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Abstract:    This paper presents a symplectic method for two-dimensional transversely isotropic piezoelectric media with the aid 
of Hamiltonian system. A symplectic system is established directly by introducing dual variables and a complete space of ei-
gensolutions is obtained. The solutions of the problem can be expressed by eigensolutions. Some solutions, which are local and are 
neglected usually by Saint Venant principle, are shown. Curves of non-zero-eigenvalues and their eigensolutions are given by the 
numerical results. 
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INTRODUCTION 
 

The traditional method of solving solutions of 
the transversely isotropic piezoelectric media belongs 
to Lagrange formulation so that the method of sepa-
ration of variables cannot be applied due to the in-
volvement of high order partial differentiation in the 
Euclidian space and is difficult for some problems. 
New theoretical system or method is a key for the 
investigation of piezoelectric materials.  

Since the foundational equations (Sosa and Pak, 
1990) in transversely isotropic piezoelectric materials 
are as similar as ones in elasticity, the method of 
elasticity can be generalized to the linear piezoelectric 
problem. Tzou (1993) and Tzou et al.(2002) pre-
sented shells method and Dunn and Wienecke (1996) 
presented Green’s functions method based on the 
linear theory of piezoelectricity. Ding et al.(1996; 
2002) and Ding and Chen (2001) conducted many 

researches on the exact analyses of three-dimensional 
piezoelasticity problems and obtained some solutions. 
Chen (1999) and Chen and Ding (2004) discussed 
crack and contact problems in terms of potential the-
ory method. The theories, models and methods ad-
vanced the developing of the subject. However the 
researches above are under the Lagrange system. 
Zhong (1995) introduced a symplectic space method 
based on the conservative Hamiltonian system to 
solve the elastic problem, which is different from the 
traditional semi-inverse solution method. This paper 
introduces a symplectic method to piezoelasticity 
problems, which is then reduced to solving eigen-
values and deriving eigensolutions. 
 
 
HAMILTONIAN SYSTEM 
 

Consider a homogeneous anisotropic piezoelec-
tric medium of the strip plane-domain, which is 
transversely isotropic and the longitudinal direction is 
anisotropic. The Cartesian coordinate (x, z) is selected 
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such that the z-axis is along the longitudinal direction 
with origin at the central point of the cross section 
(x=±a) where 2a is the width of the strip. Let σij, Di, 
and q={u, w, φ}T be the components of stress, electric 
displacement and displacements (φ is the electrical 
potential function) respectively. The linear relations 
(Sosa and Pak, 1990) of piezoelectricity can be de-
scribed as 
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where cij, eij and εij are elastic stiffness, piezoelectric 
and dielectric constants, respectively, and the 
over-dot represents differential with respect to z, 
namely ( / ) ,f z f= ∂ ∂  which z coordinate is taken in 
analogy to the time coordinate. And define f ′=∂xf 
=∂f/∂x. The Lagrange function, the potential energy 
density and work, are 
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where {fx,  fz}T are the external body forces and q the 
density of free charges. The dual vector p of the 
Hamiltonian system should be introduced first as 
 

      
44 15

13 33 15

31 33 33

( )

]

x z

z z

z

c w u e
L c u c w e

e u e w D

σϕ
ϕ σ

ε ϕ

′ ′  + + 
∂   ′= = + + =   
∂    ′ + −   

p
q

         (3) 

 
Explicitly, the physical meaning of the dual variable p 
are the stresses and electric displacement in the 
z-direction. Based on the mutually dual vectors q and 
p, the Hamiltonian function and the variational 
equation can be introduced as 
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The dual equations for the Hamiltonian system can be 
obtained directly as 
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where a0=1/(e33

2+c33ε33), a1=e15/c44, a2=1/c44, a3=(c13ε33+ 
e31e33)a0, a4=ε33a0, a5=e33a0, a6=(e31c33−c13e33)a0, a7=c33a0, 
a8=−c11+(c13

2ε33+2e31e33c13−e31
2c33)a0 and a9=ε11+e15

2/ 
c44. Suppose the boundary conditions along the 
contour (x=±a) are free from traction, with the ex-
ternal normal stress, shear stress and electric dis-
placement being equal to zero at the surface of the 
boundary. From Eq.(4), the corresponding conditions 
of the lateral boundary are 
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In fact, if Lagrange function variants from Eq.(2), 

the governing equations and the conditions of the 
boundary can be obtained by displacement method 
belonging to the Lagrangian system. 
 
 
 

ADJOINT SYMPLECTIC ORTHOGONALITY 
RELATIONSHIP 
 

Let Eq.(6) be rewritten as 
 

= +H fψ ψ                                (7) 
 
where the state vetor ψ={q, p}T and H is Hamiltonian 
operator matrix. The solution of Eq.(7) can be divided 
into two parts, the general solution of the homoge-
neous equations and a special solution of non-homo- 
geneous equations, respectively. The solution of the 
homogeneous equation of Eq.(7) can be solved as 
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( ) e j z
j x= µψ ψ                           (8) 

 
where ψj  and µj are eigenpair, or eigenvector and 
eigenvalue, which, if µj is an eigenvalue, then −µj is 
an eigenvalue also and there is an adjoint symplectic 
orthogonality relationship (Zhong, 1995; Xu et al., 
1997) among eigenvalues and eigenvectors. Introduce 
the operation 
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where J is an identical symplectic matrix, so that 
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here 

jαµ and 
jβµ (

jαψ and 
jβψ ) are an adjoint pair of 

eigenvalues (eigenvectors). Any state vector ψ can 
always be expanded by a linear combination of the 
eigenvectors. 
 
 

ZERO EIGENVALUE SOLUTIONS 

 

In this section, the homogeneous equations and 
the traction free natural boundary conditions are 
considered only. Consider the problem of zero-eigen- 
value, or µ=0. Besides direct eigensolutions, ψi

(0), of 
Hψ=0, Jordan form principal vectors of various 
orders comprise an important part that can be 
determinated by Hψi

(n+1)=ψi
(n) and the solution of the 

original problem is ηi
(n+1). The solutions can be ob-

tained as 
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The geometrical interpretations of these solu-
tions are two rigid translations of coordinates, a 
translation of electric displacement, a rigid body 
rotation in the plane, two simple extension 
deformations (the external electric displacement does 
not act on the ends but forces and the displacement 
induced by uniform electric field in which there dose 
not exist any external force), a pure bending and a 
shearing-bending in the x-z plane respectively. In the 
solutions, parameters are defined as a10=a5

2a8+a3
2a7+ 

a6
2a4+2a3a5a6+a4a7a8, a11=(a3a7−a5a6)/a10, a12=(a7a8 

+a6
2)/a10, a13=(a3a6+a5a8)/a10, a14=(a3a5+a4a6)/a10, 

a15=(a3a6+a5a8)/a10, a16=(a3
2−a4a6)/a10, a17=(a1a12− 

a13)/(6a9), a18=(a2a12−a11−6a17)/6 and a19=−(a11+ 
6a18)a2/2. These solutions are Saint Venant type and 
satisfy relationships of the adjoint symplectic 
orthogonal. It can be verified that other principal 
vectors of the Jordan form do not exist. 
 
 

NON-ZERO EIGENVALUE SOLUTIONS 

 

The non-zero eigenvalue solutions are covered 
by the Saint-Venant principle. Consider the equation 
(H−µI)ψ=0 (µ≠0). The general solution of the 
equation can be expressed by trigonometric functions 
and can be divided into two parts, symmetry (first 
term on the right side of Eq.(15)) and anti-symmetry 
(second term), as 
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where Bi (i=1, 2, 3, 4, 5, 6) are constants to be de-
termined and parameters are defined as  
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and defines 2 ( 1,2,3),is i =  which are three roots of 

a20r3+a21r2+a22r+a23=0. Substituting the solutions 
Eq.(15) into conditions of the lateral boundary Eq.(6), 
one has 
 

Ac=0                                     (16) 
 
where c={B1, B2, B3, B4, B5, B6}T  and the matrix A are 
function of eigenvalues. Consider the condition of 
non-zero-solution of Eq.(16), the eigenvalue µ (decay 
rate) can be determined from  
 

|A|=0                                    (17) 
 
Thus eigenvalues and eigensolutions can be obtained 
by Eqs.(15)~(17). Finally, the solutions can be linear 
combinations of eigenfunctions and adjoint 
eigenfunctions, or 
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SOLUTIONS OF NONHOMOGENEOUS EQUA- 
TIONS 

 
Since the general solution of the homogeneous 

equations has been obtained by Eq.(18), one special 
solution of non-homogeneous Eq.(7) is needed only 
to be discussed in this section. Let the form of the 
special solution be 
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The solutions of Eq.(19) are 
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Therefore, the solution of the problem can be 
expressed as 
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NUMERICAL RESULTS 

 
Let X=x/a, Z=z/a, U=u/a, W=w/a, Φ=φ/(a×1010 

N/c), P1=p1/c11, P2=p2/c11 and P3=p3/(c11×10−10 c/N) 
are non-dimensional forms. Consider transversely 
isotropic elastic parameters c11=12×1010 N/m2, 
c13=0.6c11, c33=0.9c11 and c44=0.3c11. Since there are 
approximate proportional relations ε11:ε33≈1:1 and 
−e31:e15:e33≈1:3:3, take 
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into which a piezoelectric constant e (3 to 8) and a 
dielectric characteristic constant ε (30 to 150) are 
introduced respectively. According to the adjoint 
characteristic of eigenvalues, we discuss the real parts 
of eigenvalue −µ, which is the decaying coefficient 
and shows the local effect, so the smaller absolute 
value of eigenvalues is most significant. Because 
eigensolutions and lateral boundaries are divided into 
two kinds, symmetry and anti-symmetry solutions, 
corresponding eigenvalues can be obtained inde-
pendently. Fig.1 gives numerical results of real parts 
of eigenvalues (symmetry and anti-symmetry case) 
and shows the first five eigenvalues, the smallest 
eigenvalues, with respect to different piezoelectric 
parameter e (ε=60). Fig.2 shows eigenvalues with the 

dielectric parameter ε (e=5), where, the solid line, 
thick line, dashed line, dotted line and dot-dash line 
show the first order eigenvalue to the fifth order ei-
genvalues respectively. The results indicated that 
piezoelectric and dielectric modulus influence de-
caying coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In terms of eigenvalues obtained by Eq.(17), the 

corresponding eigensolutions are shown by Eq.(15). 
It can be proved that both the real part and imaginary 
part of eigensolutions are the problem solutions and 
the eigensolutions can be divided into symmetry and 
anti-symmetry solutions. Since the electrical potential 
function φ and the electric displacement p3=Dz are 
important in the problem, their graphs are specially 
noticed in this paper and graphs for other components 
of eigensolutions are as similar. Fig.3 and Fig.4 give 
two components of eigensolutions respectively, 
which correspond to the first five eigenvalues that are 
shown in Fig.1 or Fig.2. Graphs of eigensolutions are 
depicted clearly in the figures. 
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Fig.1  The first five eigenvalues with piezoelectric pa-
rameter. (a) Symmetry; (b) Anti-symmetry 
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CONCLUSION 
 
Application of Hamiltonian system can change 

the method of studying problem of transversely 
isotropic piezoelectric media, which is updated to 
solve the problem in the symplectic space under the 
Hamiltonian system but in traditional Euclidian space 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

under Lagrange system. General solutions and the 
particular solution can be expressed in terms of ei-
gensolutions. The problem is reduced to the zero 
eigenvalues with their Jordan forms and the non-zero 
eigenvalue solutions and symplectic solutions space 
is complete. The symplectic method can be general-
ized to other subjects and is effective for mixed 
boundary conditions specially. 

0           30          60         90        120       150 

10 
 

49 
 

48 
 

47 
 

46 
 

45 
 

44 
 

43 
 

42 
 

41 
 

40 

ε 

µ 

(a) 

0           30         60         90         120       150 

10
 

49
 

48
 

47
 

46
 

45
 

44
 

43
 

42
 

41
 

40

ε

µ 

(b) 

Fig.2  The first five eigenvalues with dielectric parameter. (a) Symmetry; (b) Anti-symmetry 
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Fig.3  The component (the electrical potential function φ) of the first five eigensolutions. (a) Symmetry (real part); (b)
Anti-symmetry (real part); (c) Symmetry (imaginary part); (d) Anti-symmetry (imaginary part) 
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Fig.4  The component (the electrical displacement p3=Dz) of the first five eigensolutions. (a) Symmetry (real part); (b) 
Anti-symmetry (real part); (c) Symmetry (imaginary part); (d) Anti-symmetry (imaginary part) 


