
Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

79

CCPA: Component-based communication protocol
architecture for embedded systems*

DAI Hong-jun (戴鸿君)†, CHEN Tian-zhou (陈天洲)†‡, CHEN Chun (陈 纯)

(School of Computer Science, Zhejiang University, Hangzhou 310027, China)
†E-mail: dahogn@zju.edu.cn; tzchen@zju.edu.cn

Received Nov. 11, 2004; revision accepted Feb. 1, 2005

Abstract: For increased and various communication requirements of modern applications on embedded systems, general pur-
pose protocol stacks and protocol models are not efficient because they are fixed to execute in the static mode. We present the
Component-Based Communication Protocol Architecture (CCPA) to make communication dynamic and configurable. It can
develop, test and store the customized components for flexible reuse. The protocols are implemented by component assembly and
support by configurable environments. This leads to smaller memory, more flexibility, more reconfiguration ability, better con-
currency, and multiple data channel support.

Key words: Component-Based Protocol, Component-Based Protocol Architecture (CCPA), Dynamic configuration, Embedded

communication system
doi:10.1631/jzus.2005.AS0079 Document code: A CLC number: TP393.04

INTRODUCTION

Communication is one of the most popular uses
for embedded systems such as router, switch, mobile,
PDA. In recent years, there are many hardware and
software improvements to enhance communication.
New generation embedded devices, following ARM 9,
ARM 10 or Intel® XScaleTM Micro-architecture, fea-
ture 32-bit data bus, up to 400 MHz processor, 64 MB
SDRAM, 32 MB boot ROM, 32 MB flash memory
(Iordache and Tang, 2003). These hardware en-
vironments can support more complex calculations
and larger process space than ever. On the other hand,
communication systems are typically structured into
several layers, where each layer realizes a fixed set of
protocol functionalities, such as well-known archi-
tectures of OSI stack or Internet Protocol Suite (Postel,
1996). The protocol stack in embedded systems is
also layered and more modern protocols have realized

such as the wireless protocols in mobiles.
However, embedded systems are still

source-limited. They are generally restricted by
computational capability and memory space. General
purposed protocol stacks are not always adequate for
the increasing demands of modern embedded systems.
In particular, the demands on dynamic configurations
and external maintenances are not well supported by
existing protocol stacks.

Applications in one kind of embedded device
often require various communication services be-
cause of differently linked devices or network envi-
ronments (Bilek and Ruzicka, 2003). There are two
common ways to resolve the problems. First, the
systems are configured by operators to install and
start the updated services without the system halt, but
this requires that the systems have to stop for a time.
Second, more services are activated to suit the various
environments, but this increases the system work-load
and needs more memory and storage in the devices
(Swaminathan and Chakrabarty, 2004).

So a feasible approach is to decompose the

Journal of Zhejiang University SCIENCE
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

‡Corresponding author
*Project (No. 2002AA1Z2306) supported by the Hi-Tech Research
and Development Program (863) of China

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

80

monolithic implementation of the software commu-
nication system, to structure protocols with protocol
modules which can be reused in different contexts and
be adapted to the special needs of applications. The
protocols are self configured or remote configured
with the module’s replacement or increase. The sys-
tems load the new modules automatically and need
not halt, called hot swap. The communication keeps
alive and the updated process requires only a few
seconds. Furthermore, a remote server stores and
maintains all of the modules and only running mod-
ules load into the systems, unused modules can be
hung up temporarily and even be deleted once they
have been replaced. This saves the limited memory
and space in the embedded devices.

The protocol modules can be implemented by
some kinds of components. A recent software system
paradigm, called component-based system (CBS),
provides a new dimension of reusability and rapid
prototyping of software. CBS focuses on dividing the
software into components so that it can be easily
configured and plugged together to assemble flexible
applications. For example, AVOCA is a CBS com-
munication system (Hempstead et al., 1992), which is
a further stage of the x-kernel (Hutchinson and Pe-
terson, 1991).

CBS gives rise to two new problems. First as
mentioned above, the storage of components. A
component library and a management server must be
set up to deal with it. There are some differences
compared with common database. Second, the rapid
development of the components. Usually the analysis
of existing programs is helpful to the further devel-
opment and sometimes the development process in-
volves only rebuilding the source codes to different
EOS.

In this paper, we present the Component-Based
Communication Protocol Architecture (CCPA) to
modularize the implementation of component-based
protocols. CCPA is neither component programming
model nor binary compression method. It is the ar-
chitecture for the development, storage and utilization
of particular components for different EOS. These
components are units of component-based commu-
nication protocols and especially suitable for em-
bedded systems. We can only use the necessary
components in the embedded devices with dynamic
configuration and hot swap.

Using CCPA, we analyze the existing source
codes of the protocols, develop and test qualified
components targeted to different EOS. We devise
multiple light-weight protocol components custom-
ized for application requirements and device charac-
teristics. These stable and certified components are
stored into a library for further reuse. Only necessary
components are loaded into the devices and kept
partly active according to the current network and
environment status. The active protocols can be re-
mote controlled without the communication being
terminated.

Some applications from CCPA have been prac-
tically used for high performance CDMA2000 routers
and high capability 10 G routers. For these complex
systems, the specialized optimization shows higher
performance and stability.

COMPONENT-BASED PROTOCOLS

Component model

Component theories have been widely spread
from enterprise applications to operating system, web
browser and middleware, etc. (Rastofer and Bellosa,
2001). The component, which is the independent and
replaceable part of a system, fulfills a clear function
and works in the flexible context of a well-defined
framework. Traditionally, it is the binary format
which is well defined by its interface and its operation.
Fig.1 shows the encapsulation of the components. The
interface has a set of ports for external or internal
operations involving detailed implementations of the
component functions.

Fig.1 Encapsulation of the component

Operation

Operation

Operation

Operation

Component

Interface

Interface

Interface

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

81

Component-based software usually involves
certain code complexity and efficiency loss, and may
be not essential for the common computers such as PC
of x86 architecture, but it must be all-important for
the embedded devices because of the low calculation
speed, low network transmission speed and limited
memory. So in embedded systems, modularized
utilization appears recently. Especially because the
underlying communication services keep active all
the time, the components must be of high perform-
ance and critical small size. Therefore, common de-
velopment and utilization methods are not universal
for embedded systems, the development must be more
precise for stability and the utilization must be more
flexible.

Then the embedded communication system can
be composed of efficient modules. The module is
represented by the protocol component as the ab-
straction. Protocol components encapsulate the im-
plementations of the protocol mechanisms, and pro-
vide the services outside through the interfaces. The
communication protocols are manifested by unique
interpretation of associations between components,
and these components may request other ones through
interfaces for assembly.

System support for components

The communication is regarded as the basic ser-
vice, so the EOS must be updated to support the
component-based protocol stacks from its kernel op-
timization. The model is shown in Fig.2. There is a
boot component (BootCom) which can load other
components with its inherent interface descriptions. A
system service (ComS) co-exists when the EOS starts.
It reads the configuration and loads the corresponding
BootCom. BootCom assembles all of the other com-
ponents according to the interface. The assembly
processes watches with ComS until the compo-

nent-based protocols go into action. Then the Boot-
Com is hung up and inactive. ComS watches all the
active components of this protocol and the configu-
ration.

For various communication devices and appli-
cation requirements, the configurations of protocols
may be distinct. Different protocol components are
activated to serve the communication request and
support run-time reconfiguration of the communica-
tion system. The states of the system are examined
instantaneously. When it does not meet the request of
the application, the suitable components will be
loaded to replace what does not match. This enables
the communication systems to adapt dynamically
with application requirements such as switching from
unreliable to reliable data delivery, communication
system resources such as buffer space and CPU load,
or network characteristics such as network congestion
and routing.

The replacement of protocol component is
transparent with the interfaces unchanged. This is one
of the frequent mechanisms supporting the hot swap.
The operation in components may be changed but the
assembly state is changeless because of no interface
change. So the new communication components are
dynamically loaded by ComS with the mapping to the
new component interface address, BootCom is still
not active. Another case, If the interface needs to be
changed, BootCom is updated first when it is inactive.
Then ComS loads the new BootCom, other compo-
nents are updated by BootCom.

Protocol decomposition

We may decompose the protocol from the pro-
tocol hierarchy. For example, the connection oriented
transport system of the Internet Protocol Suite con-
sists of three components: TCP, IP and Ethernet.
Otherwise, we may base on protocol functions to
break down the protocol. The protocol functions serve
as basic CCPA components too. Taking TCP as an
example, the sender part located between the appli-
cation and network interface is totally composed of
five components, which are connection management,
data emit, data reemit, flow control and congestion
control (Schmidt et al., 1993).

Protocols may be implemented with different
mechanisms too, such as the former example’s TCP,
flow control which could be realized by a win-

Fig.2 Component load model

Components Components Components

BootCom

ComS

EOS Kernel

Support

Load

Load

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

82

dow-based or rate-based mechanism. Table 1 lists an
example for protocol functions and corresponding
mechanisms. Different mechanisms of one protocol
function are implemented by the corresponding
components while the interface remains the same.

One of the key goals of CCPA is that we can

implement applications with device-customized
modules for the same communication. New enhan-
cive modules can be added in by writing additional
modules and including them in the existing compo-
nent suite. For example, to the components of Internet
Control Message Protocol (ICMP), we can give more
suitable modules in different environments. When the
network’s bandwidth is low, the proper module to use
is whose numerical value of Time to Live (TTL) fits
the network status. Timestamp Reply is set to be for-
bidden so as to decrease the overload.

We can modify original properties of the com-
ponents and add customized communication services
into the modules too. For example, the Denial of
Service (DoS) attack is often caused by the mecha-
nism of sending large numbers of useless packages. It
will be helpful to design a module that resolves the
problem by checking the source/destination address
and the type of the package, including the package
frequency. Then the component of ICMP will have
the ability to filter and check the package. With all
these modules, customized communication services
can be constructed and provide execution guarantees
targeted to the specific requirements of the applica-
tions on different devices.

CCPA DEPLOYMENT

CCPA includes a set of correlated software sys-

tems, such as Component Development Platform
(CDP), Component Library (CL), Component As-
sembly Platform (CAP), and Operating System
Support Environment (OSSE). CAP is optional
software based on different device configuration
demands.

Component Description Language (CDL) is de-
fined with XML format to describe the communica-
tion services, the component-based protocols and the
characters of the components. Each component and
each protocol has its own description. If the compo-
nents are generated by CDP, the descriptions are
written by the developers or test units as a part of test
reports. The descriptions join these software systems
together, encapsulate the component operations and
expose the component interfaces accurately. They are
also the mapping index of CL, the assembly rules of
CAP and the execute parameters of OSSE.

A general scenario of the architecture is given in
Fig.3. CDP is an IDE which is used to develop the
components suitable for EOS. The qualified compo-
nents through tests are stored into CL. OSSE executes
on EOS or joins into EOS kernel to supports the
component-based protocols and the protocol stacks.
According to application requirements or network
environment, it can load or unload the components
while the communication service is kept active. CAP
is used to control OSSE remotely, so it can get the
current configuration of OSSE. It must keep the
synchronization with CL to know the usable compo-
nents.

Component development

How to rapidly develop or rewrite protocols and
protocol stacks to support component-based system,
how to generate the qualified components, are both

Table 1 Protocol functions and corresponding mechanisms

Protocol function Mechanism
Stop-and-wait
Window-based

Flow control

Rate-based
Checksum Corruption control
Parity
Implicit
2-way-handshake
3-way-handshake

Connection management

No connection (datagram)

Cumulative Acknowledgement
Selective

Fig.3 CCPA basic deployment

CDP

CL

CAP

OSSE

Upload component

Download component

Synchronization

Configuration

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

83

key problems. This is the source generating the re-
usable components. CDP is an IDE used to aid the
development process. Besides the basic functions
such as Visual Studio and KDevelop, it has own con-
veniences for CCPA. Code analysis and
cross-platform tool-chains are the significant charac-
ters.

During the implementation of the protocol stacks,
often it is the transplant of stable protocol stacks to
Embedded OS (EOS), such as part transplant TCP/IP
implementation from Linux to fit the Embedded
Linux. Most source codes of common OS are not
customized for EOS and take little care of the re-
stricted computational capability and memory space,
which may cause problems if the transplant only fo-
cuses on executable and receptive program as the
performance and efficiency becomes secondary. Al-
though the loss of performance is a matter of fact, this
may be unpredictable because of lack of criteria. So
we must guide and help the analysis of existing pro-
tocol stacks and source codes in CDP. Especially for
wireless protocols, the repetitive transplant among
different EOS in different devices gets more trou-
blesome. Indeed, most of the common communica-
tion protocols have their robust C version source
codes. Code analysis is important for efficiency as the
rewriting work does not build up from nothing.

CDP is an IDE used on the common PC whose
OS is Windows or Linux. The source codes are edited
and managed on a PC, but the generated components
are run in EOS. Cross-platform compilers must be
used to compile the source codes and must use certain
cross-platform tool-chains such as compilers and
debugging tools, which are customized to target EOS.
So the universal link interface is necessary to connect
all kinds of them; this makes the development process
fully oriented to the programs without considering
tool-chains.

The quality and reusability of the binary com-
ponents must be checked. In CDP, it can be tested and
examined from the source code level. If there are
emulation environments of the target EOS and de-
vices, further tests such as those for component in-
dependence, assembly stability, and component run-
ning memory, can be conducted to get accurate
component descriptions and evaluations. Only quali-
fied components are uploaded to CL.

CL is not merely a binary database for compo-

nent storage. It does much quality assurance, ex-
change and component transfer work. Before being
stored into the database, each component must pass
the ultimate examination which focuses on the inte-
grality and uniform external interface. For the com-
ponents which do not upload from CDP, this quality
assurance is vital. The components must pass the
examinations before they are stored into the libraries.
The quality of components is the key assurance of
CCPA. This makes active services on embedded
systems stable and robust.

Configurations and utilizations

Furthermore, CL is the center of the components
and the descriptions of the component-based proto-
cols. It may be distributed and there must be a built-in
mechanism to keep synchronization between libraries.
It passes the component and protocol descriptions to
CAP for manual configuration and assembly. It is also
the only sources of the components for OSSE.

OSSE executes on EOS or joins into EOS kernel.
The chief work is to support the component-based
protocols and protocol stacks. At the same time, it
provides the protocol runtime watch and dynamic
configuration through the ComS which was men-
tioned above. It can self-adapt to the application re-
quirements and network environment, or can be
manually controlled remotely by CAP. It loads or
unloads the components while keeping the commu-
nication services active. CAP is an optional IDE.
Users can do initialization and configuration work
manually here, according to the CL contents and the
requirements.

Fig.4 shows the lifecycle of the correlative work
with CAP. CL is a server that runs all the time. CAP
connects to the CL to get the protocol and component
descriptions and also connects the OSSE to get the
active components information. The configuration

Fig.4 The lifecycle of the correlative work with CAP

CL CAP OSSE

Get all protocol and
component descriptions Get active components

information

Ask for the components

Download the usable components

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

84

processes on the CAP and the result returns to OSSE.
Then OSSE connects to CL for the components. CL
validates the requests and the components stored in
CL which have passed the quality verification can be
downloaded to OSSE. OSSE runs the updated com-
ponents as discussed in the last chapter. If there is no
CAP, the correlated model is simpler.

In contrast, Avoca (Hempstead et al., 1992) is a
network architecture and domain model that supports
the development of encapsulated, reusable, and effi-
cient communications protocols. The runtime envi-
ronment for Avoca is provided by the x-kernel which
is an operating system kernel designed to run network
protocols. The domain model for Avoca focuses on
the identification of realms of protocols for remote
procedure calls, remote invocation methods, and
network file systems. Avoca protocols are symmetric
components that can be composed in virtually arbi-
trary orders (Batory and O’Malley, 1992). According
to the introductions above, it can be concluded that
the implementations of CL and CAP, and the corre-
lations among them are the main character of CCPA,
which also includes CDP to ensure the component
quality. These designs adapt to the limited computa-
tional capability and memory space of embedded
systems. They also have more flexibility, such as
dynamic configuration and hot swap.

IMPLEMENTATION AND RESULT

There are some IDE, such as Visual C++ “ATL
COM appwizard” and Borland Java Builder “Object
Gallery: JavaBeans, EJB, Cobra module wizard”,
which can guide the component development. There
is CL which can store many types of components such
as Jade Bird Component Library System (Mei et al.,
2000) too. But only CCPA is fully customized for
communication protocols in embedded systems. We
built a set of complete implementation based on
CCPA and made some tests on an Intel® PXA 255
hardware platform with a built-in 10~100 M
self-adaptive network card.

For example, FTP is an application layer proto-
col. A simple implementation of FTP client is about
1100 lines source codes of C language. Through
analysis tools of CDP, it is easy to find that the codes
are generally composed of three main parts: transfer

part, control part and upload part, so we can divide
this FTP implementation into three modules accord-
ing to its own function, named C_Transfer, C_Control,
and C_Upload. These components can make up the
FTP service.

We built two sets of components suitable for
different network bandwidth. First, the optimized
work exerts good influence on the source codes for 10
M network bandwidth. Three components were built:
C_Control, C_Transfer_10, and C_Upload_10. Sec-
ond, the codes are optimized for 100 M network
bandwidth. We got two new components:
C_Transfer_100 and C_Upload_100 (C_Control is
nothing different). All these components pass com-
plex and strict tests before they are stored into CL.

Then OSSE in embedded devices download the
suitable components from CL to assemble the com-
ponent-based FTP client. The configuration comes
from CAP. Then we use this FTP client to upload files,
using Average Transfer Speed (ATS) as test data
statistics. ATS is defined by recording transfer speed
every 15 s, and taking the average after getting at least
10 values. The following steps yield the value in Ta-
ble 2.

First, the cable is 10 M available and we use the
original FTP client implementation which is directly
compiled with the original C source codes. We can
get the data of Row 1. Then we use the components
suitable for 10 M network bandwidth, the result is
Row 2. If the cable is changed to be 100 M available,
the result is Row 3 and the components update
automatically by OSSE self-adaptive mechanism.

Second, we test the dynamic configuration and
the cable is 10 M available. If the unique
C_Upload_10 is unloaded while it keeps actively
uploading files, the result is shown in Row 4. After
the C_Upload_10 is loaded again, the result is shown
in Row 5. After the transfer process becomes stable, if
the C_Transfer is unloaded, the result is shown in
Row 6.

Third, we add multiple C_Upload_10 to execute
at the same time. Test data varies from Row 7 to Row
9.

Comparison of Row 1 data with Row 2 data
shows that there is certain performance loss after the
FTP service is component-based, but the loss is no
more than 8%, so it is acceptable. Comparison of Row
2 with Row 3 shows that the active components vary

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

85

automatically accompanying the cable change, the
transfer speed increases so much mainly because of
the better network environment.

Row 4 shows that if the component for corre-
sponding function is unloaded, the activity pauses at
once, and Row 5 shows that if the component is
loaded again, the activity continues and is not influ-
enced. After the transfer activity becomes stable, the
unused components can be unloaded with no influ-
ence as shown in Row 6.

From Row 7, it is obvious that the performance
has increased by about 40% if we add a functional
component. But from Row 8 to Row 9, it can be
concluded that the increase of performance becomes
much slower even if more active components are
added into the system. The status may be much better
if we use multiple CPUs.

An analysis chart of test data is shown in Fig.5.
Line 2 is Row 1 and Line 1 is Row 3. We can find
obviously that:

(1) Value of Row 2 is a little smaller than that
Line 2, because of the loss of the component-based
FTP service.

(2) There is the remarkable increase from Row 2
to Row 7, because of the addition of an upload com-
ponent

(3) There is still increase from Row 7 to Row 9,
but the trend is moderate, because of the limit of
software improvement.

(4) Line 1 is much higher than the others, be-
cause of the huge change in network status. If the
update components cannot load dynamically, it is so
much waste.

CONCLUSIONS AND DISCUSSIONS

For the sake of the efficiency and performance of
communication protocols, the component-based
communication architecture (CCPA) is constructed to
realize and improve the component-based communi-
cation service. It enables the dynamic configuration of
customized protocols through a proper set of reusable
protocol components assembly. The replacement of
protocol components doesn’t need to reboot the de-
vice. To produce, test, store and use the components,
CCPA is deployed with a set of software including
component development platform, component library
and component assembly platform etc. The flexibility
and reusability brought by the architecture are obvi-
ous and recommendable.

Some EOS is component-based such as TinyOS
(Hempstead et al., 2004) and merges the protocol

Table 2 Simple component-based FTP service test data (The scale of ATS (Average Transfer Speed) is 5 kB)

Active component

C_Transfer C_Control C_Upload
ATS (kB/s)

1 Use original application No No No 255
2 Use 10 M cable C_Transfer_10 C_Control C_Upload_10 240
3 Use 100 M cable C_Transfer_100 C_Control C_Upload_100 770
4 C_Upload unload C_Transfer_10 C_Control No 0
5 C_Upload load again C_Transfer_10 C_Control C_Upload_10 240
6 C_Transfer unload No C_Control C_Upload_10 240
7 Use 2 C_Upload C_Transfer_10 C_Control 2 C_Upload_10 325
8 Use 3 C_Upload C_Transfer_10 C_Control 3 C_Upload_10 350
9 Use 4 C_Upload C_Transfer_10 C_Control 4 C_Upload_10 360

360350325
240

770770770770770

255 255 255 255

255

0

100

200

300

400

500

600

700

800

900

Row 2 Row 7 Row 8 Row 9

Fig.5 Data analysis of an Ftp client

Dai et al / J Zhejiang Univ SCI 2005 6A(Suppl. I):79-86

86

stack into the EOS kernel, so that one component may
be multiple reused by the component-based protocols
in the same embedded devices and the performance
may be much higher in the multiple CPU systems
such as SMP devices.

References
Batory, D., O’Malley, S., 1992. The design and implementa-

tion of hierarchical software systems with reusable
components. ACM Trans. on Software Engr. and Meth-
odology, 1(4):355-398.

Bilek, J., Ruzicka, I.P., 2003. Evolutionary trends of embedded
systems. IEEE International Conference on Industrial
Technology, 2:901-905.

Hempstead, M., Welsh, M., Brooks, D., 2004. TinyBench: The
Case for a Standardized Benchmark Suite for TinyOS
Based Wireless Sensor Network Devices. 29th Annual
IEEE International Conference on Local Computer Net-
works, p.585-586.

Hutchinson, N., Peterson, L., 1991. The x-kernel: Architecture

for implementing network protocols. IEEE Trans. on
Software Engineering, 17(1):64-76.

Iordache, C., Tang, P.T.P., 2003. An Overview of Float-
ing-point Support and Math Library on the Intel/spl reg/
XScale/spl trade/architecture. 16th IEEE Symposium on
Computer Arithmetic, p.122-128.

Mei, H., Xie, T., Yuan, W.H., Yang, F.Q., 2000. Component
metrics in Jade Bird Component Library System. Ruan
Jian Xue Bao, 11(5):634-641 (in Chinese).

Postel, J., 1996. Internet Official Protocol Standards, RFC
1720. Network Working Group.

Rastofer, U., Bellosa, F., 2001. Component-based software
engineering for distributed embedded real-time systems.
Software, IEE Proceedings, 148(3):99-103.

Schmidt, D.C., Box, D.F., Suda, T., 1993. Adaptive: A dy-
namically assembled protocol transformation, integration,
and evaluation environment. Concurrency: Practice and
Experience, 5(4):269-286.

Swaminathan, V., Chakrabarty, K., 2004. Network flow tech-
niques for dynamic voltage scaling in hard real-time
systems. IEEE Trans. on Computer-Aided Design of In-
tegrated Circuits and Systems, 23(10):1385-1398.

Welcome contributions from all over the world
http://www.zju.edu.cn/jzus

♦ The Journal aims to present the latest development and achievement in scientific research in

China and overseas to the world's scientific community;
♦ JZUS is edited by an international board of distinguished foreign and Chinese scientists. And

an internationalized standard peer review system is an essential tool for this Journal's
development;

♦ JZUS has been accepted by CA, Ei Compendex, SA, AJ, ZM, CABI, BIOSIS (ZR),
IM/MEDLINE, CSA (ASF/CE/CIS/Corr/EC/EM/ESPM/MD/MTE/O/SSS*/WR) for ab-
stracting and indexing respectively, since started in 2000;

♦ JZUS will feature Science & Engineering subjects in Vol. A, 12 issues/year, and Life Science
& Biotechnology subjects in Vol. B, 12 issues/year;

♦ JZUS has launched this new column “Science Letters” and warmly welcome scientists all over
the world to publish their latest research notes in less than 3−4 pages. And assure them
these Letters to be published in about 30 days;

♦ JZUS has linked its website (http://www.zju.edu.cn/jzus) to CrossRef: http://www.crossref.org
(doi:10.1631/jzus.2005.xxxx); MEDLINE: http://www.ncbi.nlm.nih.gov/PubMed; High-
Wire: http://highwire.stanford.edu/top/journals.dtl; Princeton University Library:
http://libweb5.princeton.edu/ejournals/.

