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Abstract:    The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) 
arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of 
CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing 
different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results 
indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate 
strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-
stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an 
arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed. 
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INTRODUCTION 
 

As a result of the combined effects of the rolled 
steel tube and the core concrete, Concrete Filled Steel 
Tubular (CFST) structures can effectively take ad-
vantage of these two materials to improve the com-
pressive strength and the ductility of the structures. 
This kind of structure is developing quickly in China 
and widely used in high-rise structures and bridges. 
Recently, due to the development of construction 
projects, numerous studies on CFST structures have 
been implemented by both experimental investiga-
tions and theoretical analyses (Cai, 2003; Han, 2000, 
Zhong, 1999). Although the behavior of CFST 
structures has been extensively examined, the con-
crete core confinement is not yet well understood. 

Experimental applications of CFST arch bridges 
began in China in the 1990s. Based on the large 
numbers of CFST arch bridges built in recent decades, 
much valuable experience has been gained in struc-

tural design and building practice. However, owing to 
the late start of the engineering practice, research on 
the resistance to overturning and failure mechanism 
of the CFST structures is lacking. The current design 
methods take little account of the confinement effect 
of the steel tube ring on the concrete core, and only 
evaluate the structural stability by the elastic eigen-
value. The design theories of CFST arch bridges have 
fallen behind the corresponding fundamental research, 
and the up-to-date research findings still have not 
been applied to engineering design. 

It is well known that the arch ribs are basically 
compression structures. The calculation of secondary 
stress due to the deformation of arch axis, the analysis 
of the geometrical nonlinear effect and the estimation 
of ultimate bearing capacity are all important issues of 
structural design. CFST arch bridges where the 
cross-sectional dimensions are determined by the 
inner forces do not always satisfy the stabilization of 
the CFST arch bridges. An appropriate design method 
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for evaluating structural stability must take into ac-
count the effects of geometrical and material nonlin-
earity. 

The core concrete and the steel tube are in a 
complex 3D stress state, because the lateral deforma-
tion of concrete is bounded by the steel tube when 
CFST structures are compressed in the axial direction. 
In recent years, 3D finite element method (FEM) has 
been used to simulate the ultimate behavior of CFST 
structures (Fujii, 2003). However, to estimate the 
ultimate strength of CFST structures by 3D nonlinear 
FEM is still difficult and impractical in engineering 
design at present due to the following reasons: (1) The 
failure law and constitutive relationship of concrete in 
the tri-axial stress state are complex; (2) The results of 
calculation are largely dependent on the material 
parameters; (3) The amount of calculation is large.  

The purpose of this study is to develop an ap-
propriate method for evaluating the ultimate strength 
of CFST arch bridges. An evaluation method is put 
forward based on the space beam theory. As a stage of 
the study, an analytical approach of the method is 
presented and the constitutive relationship of core 
concrete is examined. Examples are presented to 
verify the accuracy of this method. Finally, the ulti-
mate strength of an arch bridge with span of 330 m is 
investigated by the proposed method and the nonlin-
ear behavior is discussed. 
 
 
ANALYTICAL THEORY 
 
Basic assumptions 

To simplify the calculation, the following as-
sumptions are adopted: 

(1) A plane section originally normal to its neu-
tral axis will always remain a plane and normal to the 
neutral axis during the deformation; 

(2) The shear deformation due to the shear force 
is ignored, and the torsional deflection satisfies the St. 
Venant torsional theory; 

(3) The shear stress affecting the stress-strain 
relation of the material is neglected.  

Although the first assumption is not necessary, it 
can simplify the calculation. In addition, the first 
assumption can be satisfied according to the interre-
lated experimental results (Cai, 2003). The second 
and third assumptions are introduced here because the 
arch ribs are essentially compression structures, so the 

influence of shear and torsion on their ultimate 
strength is insignificant. 
 
Stress-strain relation of core concrete and steel 
tube 

In the analysis approach proposed in this paper, 
the accuracy of analysis depends on the uniaxial 
stress-strain relationships of confined concrete and 
steel tube material. At present, an accurate stress-strain 
relationship for steel tube has already been developed. 
Although a few models of stress-strain relationships 
for confined concrete have been developed (Han, 2000; 
Pan, 1989; Nosaki, 1996; Susantha and Ge, 2001; 
Tang and Hino, 1996), there are not enough compara-
tive studies on these existing constitutive relationships 
of concrete under ultimate behavior, and the accuracy 
of these models has not been examined thoroughly. 

1. Uniaxial stress-strain relationship of confined 
concrete 

Fig.1 shows that the complete stress-strain curve 
of confined concrete is different from that of plain 
concrete. The compressive strength and the ductility 
are improved when concrete is confined by a sur-
rounding steel tube.  

 
 
 
 
 
 
 
 
 
 
 
 

 
To explore the influences of different constitu-

tive relationships of confined concrete on the ultimate 
strength and behavior, the failure behaviour of CFST 
structures were analyzed with three different consti-
tutive relationships and the results are compared. 

The first constitutive relationship of confined 
concrete selected was presented by Han (2000), and 
the uniaxial stress-strain relation is: 
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where σ and ε are the longitudinal compressive stress 
and strain respectively. The other symbols are defined 
as follow: 
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where fck is the cubic compressive strength of con-
crete (MPa), As is the area of steel tube (m2), Ac is the 
area of concrete (m2), fy is the yield strength of steel 
tube (MPa). 

The second constitutive relationship selected 
was brought forward by Pan (1989), who gave the 
stress-strain relation as: 
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The third constitutive relationship was presented 

by Nosaki (1996), who gave the stress-strain relation 
as: 
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where fck is the concrete cylinder compressive 
strength (MPa), fcp is the concrete cylinder compres-
sive strength considering the dimensional effect co-
efficient ϕ (Fig.2) (MPa), σc0 is the compressive 
strength of core concrete (MPa), εc0 is the strain cor-
responding to εc0 (µε), ε0 is the strain corresponding to 
ultimate strength of plain concrete (µε), D is the di-
ameter of steel tube (m), t is the wall thickness of steel 
tube (m), α is σθ/fy, the effective confinement coeffi-
cient of steel acting on core concrete, σθ is the ulti-
mate tangential stress of steel tube (MPa).  
 
 
 
 
 
 
 
 
 
 
 
 
 

The Young’s modulus of the concrete in Eq.(6) 
is expressed by the following Eq.(7): 

 

( ) 3
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Fig.3 shows a comparison of the corresponding 
stress-strain curves of the different constitutive rela-
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tionships of the confined concrete. The strength 
grades of the concrete are assumed as C40 (fck=26.8 
MPa) and C60 (fck=41 MPa); the diameter of steel 
tube varies from 50 cm to 100 cm; the steel tube wall 
thickness is set to 1.0 cm (thus D/t=50~100); and the 
steel tube yield strength is 250 MPa. In addition, the 
ratio of the concrete cylinder compression strength to 
the cubic compression strength (20×20×20 cm) is 
0.80, and the influence of the structure dimensions in 
Eq.(5) is not taken into account for the unified stan-
dards (ϕ=1.0). 

Fig.3 indicates that the difference between the 3 
constitutive relationships is not significant in the low 
compressive strain range. However, the difference  is 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

obvious with the increase of strain, especially the 
curve calculated from Eq.(3) shows the opposite trend 
in the high strain range compared to the other two 
constitutive relationships. Although the comparison 
results for the lower value of D/t are not presented in 
Fig.3, the stress-strain curves of Eqs.(1) and (5) have a 
coincident trend with the reduction of D/t. 

2. Uniaxial stress-strain relationship of steel tube 
The interaction of the radial stress σr and the 

tangential stress σθ are taken into account when cal-
culating the tensile strength and the compression 
strength of the steel tube. According to the Von 
Misess yield criterion, the yield condition under a 2D 
stress state is given by Eq.(8) (shown in Fig.4a): 
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Fig.4  Stress-strain curves of steel tube. (a) Yield condition; (b) Stress-strain relationship 
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Fig.3 Comparison of different stress-strain curves of core concrete. (a) D=50 cm, C40; (b) D=100 cm, C40; (c) D=50
cm, C60; (d) D=100 cm, C60.                      Eq.(1);                    Eq.(3);                   Eq.(5) 
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where σz is the steel tube axial normal stress. 

If α=σθ/fy≈0.159 is substituted into Eq.(8), the 
tensile and compressive yield strengths are as Eq.(9): 
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Eq.(9) denotes that the yield strength on the 

tension and compression side of the steel tube are 
respectively the products of βt or βc and the yield 
strength of a steel tube without core concrete. 
Adopting the bilinear nonlinear material model and 
considering hardening, the steel tube stress-strain 
curve can be as shown in Fig.4b. 

The secondary modulus of steel tube Eh relates to 
both the material characteristics and local buckling. It 
is assumed that Eh equals 1% of the initial elastic 
modulus.  

Fig.5 shows the symmetrical cross section of a 
CFST structure where O represents the centre of the 
cross-section. The cross-section is divided into many 
small fibers. If the element is sufficiently small, the 
element strain increment can be expressed as that of 
the fiber center (xi, yi). According to the first as-
sumption in this paper, with the theory of Updated 
Lagrangian formulation, the axial linear and nonlinear 
normal strain increments are defined by: 
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in which, the superscripts L and N respectively denote 

 
 
 
 
 
 
 
 
 
 
 
 

the linear and nonlinear strain components, w∆ is 
axial displacement increment of the cross-section, ∆u, 
∆v is lateral displacement increments of the 
cross-section, ∆θ is torsional deflection increment of 
the cross-section. 

As the influence of the lateral confined stresses 
are taken into account in the stress-strain curves of the 
concrete and steel tube, the axial strain increment of 
concrete ∆σzc(x, y) and steel tube ∆σzs(x, y) can be 
calculated approximately by the following Eq.(11): 
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where Ec(εz) is concrete tangent modulus, Es(εz) is 
steel tube tangent modulus. 

The axial force N and bending moment Mx and 
My of the cross-section can then be obtained by the 
following Eq.(12): 

 

d

d

d

z
A

x z
A

y z
A

N A

M y A

M x A

σ

σ

σ


=


 =

 = −


∫

∫

∫

                                    (12) 

                             
 

Similar to the elastic beam theory, the shape 
function is introduced into the element, so that the 
increments can be denoted with the nodal displace-
ment increments as Eq.(13): 
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where Nw1 and Nw2 are the linear shape functions of 
axial deformation, N1~N4 are the cubic shape func-
tions of bending deformation.  

The end forces of the beam element i-j according 
to the nodal freedoms are given as Eq.(14): 
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Fig.5  Fiber model of a CFST structure
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where the end forces of member with subscript a and 
b are calculated from Eq.(12). 

According to the virtual work principle and the 
element equilibrium condition, the element stiffness 
equation in the incremental form can be obtained as: 
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where [Kep]e and [KG]e are respectively the elas-
tic-plastic stiffness matrix and geometric stiffness 
matrix considering the spreading of the plastic do-
main. The element displacement increment vector is 
given as: 
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ULTIMATE BEHAVIOR OF CFST STRUCTURES 
USING DIFFERENT CONSTITUTIVE RELATI- 
ONSHIPS 

 
In this paper, the applicability of the above con-

stitutive relationships was verified by analyzing the 
ultimate behavior of the CFST structures. To enhance  

 
 
 
 
 
 
 
 

the objectivity of the study, the experiments by non- 
proponents of the above constitutive relationships are 
taken as the objects of calculation (Cai, 2003). Details 
of four groups of specimens with different slender-
ness ratios are listed in Table 1. Two experimental 
results are listed for each group. The yield strength of 
steel tube and the cube crushing strength of concrete 
obtained from the specimens were 400 MPa and 69 
MPa, respectively. 

To take into account the effect of specimen 
manufacturing errors, it is assumed that the initial 
column lateral deformation satisfies a half-wave sine 
function, and that the initial column deflection was 
1/2000 of the height. In addition, it is assumed that the 
secondary modulus is 1% of the initial modulus, and 
the approximate evaluation of βt and βc is 1.0 for the 
steel tube.  

The calculated and experimental results of the 
ultimate compressive bearing capacity of the speci-
mens are shown in Table 1. It is clear that all the 
calculated results are on the safe side of the experi-
mental results. It is also found that the results calcu-
lated from Eq.(3) are the closest to the experimental 
results correspondingly, although the difference in the 
results calculated by the different constitutive rela-
tionships is insignificant. The curves of the lateral 
deformation at the midpoint vs the compressive axial 
force of the tested CFST columns are shown in Fig.6. 
It was found that the failure behaviour calculated by 
the three constitutive relationships fit well the ex-
perimental results from an engineering point of view. 
As a result, it is suggested that any of the above three 
constitutive relationships can be used to estimate the 
failure behaviour of the CFST compressive members.  

To test the variation of ultimate bearing capacity 
of the CFST arch rib structures based on the different 
constitutive relationships, the experiment described in 
Chen (2000) was taken as a comparison object. The 
span of the experimental model of CFST arch rib is 
4600 mm. The inner curve of the arch rib is a second- 
 
 
 
 
 
 
 
 

Table 1  Dimension and ultimate compressive bear capacity of the specimens 
Dimension of steel tube (mm) Calculated results  (kN) Experimental results (kN)

No. 
D×t L Eq.(1) Eq.(3) Eq.(5) No. 1 No. 2 

G6 108×4.5   700 1074.2 1106.4 1079.6 1350 1200 
G10 108×4.5 1130   977.1 1041.4   981.5 1100 1200 
G15 108×4.5 1670   895.1   970.6   908.9 1000 1000 
G20 108×4.5 2230   772.0   821.3   780.0   900   850 
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degree parabola, Y=X2/3.45, and the net height is 1533 
mm. The diameter and thickness of the steel tube is 76 
mm and 3.792 mm respectively. The yield strength of 
the steel tube is 307.67 MPa, and the Young’s 
modulus is 206×103 MPa. The cube crushing strength 
of concrete is 36.8 MPa, and the Young’s modulus is 
31×103 MPa. The vertical loading point locates on the 
quartile of arch rib span. 

A comparison of the calculated results and the 
test results of the vertical deflection is shown in 
Fig.7a, showing that the failure behaviour based on 
the three different constitutive relationships are cons- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

istent and agree well with the test results, although the 
stress-strain relation of confined concrete is incon-
sistent when the compressive strain is large (Fig.7b). 
 
 
APPLICATION OF THE PRESENT APPROACH 
IN STRUCTURAL DESIGN 

 
As an example of applying the present approach 

for CFST arch bridges, half of an arch bridge is em-
ployed as shown in Fig.8, and the in-plane stability 
was examined. The span length of this CFST arch bri- 
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dge is 308 m, and the height is 56 m. The 
cross-section of the arch rib consists of 4×Ø850 mm 
steel tubes. The thicknesses of the steel tubes are 20 
mm, 14 mm and 12 mm. The yield strength of the 
steel tube is 375 MPa (t=20 mm) and 390 MPa 
(t=12~14 mm) respectively. The cube crushing 
strength of the core concrete is 50 MPa. The distance 
between the upper and lower chords is 5.2 m. Steel 
pipes are employed as the braced members. The di-
ameter and thickness of the steel pipes are 529 mm 
and 10 mm respectively. 

To examine the in-plane stability of the arch 
bridge, half of the cross-section is modelled as shown 
in Fig.9. The live load acting location is considered so 
that the cross-sectional forces at 1/4 span length be-
come max under traffic load. The dead load of the 
arch rib is taken into account by the analysis program 
automatically. Eq.(1) is used as the stress-strain rela-
tionship of confined concrete. 

 
 
 
 
 
 
 
 
 
 
Fig.10 shows load-deflection curves of the lower 

chord. The locations of nodes B~G are shown in Fig.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results showed that the structure will become 
unstable when the load coefficient λ is near 2.86, i.e. 
the limiting strength of the arch rib in-plane is 2.86 
times dead load and live load. In this figure, λ=1.0 
means design load. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 shows the deformations of the arch rib at: 
pre-buckling load (λ=2.13), buckling load (λ=2.86) 
and post-buckling load (λ=2.79). It is shown clearly 
that the buckling occurred in a member near the base, 
because the thickness of that steel tube is small and 
the axial force is larger. Therefore, special attention 
should be paid to the local buckling of members of the 
braced arch rib during structural design. 

Geometric nonlinear behavior is also an impor-
tant problem in the design of long span arch bridges. 
Because the bending moment increases with the de-
formation of the arch rib, the cross-sectional forces 
will be underestimated using linear analysis. To exa- 
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Fig.9  Analytical model and acting load  
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Fig.10  Load-deflection curves at node B~G
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mine the influences of geometric nonlinearity, the 
deflection, axial force and bending moment of five 
cross-sections under the designed load are shown in 
Fig.12. In this figure, the deformation and the 
cross-sectional forces increase almost linearly with 
load coefficient λ. The effect of geometric nonlinear-
ity is not significant. 
 
 
CONCLUSION 

 
The stress-strain relation of CFST structures is 

complex due to the combined influence of the con-
fined concrete and outer steel tube. In this paper, an 
analytical approach for estimating the ultimate stabi-
lizing bearing capacity of CFST structures is pro-
posed considering material and geometric nonlinear-
ity based on space beam theory. Three different con-
stitutive relationships were investigated. The accu-
racy of using different constitutive relationships was 
examined by comparing the calculated and experi-
mental results. A braced arch rib with span of 308 m 
was analyzed and the stability of the CFST arch 
bridges was examined. From the results, the following 
conclusions were reached: 

1. The failure behaviour of CFST members and 
structures can be simulated accurately by the method 
presented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. The influence of the different constitutive re-
lationships of the confined concrete on the ultimate 
behavior is insignificant. 

3. It is possible that local buckling of a member 
can occur in braced CFST arch bridges. To check 
buckling safety of CFST arch bridges accurately, an 
elastic-plastic large displacement analysis is neces-
sary based on space beam theory. 

4. The effect of geometric nonlinear behavior is 
insignificant when design loads are applied on long 
span braced CFST arch bridges. 
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Fig.12 Deflection, axial force and bending moment
under design load 
(a) Load-deflection curve; (b) Load-axial force curve; (c)
Load-bending moment curve 
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Fig.11  Deformations at: pre-buckling load (a), buck-
ling load (b) and post-buckling load (c) 
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