILLUSTRATIVE EXAMPLES 
 

After the synchronization of two chaotic systems, 
we can use various chaotic secure communication 
schemes to transmit information signal. In the simu-
lation, we use the two-channel transmission method 
(Jiang, 2002). We present two examples in this sec-
tion. 

 
Synchronization of two Chua’s circuits with 
parametric variations 

Consider two Chua circuits (Kennedy, 1992) in 
the form: X1,2=(x1,2, y1,2, w1,2); 

 
1,2 1,2 1,2 1,2 1,2

1,2 1,2 1,2 1,2

1,2 1,2 1,2

[ ( )]x y x f x
y x y w
w y

ρ

σ

= − −

= − −

= −

             (19) 

 
where f(x)=bx+(a−b)(|x+1|−|x−1|)/2. 

Suppose the transmitter’s output is x1, g=[1 0 0]T. 
Defining the error variables as follows: e1=x1−x2, 
e2=y1−y2, e3=w1−w2, then the discrepancy system can 
be obtained as follows: 

 

                   1 1 2 2 3 3

1

, ,e f u e f e f
y e

= − = =

=

∆ ∆ ∆
              (20) 

 
By simple calculation we know Eq.(20) has 

relative degree 1. Define coordination transform as: 
z1=e1, v1=e2, v2=e3, let v=(v1, v2), we have 
 

1 1

2

1

z f u

y z

= −
= +
=

v Cv
∆

∆                                            (21) 

 

where 
1 1

,
2 0θ
− 

=  − 
C  1

2 ,
z
δ

 
=  

 
∆  θ=(σ1+σ2)/2, 

δ=σ1y2+σ2y1. It is clear that θ>0, δ is bounded. As 
z1→0 (zero dynamics), ∆2 is bounded, hence the zero 
dynamics subsystem 2= +v Cv ∆  is asymptotically 
stable. That is, the discrepancy is a minimum phase 
system. z1 is the measurable error. By calculating we 
know β(z, v)=−1, so γ=−1. Let η=∆f1, the control be-
comes: 



Li et al. / J Zhejiang Univ SCI   2005 6A(6):571-576 575

1̂z = 1
1 1

1 1

ˆ ˆ( )
ˆ( )
kL m z z u

m z z
η − − −

′ −
 

2 2
1 1

1 1

ˆ ˆ( )
ˆ( )

sgn( )

kL m z z
m z z

S S S

η

α β

= − −
′ −

= −

 

1 1 20
ˆˆ( sgn( ) (

t
u S S c z cα β η= − − − −∫ ˆ) )du tη− −    (22) 

 
For numerical simulation, we choose m(x)=x, 

and choose the following initial conditions: S(0)=0, 
X1(0)=(0.1, −0.5, 0.5), X2(0)=(0.6, 0.4, 0.8), 

1 ˆˆ( (0), (0)) (0,0)z η = , u(0)=0, and select the following 
parameter values: α=0.01, β=0.05, L=30, k1=2, k2=1, 
c1=900, c2=60, ρ1=10, σ1=14.28, a=−1.27, b=−0.68, 
ρ2=0.9ρ1, σ2=0.9σ1. The information signal is chosen 
as s=sin(t)+sin(2t)+sin(3t). We take the following 
encryption function and decryption function (Jiang, 
2002):  

 
2 2
1 (1 cos ( )) ,es x t s= + + 2 2

2( ) /(1 cos ( ))d es s x t= − + . 
 

Fig.1 shows the synchronization of two Chua’s 
circuits in spite of the response system parameters 
being modified by 10%. Note that the sliding mode 
control yields complete synchronization, and the in-
formation signal s is recovered quite accuracy.  

 
Synchronization of two different chaotic systems 

We choose the Duffing equation as the trans-
mitter and the Vander Pol oscillator as receiver. The 
drive system is:  

 
1 2

3
2 1 D 2 1 D Dcos

x x

x x x x w tδ γ

=

= − − +
               (23) 

 
The response system is given by: 
 

1 2
2 3

2 V 1 2 1 V V(1 ) cos

y y

y y y y w t uδ γ

=

= − − + +
    (24) 

 
Suppose the output of Eq.(23) is x1. Defining e1=x1−y1, 
e2=x2−y2, one yields the following discrepancy system 

 
1 2

2

e e
e f u

=
= ∆ −

                                               (25) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3 2
1 D 2 1 D D V 1 2

3
1 V V

where cos ( (1 )

cos ).

f x x x w t y y

y w t

δ γ δ

δ

 ∆ = − − + − −

− +
       System Eq.(25) has relative degree 2. Note that 
system Eq.(25) is fully linearizable. Thus the coor-
dinate transformation is given by z1=e1, z2=e2. De-
fining η=∆f, then system Eq.(25) can be constructed 
and the control becomes:  
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Fig.1  Synchronization of two Chua’s circuit with para-
metric variations and the signal transmitted 
(a) States x1 and x2; (b) States y1 and y2; (c) States w1 and w2; (d) 
Information signal s and recovered signal sd; (e) Encrypted 
signal se; (f) Control u 

(a)                                                 (b) 

(c)                                                 (d) 

(e)                                                 (f) 
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1̂z 2ẑ= 1
1 1

1 1
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m z z
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2ẑ 2 2
1 1
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η
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1 1 20
ˆˆ( sgn( ) (

t
u S S c z cα β η= − − − −∫ ˆ) )du tη− −     (26) 

 
For the purpose of simulation, we choose m(x)=x, 

and make the following choice of initial conditions: 
(x1, x2)=(0.3, 2.1), u(0)=0, S(0)=0, 1̂( (0),z  

2 ˆˆ (0), (0)) ( 0.01, 0.01, 0.01)z η = −   , and select the fol-
lowing parameter values: δD=0.15, γD=1.75, wD=2/3, 
δV=0.1, wV=1, γV=0.3, α=0.01, β=3.2, L=500, k1=3, 
k2=3, k3=1, c1=5003, c2=7500, c3=1500. Fig.2 shows 
the performance of the controller Eq.(26). Systems 
Eq.(23) and Eq.(24) is synchronized in spite of dif-
ferent structure; the information signal s and the re-
covered signal sd are almost identical. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this work, we designed a strategy to synchro-
nize two chaotic systems with structure or parameters 
difference. To this end, uncertainties in the discrep-
ancy system are lumped into a nonlinear function and 
interpreted as an augmented state. The synchroniza-

tion problem was addressed as one of chaos suppres-
sion. Then the chaos suppression problem was solved 
by means of a feedback control based on sliding mode 
control scheme. To make this controller physically 
realizable, an extended state observer was used to 
estimate the error between the transmitter and re-
ceiver. In addition, the proposed scheme allows for 
message signal recovery in spite of parametric varia-
tions and strictly different model of transmitter and 
receiver. 
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and recovered signal sd 


