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Abstract:    For increased and various communication requirements of modern applications on embedded systems, general pur-
pose protocol stacks and protocol models are not efficient because they are fixed to execute in the static mode. We present the 
Component-Based Communication Protocol Architecture (CCPA) to make communication dynamic and configurable. It can 
develop, test and store the customized components for flexible reuse. The protocols are implemented by component assembly and 
support by configurable environments. This leads to smaller memory, more flexibility, more reconfiguration ability, better con-
currency, and multiple data channel support. 
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INTRODUCTION 
 

Communication is one of the most popular uses 
for embedded systems such as router, switch, mobile, 
PDA. In recent years, there are many hardware and 
software improvements to enhance communication. 
New generation embedded devices, following ARM 9, 
ARM 10 or Intel® XScaleTM Micro-architecture, fea-
ture 32-bit data bus, up to 400 MHz processor, 64 MB 
SDRAM, 32 MB boot ROM, 32 MB flash memory 
(Iordache and Tang, 2003). These hardware en-
vironments can support more complex calculations 
and larger process space than ever. On the other hand, 
communication systems are typically structured into 
several layers, where each layer realizes a fixed set of 
protocol functionalities, such as well-known archi-
tectures of OSI stack or Internet Protocol Suite (Postel, 
1996). The protocol stack in embedded systems is 
also layered and more modern protocols have realized 

such as the wireless protocols in mobiles. 
However, embedded systems are still 

source-limited. They are generally restricted by 
computational capability and memory space. General 
purposed protocol stacks are not always adequate for 
the increasing demands of modern embedded systems. 
In particular, the demands on dynamic configurations 
and external maintenances are not well supported by 
existing protocol stacks. 

Applications in one kind of embedded device 
often require various communication services be-
cause of differently linked devices or network envi-
ronments (Bilek and Ruzicka, 2003). There are two 
common ways to resolve the problems. First, the 
systems are configured by operators to install and 
start the updated services without the system halt, but 
this requires that the systems have to stop for a time. 
Second, more services are activated to suit the various 
environments, but this increases the system work-load 
and needs more memory and storage in the devices 
(Swaminathan and Chakrabarty, 2004). 

So a feasible approach is to decompose the 
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monolithic implementation of the software commu-
nication system, to structure protocols with protocol 
modules which can be reused in different contexts and 
be adapted to the special needs of applications. The 
protocols are self configured or remote configured 
with the module’s replacement or increase. The sys-
tems load the new modules automatically and need 
not halt, called hot swap. The communication keeps 
alive and the updated process requires only a few 
seconds. Furthermore, a remote server stores and 
maintains all of the modules and only running mod-
ules load into the systems, unused modules can be 
hung up temporarily and even be deleted once they 
have been replaced. This saves the limited memory 
and space in the embedded devices. 

The protocol modules can be implemented by 
some kinds of components. A recent software system 
paradigm, called component-based system (CBS), 
provides a new dimension of reusability and rapid 
prototyping of software. CBS focuses on dividing the 
software into components so that it can be easily 
configured and plugged together to assemble flexible 
applications. For example, AVOCA is a CBS com-
munication system (Hempstead et al., 1992), which is 
a further stage of the x-kernel (Hutchinson and Pe-
terson, 1991). 

CBS gives rise to two new problems. First as 
mentioned above, the storage of components. A 
component library and a management server must be 
set up to deal with it. There are some differences 
compared with common database. Second, the rapid 
development of the components. Usually the analysis 
of existing programs is helpful to the further devel-
opment and sometimes the development process in-
volves only rebuilding the source codes to different 
EOS. 

In this paper, we present the Component-Based 
Communication Protocol Architecture (CCPA) to 
modularize the implementation of component-based 
protocols. CCPA is neither component programming 
model nor binary compression method. It is the ar-
chitecture for the development, storage and utilization 
of particular components for different EOS. These 
components are units of component-based commu-
nication protocols and especially suitable for em-
bedded systems. We can only use the necessary 
components in the embedded devices with dynamic 
configuration and hot swap. 

Using CCPA, we analyze the existing source 
codes of the protocols, develop and test qualified 
components targeted to different EOS. We devise 
multiple light-weight protocol components custom-
ized for application requirements and device charac-
teristics. These stable and certified components are 
stored into a library for further reuse. Only necessary 
components are loaded into the devices and kept 
partly active according to the current network and 
environment status. The active protocols can be re-
mote controlled without the communication being 
terminated. 

Some applications from CCPA have been prac-
tically used for high performance CDMA2000 routers 
and high capability 10 G routers. For these complex 
systems, the specialized optimization shows higher 
performance and stability. 
 
 
COMPONENT-BASED PROTOCOLS 
 
Component model 

Component theories have been widely spread 
from enterprise applications to operating system, web 
browser and middleware, etc. (Rastofer and Bellosa, 
2001). The component, which is the independent and 
replaceable part of a system, fulfills a clear function 
and works in the flexible context of a well-defined 
framework. Traditionally, it is the binary format 
which is well defined by its interface and its operation. 
Fig.1 shows the encapsulation of the components. The 
interface has a set of ports for external or internal 
operations involving detailed implementations of the 
component functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1  Encapsulation of the component 
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Component-based software usually involves 
certain code complexity and efficiency loss, and may 
be not essential for the common computers such as PC 
of x86 architecture, but it must be all-important for 
the embedded devices because of the low calculation 
speed, low network transmission speed and limited 
memory. So in embedded systems, modularized 
utilization appears recently. Especially because the 
underlying communication services keep active all 
the time, the components must be of high perform-
ance and critical small size. Therefore, common de-
velopment and utilization methods are not universal 
for embedded systems, the development must be more 
precise for stability and the utilization must be more 
flexible.  

Then the embedded communication system can 
be composed of efficient modules. The module is 
represented by the protocol component as the ab-
straction. Protocol components encapsulate the im-
plementations of the protocol mechanisms, and pro-
vide the services outside through the interfaces. The 
communication protocols are manifested by unique 
interpretation of associations between components, 
and these components may request other ones through 
interfaces for assembly. 
 
System support for components 

The communication is regarded as the basic ser-
vice, so the EOS must be updated to support the 
component-based protocol stacks from its kernel op-
timization. The model is shown in Fig.2. There is a 
boot component (BootCom) which can load other 
components with its inherent interface descriptions. A 
system service (ComS) co-exists when the EOS starts. 
It reads the configuration and loads the corresponding 
BootCom. BootCom assembles all of the other com-
ponents according to the interface. The assembly 
processes watches with ComS until the compo- 

 
 
 
 
 
 
 
 
 
 

nent-based protocols go into action. Then the Boot-
Com is hung up and inactive. ComS watches all the 
active components of this protocol and the configu-
ration. 

For various communication devices and appli-
cation requirements, the configurations of protocols 
may be distinct. Different protocol components are 
activated to serve the communication request and 
support run-time reconfiguration of the communica-
tion system. The states of the system are examined 
instantaneously. When it does not meet the request of 
the application, the suitable components will be 
loaded to replace what does not match. This enables 
the communication systems to adapt dynamically 
with application requirements such as switching from 
unreliable to reliable data delivery, communication 
system resources such as buffer space and CPU load, 
or network characteristics such as network congestion 
and routing. 

The replacement of protocol component is 
transparent with the interfaces unchanged. This is one 
of the frequent mechanisms supporting the hot swap. 
The operation in components may be changed but the 
assembly state is changeless because of no interface 
change. So the new communication components are 
dynamically loaded by ComS with the mapping to the 
new component interface address, BootCom is still 
not active. Another case, If the interface needs to be 
changed, BootCom is updated first when it is inactive. 
Then ComS loads the new BootCom, other compo-
nents are updated by BootCom. 

 
Protocol decomposition 

We may decompose the protocol from the pro-
tocol hierarchy. For example, the connection oriented 
transport system of the Internet Protocol Suite con-
sists of three components: TCP, IP and Ethernet. 
Otherwise, we may base on protocol functions to 
break down the protocol. The protocol functions serve 
as basic CCPA components too. Taking TCP as an 
example, the sender part located between the appli-
cation and network interface is totally composed of 
five components, which are connection management, 
data emit, data reemit, flow control and congestion 
control (Schmidt et al., 1993). 

Protocols may be implemented with different 
mechanisms too, such as the former example’s TCP, 
flow control which could be realized by a win-

 
 

Fig.2  Component load model 
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dow-based or rate-based mechanism. Table 1 lists an 
example for protocol functions and corresponding 
mechanisms. Different mechanisms of one protocol 
function are implemented by the corresponding 
components while the interface remains the same. 

 
 
 
 
 
 
 
 
 
 
 
 
 
One of the key goals of CCPA is that we can 

implement applications with device-customized 
modules for the same communication. New enhan-
cive modules can be added in by writing additional 
modules and including them in the existing compo-
nent suite. For example, to the components of Internet 
Control Message Protocol (ICMP), we can give more 
suitable modules in different environments. When the 
network’s bandwidth is low, the proper module to use 
is whose numerical value of Time to Live (TTL) fits 
the network status. Timestamp Reply is set to be for-
bidden so as to decrease the overload. 

We can modify original properties of the com-
ponents and add customized communication services 
into the modules too. For example, the Denial of 
Service (DoS) attack is often caused by the mecha-
nism of sending large numbers of useless packages. It 
will be helpful to design a module that resolves the 
problem by checking the source/destination address 
and the type of the package, including the package 
frequency. Then the component of ICMP will have 
the ability to filter and check the package. With all 
these modules, customized communication services 
can be constructed and provide execution guarantees 
targeted to the specific requirements of the applica-
tions on different devices. 
 
 
CCPA DEPLOYMENT 
 

CCPA includes a set of correlated software sys-

tems, such as Component Development Platform 
(CDP), Component Library (CL), Component As-
sembly Platform (CAP), and Operating System 
Support Environment (OSSE). CAP is optional 
software based on different device configuration 
demands. 

Component Description Language (CDL) is de-
fined with XML format to describe the communica-
tion services, the component-based protocols and the 
characters of the components. Each component and 
each protocol has its own description. If the compo-
nents are generated by CDP, the descriptions are 
written by the developers or test units as a part of test 
reports. The descriptions join these software systems 
together, encapsulate the component operations and 
expose the component interfaces accurately. They are 
also the mapping index of CL, the assembly rules of 
CAP and the execute parameters of OSSE. 

A general scenario of the architecture is given in 
Fig.3. CDP is an IDE which is used to develop the 
components suitable for EOS. The qualified compo-
nents through tests are stored into CL. OSSE executes 
on EOS or joins into EOS kernel to supports the 
component-based protocols and the protocol stacks. 
According to application requirements or network 
environment, it can load or unload the components 
while the communication service is kept active. CAP 
is used to control OSSE remotely, so it can get the 
current configuration of OSSE. It must keep the 
synchronization with CL to know the usable compo-
nents. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Component development 

How to rapidly develop or rewrite protocols and 
protocol stacks to support component-based system, 
how to generate the qualified components, are both 

Table 1  Protocol functions and corresponding mechanisms 
 

Protocol function Mechanism 
Stop-and-wait 
Window-based 

Flow control 

Rate-based 
Checksum Corruption control 
Parity 
Implicit 
2-way-handshake 
3-way-handshake 

Connection management 

No connection (datagram) 

Cumulative Acknowledgement 
Selective 

 
 

Fig.3  CCPA basic deployment 
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key problems. This is the source generating the re-
usable components. CDP is an IDE used to aid the 
development process. Besides the basic functions 
such as Visual Studio and KDevelop, it has own con-
veniences for CCPA. Code analysis and 
cross-platform tool-chains are the significant charac-
ters.  

During the implementation of the protocol stacks, 
often it is the transplant of stable protocol stacks to 
Embedded OS (EOS), such as part transplant TCP/IP 
implementation from Linux to fit the Embedded 
Linux. Most source codes of common OS are not 
customized for EOS and take little care of the re-
stricted computational capability and memory space, 
which may cause problems if the transplant only fo-
cuses on executable and receptive program as the 
performance and efficiency becomes secondary. Al-
though the loss of performance is a matter of fact, this 
may be unpredictable because of lack of criteria. So 
we must guide and help the analysis of existing pro-
tocol stacks and source codes in CDP. Especially for 
wireless protocols, the repetitive transplant among 
different EOS in different devices gets more trou-
blesome. Indeed, most of the common communica-
tion protocols have their robust C version source 
codes. Code analysis is important for efficiency as the 
rewriting work does not build up from nothing.  

CDP is an IDE used on the common PC whose 
OS is Windows or Linux. The source codes are edited 
and managed on a PC, but the generated components 
are run in EOS. Cross-platform compilers must be 
used to compile the source codes and must use certain 
cross-platform tool-chains such as compilers and 
debugging tools, which are customized to target EOS. 
So the universal link interface is necessary to connect 
all kinds of them; this makes the development process 
fully oriented to the programs without considering 
tool-chains. 

The quality and reusability of the binary com-
ponents must be checked. In CDP, it can be tested and 
examined from the source code level. If there are 
emulation environments of the target EOS and de-
vices, further tests such as those for component in-
dependence, assembly stability, and component run-
ning memory, can be conducted to get accurate 
component descriptions and evaluations. Only quali-
fied components are uploaded to CL. 

CL is not merely a binary database for compo-

nent storage. It does much quality assurance, ex-
change and component transfer work. Before being 
stored into the database, each component must pass 
the ultimate examination which focuses on the inte-
grality and uniform external interface. For the com-
ponents which do not upload from CDP, this quality 
assurance is vital. The components must pass the 
examinations before they are stored into the libraries. 
The quality of components is the key assurance of 
CCPA. This makes active services on embedded 
systems stable and robust. 

 
Configurations and utilizations 

Furthermore, CL is the center of the components 
and the descriptions of the component-based proto-
cols. It may be distributed and there must be a built-in 
mechanism to keep synchronization between libraries. 
It passes the component and protocol descriptions to 
CAP for manual configuration and assembly. It is also 
the only sources of the components for OSSE. 

OSSE executes on EOS or joins into EOS kernel. 
The chief work is to support the component-based 
protocols and protocol stacks. At the same time, it 
provides the protocol runtime watch and dynamic 
configuration through the ComS which was men-
tioned above. It can self-adapt to the application re-
quirements and network environment, or can be 
manually controlled remotely by CAP. It loads or 
unloads the components while keeping the commu-
nication services active. CAP is an optional IDE. 
Users can do initialization and configuration work 
manually here, according to the CL contents and the 
requirements. 

Fig.4 shows the lifecycle of the correlative work 
with CAP. CL is a server that runs all the time. CAP 
connects to the CL to get the protocol and component 
descriptions and also connects the OSSE to get the 
active components information. The configuration  

 
 
 
 
 
 
 
 
 
 

 
 

Fig.4  The lifecycle of the correlative work with CAP 
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processes on the CAP and the result returns to OSSE. 
Then OSSE connects to CL for the components. CL 
validates the requests and the components stored in 
CL which have passed the quality verification can be 
downloaded to OSSE. OSSE runs the updated com-
ponents as discussed in the last chapter. If there is no 
CAP, the correlated model is simpler. 

In contrast, Avoca (Hempstead et al., 1992) is a 
network architecture and domain model that supports 
the development of encapsulated, reusable, and effi-
cient communications protocols. The runtime envi-
ronment for Avoca is provided by the x-kernel which 
is an operating system kernel designed to run network 
protocols. The domain model for Avoca focuses on 
the identification of realms of protocols for remote 
procedure calls, remote invocation methods, and 
network file systems. Avoca protocols are symmetric 
components that can be composed in virtually arbi-
trary orders (Batory and O’Malley, 1992). According 
to the introductions above, it can be concluded that 
the implementations of CL and CAP, and the corre-
lations among them are the main character of CCPA, 
which also includes CDP to ensure the component 
quality. These designs adapt to the limited computa-
tional capability and memory space of embedded 
systems. They also have more flexibility, such as 
dynamic configuration and hot swap. 

 
 

IMPLEMENTATION AND RESULT 
 

There are some IDE, such as Visual C++ “ATL 
COM appwizard” and Borland Java Builder “Object 
Gallery: JavaBeans, EJB, Cobra module wizard”, 
which can guide the component development. There 
is CL which can store many types of components such 
as Jade Bird Component Library System (Mei et al., 
2000) too. But only CCPA is fully customized for 
communication protocols in embedded systems. We 
built a set of complete implementation based on 
CCPA and made some tests on an Intel® PXA 255 
hardware platform with a built-in 10~100 M 
self-adaptive network card. 

For example, FTP is an application layer proto-
col. A simple implementation of FTP client is about 
1100 lines source codes of C language. Through 
analysis tools of CDP, it is easy to find that the codes 
are generally composed of three main parts: transfer 

part, control part and upload part, so we can divide 
this FTP implementation into three modules accord-
ing to its own function, named C_Transfer, C_Control, 
and C_Upload. These components can make up the 
FTP service. 

We built two sets of components suitable for 
different network bandwidth. First, the optimized 
work exerts good influence on the source codes for 10 
M network bandwidth. Three components were built: 
C_Control, C_Transfer_10, and C_Upload_10. Sec-
ond, the codes are optimized for 100 M network 
bandwidth. We got two new components: 
C_Transfer_100 and C_Upload_100 (C_Control is 
nothing different). All these components pass com-
plex and strict tests before they are stored into CL. 

Then OSSE in embedded devices download the 
suitable components from CL to assemble the com-
ponent-based FTP client. The configuration comes 
from CAP. Then we use this FTP client to upload files, 
using Average Transfer Speed (ATS) as test data 
statistics. ATS is defined by recording transfer speed 
every 15 s, and taking the average after getting at least 
10 values. The following steps yield the value in Ta-
ble 2. 

First, the cable is 10 M available and we use the 
original FTP client implementation which is directly 
compiled with the original C source codes. We can 
get the data of Row 1. Then we use the components 
suitable for 10 M network bandwidth, the result is 
Row 2. If the cable is changed to be 100 M available, 
the result is Row 3 and the components update 
automatically by OSSE self-adaptive mechanism. 

Second, we test the dynamic configuration and 
the cable is 10 M available. If the unique 
C_Upload_10 is unloaded while it keeps actively 
uploading files, the result is shown in Row 4. After 
the C_Upload_10 is loaded again, the result is shown 
in Row 5. After the transfer process becomes stable, if 
the C_Transfer is unloaded, the result is shown in 
Row 6. 

Third, we add multiple C_Upload_10 to execute 
at the same time. Test data varies from Row 7 to Row 
9. 

Comparison of Row 1 data with Row 2 data 
shows that there is certain performance loss after the 
FTP service is component-based, but the loss is no 
more than 8%, so it is acceptable. Comparison of Row 
2 with Row 3 shows that the active components vary  
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automatically accompanying the cable change, the 
transfer speed increases so much mainly because of 
the better network environment. 

Row 4 shows that if the component for corre-
sponding function is unloaded, the activity pauses at 
once, and Row 5 shows that if the component is 
loaded again, the activity continues and is not influ-
enced. After the transfer activity becomes stable, the 
unused components can be unloaded with no influ-
ence as shown in Row 6. 

From Row 7, it is obvious that the performance 
has increased by about 40% if we add a functional 
component. But from Row 8 to Row 9, it can be 
concluded that the increase of performance becomes 
much slower even if more active components are 
added into the system. The status may be much better 
if we use multiple CPUs. 

An analysis chart of test data is shown in Fig.5. 
Line 2 is Row 1 and Line 1 is Row 3. We can find 
obviously that: 

(1) Value of Row 2 is a little smaller than that 
Line 2, because of the loss of the component-based 
FTP service. 

(2) There is the remarkable increase from Row 2 
to Row 7, because of the addition of an upload com-
ponent 

(3) There is still increase from Row 7 to Row 9, 
but the trend is moderate, because of the limit of 
software improvement. 

(4) Line 1 is much higher than the others, be-
cause of the huge change in network status. If the 
update components cannot load dynamically, it is so 
much waste. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

CONCLUSIONS AND DISCUSSIONS 
 

For the sake of the efficiency and performance of 
communication protocols, the component-based 
communication architecture (CCPA) is constructed to 
realize and improve the component-based communi-
cation service. It enables the dynamic configuration of 
customized protocols through a proper set of reusable 
protocol components assembly. The replacement of 
protocol components doesn’t need to reboot the de-
vice. To produce, test, store and use the components, 
CCPA is deployed with a set of software including 
component development platform, component library 
and component assembly platform etc. The flexibility 
and reusability brought by the architecture are obvi-
ous and recommendable. 

Some EOS is component-based such as TinyOS 
(Hempstead et al., 2004) and merges the protocol 

Table 2  Simple component-based FTP service test data (The scale of ATS (Average Transfer Speed) is 5 kB) 
 

Active component   

C_Transfer C_Control C_Upload 
ATS (kB/s) 

1 Use original application No No No 255 
2 Use 10 M cable C_Transfer_10 C_Control C_Upload_10 240 
3 Use 100 M cable C_Transfer_100 C_Control C_Upload_100 770 
4 C_Upload unload C_Transfer_10 C_Control No     0 
5 C_Upload load again C_Transfer_10 C_Control C_Upload_10 240 
6 C_Transfer unload No C_Control C_Upload_10 240 
7 Use 2 C_Upload C_Transfer_10 C_Control 2 C_Upload_10 325 
8 Use 3 C_Upload C_Transfer_10 C_Control 3 C_Upload_10 350 
9 Use 4 C_Upload C_Transfer_10 C_Control 4 C_Upload_10 360 
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stack into the EOS kernel, so that one component may 
be multiple reused by the component-based protocols 
in the same embedded devices and the performance 
may be much higher in the multiple CPU systems 
such as SMP devices. 
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